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Abstract  10 

Background: Impregnated central venous catheters (CVCs) are recommended for adults to reduce 11 

bloodstream infection (BSI) but not for children due to a lack of evidence for their effectiveness. 12 

Methods: Randomised trial of children admitted to 14 English paediatric intensive care units (PICUs). 13 

The primary outcome, time to first BSI between 48 hours after randomisation and 48 hours after 14 

CVC removal, was compared for any impregnation (antibiotic or heparin) versus standard CVCs 15 

(primary analyses) and in pair-wise comparisons of all three CVC types (secondary analyses).  16 

Findings: BSI occurred in 3.59% (18/502) randomised to standard CVC, 1.44% (7/486) to antibiotic 17 

and 3.42% (17/497) to heparin CVC. Primary analyses showed no effect of impregnated (antibiotic or 18 

heparin) compared with standard CVCs (hazard ratio for time to first BSI 0.71; 95%CI 0.37-1.34) 19 

Secondary analyses showed antibiotic CVCs were superior to standard (HR 0.43; 0.20-0.96) and to 20 

heparin CVCs (HR 0.42; 0.19-0.93), but heparin did not differ from standard (HR 1.04; 0.53-2.03). 21 

Clinically important and statistically significant absolute risk differences were found only for 22 

antibiotic vs standard (-2.15%; 95%CI: -4.09, -0.20; number needed to treat=47; 95%CI: 25, 500) and 23 

antibiotic vs heparin CVCs (-1.98%; -3.90, -0.06; NNT=51; 26, 1667). Time to thrombosis, mortality by 24 

30 days, and minocycline or rifampicin resistance, did not differ by CVC allocation. 25 

Interpretation: Antibiotic-impregnated CVCs significantly reduced the risk of BSI compared with 26 

standard and heparin CVCs.  Widespread adoption of antibiotic-impregnated CVCs could help 27 

prevent BSI in PICU.  28 

(ClinicalTrials.gov Identifier:NCT01029717) 29 

Funding: UK National Institute for Health Research. 30 

  31 
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Introduction 32 

Bloodstream infections (BSI) are important causes of adverse clinical outcomes and costs to health 33 

services. Paediatric intensive care units (PICUs) have one of the highest reported rates of hospital-34 

acquired BSI of any clinical specialty with central venous catheters (CVCs) being a frequent cause of 35 

BSI in PICU.1, 2 US studies report the success of improved aseptic practices during insertion and 36 

maintenance of CVCs for reducing rates of catheter-related BSI (CR-BSI).3-5 The UK Department of 37 

Health invested in similar infection reduction initiatives, including the Saving Lives CVC care bundle 38 

and the Matching Michigan scheme.6-8 39 

 40 

Use of CVCs that are impregnated, for example with antibiotics, chlorhexidine or heparin, has been 41 

recommended as part of these infection reduction initiatives in the US and UK, but only for adults at 42 

high risk of BSI.7, 9 Impregnated CVCs have not been recommended for children.10 The evidence for 43 

reduced rates of CR-BSI with impregnated compared with standard CVCs derives from trials 44 

predominantly of adults. Recent systematic reviews draw on evidence from 56 randomised 45 

controlled trials (RCT).11-14 A network meta-analysis of direct and indirect comparisons of 46 

impregnated and standard CVCs found that heparin-bonded or antibiotic-impregnated CVCs were 47 

the most effective options, with an associated 70%-80% reduction in the risk of CR-BSI.14  48 

 49 

Despite the large number of randomised controlled trials, there is relatively weak evidence to guide 50 

policy about adoption of impregnated CVCs for all who need them, particularly children. Firstly, 51 

there are inherent biases in the use of CR-BSI - the primary outcome used in all previous trials - as 52 

this could overestimate benefits of antibiotic impregnation.11, 15 CR-BSI requires positive cultures of 53 

the same organism from the CVC tip and from blood, which excludes many patients with BSI and 54 

may favour antibiotic impregnated CVC tips through inhibition of bacterial growth in culture media.16  55 

Secondly, few studies have been conducted in the context of the low infection rates associated with 56 

improved asepsis programmes.6, 7, 17 Thirdly, very few trials involve children (see box on research in 57 
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context).18-20 Compared with adults, children require narrower CVCs, which thrombose more readily. 58 

Standard, non-impregnated CVCs are still used for the majority of children in UK PICUs.10  However, 59 

there could be significant gains for children’s health and healthcare costs if impregnated CVCs could 60 

be confirmed to reduce rates of BSI. 61 

 62 

We conducted a pragmatic, three-arm randomised controlled trial to determine the effectiveness of 63 

any type of impregnation (antibiotic or heparin) compared with standard CVCs for preventing BSI in 64 

children requiring intensive care. A secondary aim was to determine which of the three types of CVC 65 

was most effective.  We also determined the effectiveness of type of CVC on CR-BSI, duration of 66 

care, and safety, including mortality and adverse events such as antibiotic resistance.  67 

  68 
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Methods 69 

Design, study population and intervention 70 

Children admitted to 14 PICUs in England between December 2010 and November 2012 were 71 

randomised to CVCs impregnated with antibiotics or heparin or to standard CVCs.  Both types of 72 

impregnation involve internal and external surfaces. We used polyurethane CVCs manufactured by 73 

Cook Medical Incorporated (IN 47404 USA). Sizes used were French gauge 4 (double lumen), 5 or 7 74 

(triple lumen). Cook reports a concentration of 503 µg/cm minocycline and 480 µg/cm rifampicin for 75 

their antibiotic impregnated CVC, which reduces biofilm formation.21 Heparin bonding reduces 76 

thrombus and thereby biofilm formation and uses benzalkonium chloride as an anti-infective 77 

bonding agent.16 22  78 

 79 

Children <16 years were eligible if they were admitted or being prepared for admission to a 80 

participating PICU and were expected to require a CVC for 3 or more days. For children admitted to 81 

PICU following elective surgery, we sought prospective parental consent during pre-operative 82 

assessment. For children who required a CVC as an emergency, we sought parental consent after 83 

randomisation and stabilisation (deferred consent) to avoid delaying treatment.  Parents consented 84 

to the use of their child’s data for the trial, to follow-up using routinely recorded clinical data, and to 85 

an additional 0.5ml of blood being collected for PCR testing whenever a blood culture was clinically 86 

required. Further details are given in the protocol (see supplementary material).  87 

 88 

Randomisation and masking 89 

Children were randomised at the bedside or in theatre (operating room) immediately prior to CVC 90 

insertion. The clinician or research nurse opened a pressure sealed, sequentially numbered, opaque 91 

envelope containing the CVC allocation. Randomisation sequences were computer generated in a 92 

1:1:1 ratio by an independent statistician in random blocks of three and six, stratified by method of 93 
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consent, site and envelope storage location within the site to facilitate easy access to envelopes (e.g. 94 

for insertion in theatre and in PICU).  95 

 96 

CVC allocation was not blinded to the clinician responsible for inserting the CVC (due to different 97 

colour strips for antibiotic and heparin CVCs) but since CVCs looked identical whilst in situ, allocation 98 

was concealed from patients, their parents and PICU personnel responsible for their care. Labels 99 

identifying the type of CVC were held securely in a locked drawer in case unblinding was required. 100 

Participant inclusion in analyses and occurrence of outcome events were established prior to release 101 

of the randomisation sequence for analysis and for the data monitoring committee. 102 

 103 

Comparisons and end points 104 

The primary analysis for the trial compared any impregnated CVCs (antibiotic or heparin) with 105 

standard CVCs. Secondary analyses involved pair-wise comparisons for the three types of CVC.   106 

 107 

The primary outcome was time to the first BSI based on blood cultures taken between 48 hours after 108 

randomisation and 48 hours after CVC removal (or prior to death). All blood culture samples included 109 

in the primary outcome were clinically indicated, defined by recorded evidence of infection (one or 110 

more of: temperature instability, change in inotrope requirements, haemodynamic instability, or poor 111 

perfusion) or removal of the CVC due to suspected infection. Blood cultures were recorded as positive 112 

for the primary outcome if any organism was isolated that was not a skin commensal or if coagulase-113 

negative staphylococci (or other skin commensals) were isolated and there were two or more positive 114 

cultures of the same organism within 48 hours of each other.  A clinical committee reviewed all 115 

primary outcomes involving positive cultures without knowledge of CVC allocation status. A sensitivity 116 

analysis assumed that the primary outcome occurred for those with a record of clinical indication but 117 

no blood culture taken in the primary outcome time window.  118 

 119 
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Secondary BSI-related outcomes were: (1) CR-BSI: based on same organisms cultured from blood 120 

and CVC tip between 48 hours after randomization and 48 hours after CVC removal; or differential 121 

positivity  of cultures from multiple CVC lumens on two or more occasions; or exit site infection or 122 

CVC removed for infection; (2) rate of BSI per 1000 CVC-days: based on one or more BSI between 123 

randomisation and CVC removal; and (3) time to a composite measure of BSI comprising the primary 124 

outcome or  a negative blood culture combined with a positive 16S PCR result for bacterial DNA, 125 

removal of the CVC because of suspected infection, or a start of antibiotics or change in type of 126 

antibiotics on the same or next day.  127 

 128 

Other secondary outcomes included time to CVC removal and time to CVC thrombosis (defined by 129 

two episodes within five days of each other of difficulty flushing the CVC or drawing back blood from 130 

the CVC, one episode of swollen limb, CVC removal due to thrombosis, or a positive ultrasound 131 

indicating thrombosis). We also compared the time to PICU discharge, hospital discharge, and death 132 

within 30 days of randomisation. Deaths were recorded by the research team and/or by linkage to 133 

death certification data from the Office of National Statistics. Cost-effectiveness analyses based on 134 

linked hospital resource data for six-months follow-up will be reported elsewhere.  135 

 136 

Safety analyses compared CVC-related adverse events (including unexplained thrombocytopenia 137 

after insertion of CVC), mortality, and antibiotic resistance to minocycline (>0.5 µg/ml) or rifampicin 138 

(>1.0 µg/ml) based on etest strips applied to organisms isolated from BSI (www.biomerieux-139 

diagnostics.com/etest). Incomplete laboratory testing and reporting limited analyses of resistance in 140 

positive blood cultures and prevented analysis of resistance in cultures from the CVC tip (as specified 141 

in the protocol).  142 

 143 

Study procedures 144 
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Participation in the trial did not involve any changes to standard clinical care or data collection apart 145 

from collecting an additional 0.5ml of blood whenever a blood culture sample was taken. The 146 

sample was sent for PCR testing for 16S rRNA of bacterial ribosome protein to detect bacterial 147 

infection. We sought consent to link data from hospital administrative records for six months after 148 

randomisation and from the national Paediatric Intensive Care Audit Network (PICANet 23) to the 149 

child’s study data to categorise the primary reason for admission and the Paediatric Index of 150 

Mortality score on admission (PIM2 24).  151 

 152 

Sample size 153 

We based the sample size calculation for the primary analysis on a relative risk (RR). We assumed 154 

detection of a RR of 0.5 in patients with a baseline risk of 10% would change policy. We assumed the 155 

RR would remain relatively constant across baseline risks while the absolute risk difference would be 156 

more variable. 1200 children in a 2:1 ratio (impregnated:standard) were required to achieve 80% 157 

power to detect a RR of 0.5 at a 5% level of significance, based on an estimated BSI rate of 10% and 158 

allowing for 5% loss to follow-up. A lower than expected BSI rate of 5% would have 62%  power to 159 

detect a RR of 0.5 or  80% power for a RR of 0.32. 160 

 161 

The Independent Data Monitoring Committee recommended continuation of the study until 30 162 

November 2012 after: reviewing the first 209 children; an interim analysis of 650 children using the 163 

Peto-Haybittle stopping rule for the primary outcome; recruitment had reached the original target of 164 

1200 pre-schedule in June 2012 and there were no safety concerns. The recommendation for 165 

continuation aimed to exhaust available funding.  166 

 167 

Statistical analysis 168 

Outcome data were analysed according to the intention to treat principle. Safety analyses included 169 

the subset of children for whom CVC insertion was attempted, grouped by CVC actually received.  170 
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The statistical analysis plan was developed prior to analysis and is available in the supplementary 171 

material. The full statistical report is available from the authors. A 5% level of statistical significance 172 

and 95% confidence intervals were used throughout. Absolute risk differences were calculated for 173 

proportions. Time to event outcomes were analysed using Kaplan-Meier curves and the log-rank 174 

test. Cox regression was used to adjust primary and secondary analyses of time to first BSI for 175 

prospective or deferred consent type and suspected infection at baseline. In a post-hoc, sensitivity 176 

analysis, we used cumulative incidence curves to evaluate competing risks from death for time to 177 

first bloodstream infection. We applied Gray’s test to detect whether there was a difference 178 

between impregnated and standard CVCs for the primary outcome.25 For secondary outcomes, 179 

binary outcomes were analysed using the chi squared test and continuous outcomes analysed using 180 

the Mann Whitney U test. The rate of BSI (defined as the total number of BSI per 1000 CVC-days 181 

occurring between randomisation and CVC removal) was analysed using Poisson regression. All 182 

analyses were conducted using SAS software version 9.2. 183 

 184 

Study oversight and role of funders 185 

The Research Ethics Committee for South West England approved the study protocol (reference 186 

number 09/H0206/69). The manufacturer Cook supplied CVCs to participating units at a 20% 187 

discounted price. Neither the manufacturer nor the funder (the National Institute of Health 188 

Research) had any role in the design of the study, collection or interpretation of data or reporting of 189 

results. The CATCH trial is registered with ClinicalTrials.gov (Identifier:NCT01029717). The protocol 190 

and Statistical Analysis Plan are available as supplementary files and at 191 

http://www.nets.nihr.ac.uk/projects/hta/081347. The full statistical analysis report is available on 192 

request from the authors. 193 

 194 

  195 
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Results  196 

Study population 197 

Overall, 1859 children were randomised (501 prospective, 1358 emergency). However, 984/1358 198 

(72%) emergency patients subsequently provided deferred consent, leaving 1485 participants for final 199 

analysis (Figure 1). Reasons for non-consent are reported in Figure 1. Of the 1485 randomised 200 

participants, 75 (5%) did not receive a CVC: in 53 insertion was attempted but unsuccessful and in 22 201 

CVC insertion was not attempted (16 no longer required, 5 reason not known and 1 patient died).  Of 202 

those receiving a CVC, more of those randomised to standard CVC received the allocated type of CVC 203 

(93%; 468/502 allocated to standard; 90%; 437/486 to antibiotic, and 89%; 440/497 to heparin; 204 

Figure 1). The majority of CVCs received but not allocated CVCs were standard CVCs (69%; 45/65; 205 

Figure 1). All randomised and consented participants were followed up until 48 hours after CVC 206 

removal or attempted CVC insertion.   207 

 208 

Baseline characteristics 209 

Table 1 shows that over half (58%) of children were aged under 12 months at admission, with one-210 

third aged less than 3 months. One third of children had surgery prior to admission to PICU and half 211 

had cardiovascular problems as their primary diagnosis at admission. CVC insertion took place in the 212 

operating room for 437/493 (89%) in the prospective consent (elective) group, but in only 34/917 213 

(4%) of the deferred consent (emergency) group 214 

 215 

Endpoints 216 

Primary outcome 217 

Clinical indicators of infection were recorded during the primary outcome time interval from 48 218 

hours after randomisation up to 48 hours after CVC removal for 610/1485 (41%) participants, most 219 

of whom (593/610; 97%) had blood cultures taken (Figure 1).  Derivation of the primary outcome 220 

and the number of BSI excluded from the primary outcome is shown in supplementary Figure 1. The 221 
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primary outcome of BSI was recorded for 42 children: standard 18/502 (3.6%); antibiotic 7/486 222 

(1.4%); heparin 17/497 (3.4%). Gram positive organisms accounted for the majority of BSI (23/42; 223 

55%) of which 6 (14%) were positive for coagulase negative staphylococci (Table 2). Details of all 224 

organisms isolated in the primary outcomes are given in supplementary Table 1.  All outcomes are 225 

reported by CVC type in Table 2.  226 

 227 

In the primary comparison, time to BSI did not differ between impregnated CVCs (antibiotic or 228 

heparin combined) and standard CVCs (Hazard ratio 0.74; 95%CI: 0.37, 1.34; Table 3). In secondary, 229 

pair-wise comparisons, antibiotic impregnated CVCs reduced the risk of BSI compared with standard 230 

CVCs (HR 0.43; 0.20, 0.96) and compared with heparin CVCs (HR 0.42; 0.19, 0.93). Absolute risks of 231 

BSI differed significantly at the 5% level only for antibiotic CVCs compared with standard (-2.15%) 232 

and heparin CVCs (-1.98%; Table 3).  233 

 234 

Figure 2 shows the Kaplan-Meier curve for time to first BSI. There was no significant difference in 235 

time to first BSI comparing any impregnated CVC with standard (p=0.29) or heparin with standard 236 

(p=0.90). BSI risk was reduced for antibiotic compared with standard CVCs (p=0.04) and for antibiotic 237 

compared with heparin CVCs (p=0.03). The direction of these results was robust to the sensitivity 238 

analysis in which the 17 cases with clinical indicators but no blood culture taken were assumed to 239 

have a positive BSI (supplementary appendix Table A2). The direction of results did not change in the 240 

regression analysis (supplementary appendix Table A3). Competing risks analyses using Gray’s test 241 

indicated no difference between impregnated compared with standard CVCs for either competing 242 

risks (p-values of p=0.29 for bloodstream infection and p=0.89 for death). 243 

 244 

Secondary outcomes 245 

There was no significant difference between any impregnated and standard CVCs (p=0.13) in the risk 246 

of CR-BSI. The risk of CR-BSI was significantly lower for antibiotic vs standard CVC (p=0.03) and for 247 
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antibiotic vs heparin CVCs (p=0.09; Table 3). The BSI rate per 1000 CVC-days was lowest in the 248 

antibiotic group (Table 2). No children had more than one BSI whilst the trial CVC was in place. The 249 

inter-relationship between outcomes involving BSI is shown by time since randomisation in 250 

supplementary appendix Figure 2. The composite measure of BSI or culture negative infection did 251 

not differ by CVC (Tables 2 and 3). Supplementary Table A4 shows indicators of infection 252 

contributing to the composite measure. No other secondary outcomes were associated with type of 253 

CVC (Table 3). 254 

 255 

Safety 256 

The cohort for safety (per protocol) analyses were based on children who had a CVC insertion 257 

attempted. These analyses comprised more children in the standard group (n=533) than the 258 

antibiotic (n=451) or heparin groups (n=479; Table 2; see statistical analysis plan section 11). No 259 

CVC-related adverse events (31 events) or mortality (148 events) were attributed to type of CVC 260 

received (Table 2). Two children developed thrombocytopenia unrelated to the type of CVC. One 261 

was allocated to antibiotic and the other to heparin CVC (full statistical analysis report available from 262 

the authors). 263 

 264 

Testing for antibiotic resistance varied by centre. Only 12 of the 42 children with the primary 265 

outcome BSI had minocycline and rifampicin resistance reported using etest strips; 8/12 were 266 

resistant to one or both antibiotics (3/5 standard; 2/2 antibiotic; 3/5 heparin; supplementary Table 267 

5). Most resistance occurred in gram negative organisms (7/9 organisms cultured from 8 BSI 268 

episodes; Table A5). Resistance was detected in two BSI that were positive for staphylococcal 269 

species: one allocated to antibiotic and the other to heparin CVC (supplementary appendix Table 270 

A5).  271 

  272 
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Discussion  273 

Impregnated CVCs are not recommended for use in children because of the lack of clear evidence of 274 

their effectiveness. In this first trial to compare two types of impregnated CVCs with standard CVCs 275 

in children our primary analysis showed no evidence of a statistically significant difference between 276 

time to first BSI for any impregnated CVCs (antibiotic and heparin combined) compared with 277 

standard CVCs. However, antibiotic impregnation reduced the risk of BSI by 57% compared with 278 

standard CVCs, and by 58% compared with heparin-bonded CVCs.  Antibiotic-impregnated CVCs 279 

were associated with an absolute risk reduction of 2.15% compared with standard CVCs, meaning 47 280 

children (95% CI: 25, 500) would need to be treated with an antibiotic-impregnated CVC instead of a 281 

standard CVC to prevent one case of BSI.   282 

 283 

Strengths of the study include the use of any BSI as a clinically important primary outcome thereby 284 

avoiding the biases inherent in measuring CR-BSI. A further strength was the restriction to positive 285 

blood cultures that were clinically indicated, thereby recording an outcome that clinicians would 286 

regard as potentially serious and needing treatment. Restriction to clinically indicated blood cultures 287 

increased the clinical relevance of the primary outcome, but, in contrast to routine blood culture 288 

sampling for all study participants, diminished the sensitivity of the study to detect bacteraemia.  289 

Only 41% of children had clinical indicators of blood stream infection recorded during the primary 290 

outcome interval but nearly all of these had a blood culture taken. A third strength is the 291 

representativeness of the study population in terms of children admitted to the 14 largest PICUs (out 292 

of a total of 24) across the country. We were able to enrol a similar proportion of emergency 293 

patients (two-thirds) as seen in practice,26 enabled by the inclusion of retrieved children and the use 294 

of deferred consent. 295 

 296 

Limitations include the limited power of the study to detect differences in the primary outcome 297 

according to the type of CVC. The trial was based on the best available evidence at the time, which 298 
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indicated large but equivalent benefits of antibiotic and heparin CVCs compared with standard.  The 299 

key question, which determined our primary analysis and sample size, was whether these benefits 300 

occurred in children. Secondary, pair-wise comparisons addressed which type of impregnated CVC 301 

was best, but the trial was not adequately powered to detect the anticipated small differences 302 

between antibiotic and heparin CVCs. Power was further eroded by the low baseline rate of BSI. 303 

 304 

Another limitation relates to finding that although antibiotic CVCs reduced BSI, we found no 305 

differences in secondary outcomes such as mortality, duration of CVC insertion, or the composite 306 

measure of BSI or culture negative infection. One potential reason is the complex and varied 307 

conditions and disease processes affecting patients receiving intensive care. Antibiotic CVCs may 308 

affect BSI in these patients but not other outcomes. For example, none of the deaths were deemed 309 

to be directly attributable to BSI.  A second  reason is the poor specificity of the secondary 310 

outcomes. Mortality and duration of CVC placement are affected by a number of treatments, not 311 

just CVC impregnation, thereby biasing in favour of a null effect for these secondary outcomes.  The 312 

reduction in the hazard ratio for antibiotic vs standard CVC was largest for CRBSI (reduced by 75%), 313 

less for BSI (reduced by 59%), and small and not significant for the composite measure of BSI or  314 

culture negative infection. Of these outcomes, CRBSI is most specifically affected by antibiotic 315 

impregnation, whereas the composite measure of BSI is affected by other disease and treatment 316 

factors, thereby biasing towards the null effect.  317 

 318 

Another factor likely to bias towards the null effect for secondary outcomes is the potential for 319 

‘rescue’ treatment in response to signs of BSI. Patients in intensive care units are continuously 320 

monitored for changes in their condition and treated promptly. As a result, signs of infection should 321 

be less likely to develop into septic shock given good intensive care management. Such responses 322 

introduce bias towards the null effect for secondary outcomes such as mortality but are difficult to 323 

measure adequately.  324 
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 325 

Lack of blinding was another limitation, although we found no evidence of differential blood culture 326 

sampling by trial arm (Figure 1). The number of children who received their allocated CVC was 327 

slightly higher for those in the standard arm, probably reflecting the fact that standard CVCs were 328 

the default CVC used in many units.10 Lastly, antibiotic resistance testing using etest strips was not 329 

done for all positive blood cultures. This reflects local laboratory administration and processing, 330 

which centralised testing of positive cultures could have mitigated.  Where reported, resistance 331 

occurred in all trial arms, predominantly in gram negative isolates, as expected. The low rates are 332 

consistent with previous lack of evidence for the emergence of resistance.27     333 

 334 

Implications 335 

The primary outcome, time to BSI, did not differ between impregnated and standard CVCs. However, 336 

secondary, pair-wise analyses of the type of CVC, showed that only antibiotic CVC reduced the risk of 337 

BSI compared with standard and with heparin CVCs. The low rate of BSI in the standard and heparin 338 

groups and the multiple, pair-wise comparisons, reduced the power of our study. However, when 339 

combined with evidence from systematic reviews, our findings establish the effectiveness of 340 

antibiotic-impregnated CVCs compared with standard CVCs and extend this evidence for paediatric 341 

use. For the first time we directly demonstrate effectiveness of antibiotic CVCs compared with 342 

heparin-bonded CVCs in this population, even in the context of low rates of BSI. Widespread 343 

adoption of antibiotic-impregnated CVCs could help prevent BSI in PICU. Whether these benefits 344 

outweigh the additional costs depends on differential pricing of antibiotic and standard CVCs by the 345 

manufacturer and the cost benefits of avoiding bloodstream infection.  346 

  347 



17 
 

Research in context 348 

Evidence before this study 349 

We searched PubMed, initially for systematic reviews or meta-analyses, using the clinical queries filter for 350 

therapy studies or terms for meta-analysis and (catheter* OR central OR venous OR intravenous) (impregnated 351 

OR bonded OR coated OR antibiotic OR heparin) and infection. We found 5 systematic reviews published since 352 

2008. The two most recent reviews were both published in the Cochrane Library. One included any type of CVC 353 

impregnation, but excluded children (56 RCTs, 5 antibiotic vs standard; 1 heparin vs standard).13 The other 354 

compared heparin bonded with standard CVCs in children (2 trials).28 All the trials evaluated in these two 355 

reviews were included in an earlier systematic review and network meta-analysis by Wang et al which 356 

comprised direct and indirect mixed treatment comparisons of 45 RCTs evaluating CR-BSI (6 antibiotic vs 357 

standard none in children; 3 heparin vs standard, 2 in children). For antibiotic (minocycline-rifampicin) 358 

compared with standard CVC, Wang et al reported a pooled odds ratio for CR-BSI of 0.18 (95%CI; 0.08, 0.34).14  359 

We found one subsequent randomised controlled trial which compared antibiotic (minocycline and rifampicin) 360 

and standard CVCs for children undergoing heart surgery.19 The trial of 288 participants was terminated early 361 

because of a low event rate (3 catheter associated BSI in each group).  The mixed treatment comparison for 362 

heparin-bonded vs standard CVCs produced a pooled odds ratio of 0.20 (0.06, 0.44), and for antibiotic 363 

compared with heparin CVCs (indirect comparisons only), OR 1.18 (0.28, 3.29).14  A previous cost-effectiveness 364 

analysis based on trials in adults estimated that  impregnated CVCs would be cost effective even at baseline 365 

risks of BSI as low as 0.2%.12 366 

Added value of this study 367 

This is the first trial to evaluate antibiotic and heparin CVCs in children and in the context of low BSI rates 368 

associated with improved asepsis practices. We add new evidence of effectiveness of antibiotic CVCs for any 369 

BSI, showing a 57% reduction compared with standard CVCs in children.  We confirmed the effectiveness of 370 

antibiotic CVCs found in systematic reviews of trials in adults, with a 75% reduction in the risk of CR-BSI (HR 25; 371 

0.07, 0.90) compared with standard CVCs, for the first time in children. We also report for the first time that 372 

antibiotic CVCs are superior to heparin CVCs. These results are based on secondary analyses so need to be 373 

interpreted with caution. Our results are consistent with previous studies showing no effect of antibiotic 374 

impregnation on mortality or adverse effects.   375 

In contrast to evidence from systematic reviews, we found no significant effect for heparin bonded vs standard 376 

CVCs. The lack of effectiveness of heparin CVCs may relate to the low baseline event rate observed in CATCH, 377 

which was conducted after implementation of CVC care bundles in PICUs to improve asepsis procedures during 378 

CVC insertion and maintenance.10, 29 Another potential explanation could be emergence of resistance to 379 

benzalkonium chloride, the bonding agent used for heparin, which is widely used in hand hygiene products.  380 

Implications of the available evidence 381 

When combined with previous systematic reviews, our findings establish the effectiveness  of antibiotic-382 

impregnated CVCs compared with standard CVCs and extend this evidence for paediatric use. Widespread 383 

adoption of antibiotic-impregnated CVCs could help prevent BSI in PICUs. 384 

 385 

  386 
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Figure 1: CONSORT flow diagram showing numbers of trial participants 

 
 

 Randomised           1859 
 

      

            
Randomised and consent 
obtained: 

      
1485 

  Randomised and deferred consent not obtained:***   374 

  Prospective consent 501     Not approached   180 

  Deferred consent 984     No response    17 

 
 

     Consent refused    177 

          Standard  Antibiotic Heparin 

     Allocated CVC     122 126 126 

     
 

     
 

           

Standard    Antibiotic    Heparin    

Allocated (ITT analysis) 502  Allocated (ITT analysis) 486  Allocated (ITT analysis) 497  

Received (per protocol) 468  Received (per protocol) 437  Received (per protocol) 440  

                 

Received other: 13  Received other: 28  Received other: 24  

  Antibiotic 1    Standard  23    Standard  22  

  Heparin 12    Heparin 5    Antibiotic  2  
                 

None received: 21  None received: 21  None received: 33  

  
Insertion attempted 
but unsuccessful 

15 
 

  
Insertion attempted 
but unsuccessful 

14 
 

  
Insertion attempted 
but unsuccessful 

24  

  Not attempted 6    Not attempted 7    Not attempted 9  

Unblinded   1  Unblinded   1  Unblinded   2  

 Primary outcome*    Primary outcome*     Primary outcome*     

Clinical indicators recorded and :-  Clinical indicators recorded and :-  Clinical indicators recorded and :-  

     ≥ 1 blood culture sample taken  213       ≥ 1 blood culture sample taken  190      ≥ 1 blood culture sample taken  190  

     no blood culture sample taken** 8       no blood culture sample taken** 6      no blood culture sample taken** 3  

 * based on a clinically indicated blood culture sample taken  ≥ 48 h after randomisation and < 48 hr after CVC removal; ** used in sensitivity 
analysis.***further details reported elsewhere30   
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Figure 2: Kaplan-Meier curve for time to first BSI by CVC allocation (numbers show participants at risk and number of BSI events in brackets)  
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Table 1: Baseline characteristics, clinical condition at randomisation and details of the intervention 

(n=number of participants) 

   Standard Antibiotic  Heparin  

    n % n % n % 

Patient characteristics   502 100 486 100 497 100 

Emergency (deferred consent)   333 66.3 320 65.8 331 66.6 

Elective  (prospective consent)   169 33.7 166 34.2 166 33.4 

Male   285 56.8 291 59.9 277 55.7 

Age 

<3 months 159 31.7 159 32.7 175 35.2 

3-12 months 129 25.7 123 25.3 116 23.3 

1-10 years 174 34.7 154 31.7 174 35.0 

11+ years 40 8.0 50 10.3 32 6.4 

Weight at admission 

< 3kg 41 8.2 38 7.8 56 11.3 

3-10kg 278 55.4 280 57.6 273 54.9 

>10 kg  183 36.5 166 34.2 168 33.8 

Missing 0 0.0 2 0.4 0 0.0 

Admitted for surgery   174 34.7 171 35.2 181 36.4 

PICU assessment (from linked PICANet data) 479 95.4 456 93.8 473 95.2 

Primary reason for admission 

Cardiovascular 235 49.1 233 51.1 250 52.9 

Endocrine/metabolic 30 6.3 34 7.5 30 6.3 

Infection  39 8.1 30 6.6 31 6.6 

Cancer 9 1.9 6 1.3 8 1.7 

Respiratory 102 21.3 86 18.9 84 17.8 

Neurological 22 4.6 31 6.8 29 6.1 

Trauma 18 3.8 10 2.2 18 3.8 

Other 24 5.0 26 5.7 22 4.7 

Unknown 0 0.0 0 0.0 1 0.2 

Paediatric Index of Mortality 
(PIM2) 

<1% 54 11.3 48 10.5 48 10.1 

1-5% 264 55.1 236 51.8 247 52.2 

5-<15% 116 24.2 123 27.0 119 25.2 

15-<30% 34 7.1 31 6.8 39 8.2 

30%+ 11 2.3 18 3.9 20 4.2 

Clinical condition at randomisation 502 100.0 486 100.0 497 100.0 

< 72h before randomised 

CVC in situ 95 18.9 91 18.7 83 16.7 

Anticoagulants received 50 10.0 59 12.1 61 12.3 

Antibiotics received 286 57.0 276 56.8 284 57.1 

Positive blood culture 40 8.0 25 5.1 36 7.2 

At randomisation 
Infection suspected 214 42.6 181 37.2 199 40.0 

Immune compromised 44 8.8 31 6.4 29 5.8 

CVC details (inserted CVCs)   481 95.8 465 95.7 464 93.4 

Deferred consent, CVC inserted   314 65.3 301 64.7 302 65.1 

Inserted at same hospital 

ICU 276 57.4 264 56.8 259 55.8 

Theatre 5 1.0 4 0.9 7 1.5 

Other 2 0.4 3 0.6 1 0.2 

Inserted at other hospital* ICU 5 1.0 6 1.3 3 0.6 
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Theatre 3 0.6 8 1.7 7 1.5 

Other 23 4.8 16 3.4 23 5.0 

Missing   0 0.0 0 0.0 2 0.4 

Prospective consent, CVC inserted 167 34.7 164 35.3 162 34.9 

Inserted at same hospital 

ICU 15 3.1 23 4.9 16 3.4 

Theatre 152 31.6 141 30.3 144 31.0 

Other 0 0.0 0 0.0 1 0.2 

Triple lumen CVC   450 93.6 421 90.5 422 90.9 

CVC inserted into femoral vein   253 52.6 217 46.7 235 50.6 

 

*CVCs were inserted by the retrieval team prior to transfer to PICU.
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Table 2: Endpoint frequency according to CVC allocation (ITT analyses) and CVC received (safety analyses). Values for n refer to number of participants (%) unless 
otherwise stated. 

  Standard Antibiotic  Heparin 

Intention to treat analyses N=502 % N=486 % N=497 % 

Primary outcome       

Bloodstream infection 18 3.59 7 1.44 17 3.42 

Median time to first BSI in  days (IQR) 7.5 (4.5, 11.2) 6.9 (6.0, 8.0) 4.2 (3.1, 8.4) 

Organism type 
non skin  15$ 2.99 6 1.23 16 3.22 

skin  3 0.60 1 0.21 1 0.20 

Organism group* 

gram positive$$ 10 0.02 3 0.01 10 0.02 

gram negative 6 0.01 4 0.01 5 0.01 

Candida 2 0.00 0 0.00 3 0.01 

Secondary outcomes       

Catheter-related BSI 12 2.39 3 0.62 10 2.01 

BSI rate per 1000 CVC days (95% CI) 
Number/1000 days 

8.24 
21/2.548 

(4.72, 11.77) 
 

3.30 
8/2.389 

(1.01, 5.60) 
 

8.79 
21/2.421 

(5.03, 12.55) 
 

BSI or culture negative infection** 112 22.31 103 21.19 102 20.52 

Thrombosis 125 24.90 126 25.93 105 21.13 

Median time to CVC removal in days (IQR) 4.28  (2.30, 6.97) 4.31  (2.13, 7.0) 4.20 (2.24, 6.97)  

Mortality ≤ 30 days after randomisation 42 8.37 39 8.02 28 5.63 

Post-hoc analyses            

Median time to PICU discharge in days (IQR) 5.1 (2.8, 10.0) 4.4 (2.2, 9.3) 4.9 (2.3, 8.9) 

Median time to hospital discharge in days (IQR) 12.0 (6.4, 25.6) 12.0 (6.7, 22.7) 12.1 (6.4, 22.5) 

Safety analyses N=533   N=451   N=479   

CVC related adverse events 9 1.69 14 3.10 8 1.67 

Mortality ≤  30 days after randomisation 45 8.44 35 7.76 29 6.05 
$ = includes 1 mixed BSI pathogen and skin organism; $$ = includes 6 BSI due to coagulase negative staphylococci ; * = groups add to more than total due to multiple types of organisms 
isolated on same occasion in some patients; ** composite measure of BSI including the primary outcome or  a negative blood culture combined with a positive 16S PCR result for bacterial 
DNA, removal of the CVC because of suspected infection, or a start of antibiotics or change in type of antibiotics on the same or next day. 
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Table 3: Risk differences and relative effect measures by CVC allocated (ITT analyses). (*=rate ratio; ^=risk ratio. Significant hazard ratios are in bold 

(p<0.05) 

 
Any impregnated vs standard 

(primary analysis) 
Antibiotic vs standard  
(secondary analysis) 

Heparin vs standard 
(secondary analysis) 

Antibiotic vs heparin  
(secondary analysis) 

 

risk 
difference 
(95% CI) 

hazard ratio 
(95% CI) 

p 
value 

risk 
difference 
(95% CI) 

hazard ratio 
(95% CI) 

p 
value 

risk 
difference 
(95% CI) 

hazard ratio 
(95% CI) 

p 
value 

risk 
difference 
(95% CI) 

hazard 
ratio (95% 

CI) 

p 
value 

Primary outcome             

Time to first 
bloodstream infection 

-1.14 0.71 0.29 -2.15 0.43 0.04 -0.17 1.04 0.90 -1.98 0.42 0.03 

(-3.04, 0.75) (0.37, 1.34)  (-4.09, -0.20) (0.20, 0.96)  (-2.45, 2.12) (0.53, 2.03)  (-3.90, -0.06) (0.19, 0.93)  

Secondary outcomes             

CR-BSI 
-1.07 0.55^ 0.13 -1.77 0.25^ 0.03 -0.38 0.84^ 0.68 -1.39 0.30^ 0.09 

(-2.58, 0.45) (0.25, 1.21)  (-3.28, -0.27) (0.07, 0.90)  (-2.20, 1.44) (0.36, 1.96)  (-2.81, 0.02) (0.08, 1.11)  

Rate of BSI per 1000 
CVC days 

-2.21 0.73* 0.31 -4.94 0.40* 0.04 0.55 1.07* 0.85 -5.49 0.38* 0.03 

(-6.36, 1.94) (0.40, 1.34)  (-9.14, -0.73) (0.17, 0.97)  (-4.60, 5.70) (0.55, 2.06)  (-9.89, -1.08) (0.16, 0.89)  

Time to first BSI or 
culture negative 
infection 

-1.46 0.95 0.65 -1.12 0.95 0.73 -1.79 0.95 0.67 0.67 0.99 0.93 

(-5.90, 2.98) (0.75, 1.20)  (-6.26, 4.03) (0.72, 1.23)  (-6.87, 3.30) (0.73, 1.25)  (-4.41, 5.75) (0.75, 1.25)  

Time to CVC 
thrombosis 

-1.40 0.98 0.88 1.03 1.24 0.49 -3.77 0.88 0.34 4.80 1.25 0.11 

(-6.02, 3.22) (0.79, 1.22)  (-4.40, 6.46) (0.96, 1.60)  (-8.99, 1.44) (0.68, 1.14)  (-0.50, 10.10) (0.96, 1.62)  

Time to CVC removal  
 1.04 0.53  1.02 0.67  1.05 0.51  0.99 0.87 

 (0.93, 1.16)   (0.90, 1.17)   (0.92, 1.19)   (0.87, 1.13)  

Mortality ≤ 30 days 
after randomisation 

 0.80^ 0.28  0.96^ 0.85  0.65^ 0.09  1.46^ 0.14 

 (0.54, 1.20)   (0.61, 1.51)   (0.40, 1.07)   (0.86, 1.11)  

Post-hoc analyses             

Time to PICU 
discharge 

 1.08 0.17  1.07 0.27  1.08 0.21  0.98 0.73 

 (0.97, 1.20)   (0.95, 1.22)   (0.96, 1.23)   (0.86, 1.11)  

Time to hospital 
discharge 

 1.04 0.47  1.03 0.68  1.05 0.42  0.98 0.77 

 (0.93, 1.16)   (0.91, 1.16)   (0.93, 1.19)   (0.87, 1.11)  
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Supplementary material 
 

Appendix Table A1: Type of organism isolated from positive blood cultures including in the primary outcome 

Category Organism Type of CVC 

Standard Antibiotic Heparin Antibiotic 
or Heparin 

Total 

Non-skin organisms      

Gram positive 
 

Staphylococcus aureus 1 1 3 4 5 

Meticillin-resistant Staphylococcus aureus 1 0 0 0 1 

Enterococcus spp. 2 0 4 4 6 

Streptococcus spp 2 1 1 2 4 

Gram negative 
  

Serratia marcescens 1 1 0 1 2 

Pseudomonas aeruginosa 2 1 1 2 4 

Gram negative bacillus 1 0 1 1 2 

Enterobacteriaceae  1 2 0 2 3 

Klebsiella spp. 0 0 1 1 1 

Cellulomas spp. 0 0 1 1 1 

Raoultella panticola and Enterobacter spp.   1 0 0 0 1 

Gram positive+Gram negative Enterococcus spp. and Klebsiella pneumonia 0 0 1 1 1 

Fungi Candida spp. 2 0 3 3 5 

Skin organisms (based on normal skin flora/commensals)      

Gram positive Coagulase-negative staphylococcus 3 1 1 2 5 

Gram positive skin and gram 
positive non-skin organisms  

Coagulase-negative staphylococcus and Enterococcus 
spp. 

1 0 0 0 1 

Total 18 7 17 24 42 

 



31 
 

Appendix Table A2: Sensitivity analysis for the primary outcome (including clinically indicated BSI 

with no sample taken in time window) N=number of participants 

 
N 

randomised 
Primary 
outcome 

Clinical 
indication but 

no sample 
taken in time 

window 

Total 
included in 
sensitivity 

analysis 

Hazard 
ratio  

(95% CI) 

p-
value 

   N % N % N %     

Any 
impregnated  
vs standard  

983 24 57.14 9 52.94 33 55.93 
0.67  

(0.39, 1.15) 
0.15 

Standard 502 18 42.86 8 47.06 26 44.07   

Antibiotic  
vs standard 

497 7 16.67 6 35.29 13 22.03 
0.54  

(0.29, 1.02) 
0.06 

Heparin  
vs standard  

486 17 40.48 3 17.65 20 33.90 
0.83  

(0.47, 1.49) 
0.54 

Antibiotic  
vs heparin  

       
0.64  

(0.32, 1.27) 
0.20 

Total 1485 42  17  59    
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Appendix Table A3: Regression analysis for the primary outcome (time to first bloodstream 

infection) 

Analysis Variable Comparator 
Hazard 
Ratio 

95% CI p-value 

      

Primary 

Antibiotic or heparin CVC standard 0.71 (0.38, 1.33) 0.29 

Deferred consent prospective 0.87 (0.40, 1.90) 0.73 

Suspected infection no suspected infection  0.69 (0.33, 1.42) 0.31 

      

Secondary 

Heparin CVC standard 1.05 (0.54, 2.05) 0.89 

Antibiotic  CVC standard 0.40 (0.17, 0.96) 0.04 

Deferred consent prospective 0.87 (0.40, 1.90) 0.35 

Suspected infection no suspected infection  0.68 (0.33, 1.40) 0.30 

      

Secondary 

Antibiotic CVC heparin 0.39 (0.16, 0.95) 0.04 

Deferred consent prospective 0.85 (0.30, 2.45) 0.76 

Suspected infection  no suspected infection  0.99 (0.40, 2.43) 0.98 
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Appendix Table A4: Number of children experiencing a BSI or culture negative indicators of a blood stream infection.  

Treatment Number 
randomised 

Number experiencing BSI or culture negative blood stream infection Total* 

 
Primary 

outcome 

 
Any of the clinical indicators of infection and (negative) blood culture taken and 

i. High 
bacterial 
DNA load 
from a PCR 
positive 
result only 

ii. Change in 
antibiotic 
on same 

day or next 
day only 

 

iii. CVC 
removal 

for 
infection 

only 
 

Primary 
outcome 

and 
removed 

for 
infection 

Primary 
outcome 

and 
antibiotic 

change 

Removed 
for 

infection 
and 

antibiotic 
change 

PCR 
positive 

and 
antibiotic 

change 

Primary 
outcome, 

removed for 
infection 

and 
antibiotic 

change 

Removed 
for 

infection, 
PCR 

positive 
and 

antibiotic 
change 

All 4 
criteria 

Standard 502 2 2 79 6 1 8 7 1 6 0 1 112 

Antibiotic 
or Heparin 

983 4 2 135 19 0 12 24 1 7 0 1  

Antibiotic  486 0 1 71 12 0 6 11 1 1 0 0 103 

Heparin 497 4 1 64 7 0 6 13 0 6 0 1 102 

Total 1485 6 4 214 25 1 20 31 1 13 0 2 317 

 

*Number of participants with BSI indicators in an exclusive descending hierarchy based on specificity of indicator for BSI (total n=317): BSI =42; PCR positive 

= 5; CVC removed for infection =56; change or start of antibiotics same or next day = 214 
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Appendix Table A5: Results of antibiotic resistance testing reported for 12 patients with a positive 

blood culture included in the primary outcome.  

 E test result 
CVC  allocation Minocycline Rifampicin 

Standard   
-Colifom bacilli Resistant Resistant 
-Enterococcus faecalis Resistant Resistant 
-Serratia marcescens Resistant Resistant 
-Staph aureus Sensitive Sensitive 
-Meticillin resistant Staphylococcus 
aureus  

Sensitive Sensitive 

Antibiotic   
-E.coli  Resistant Resistant 
-Staphylococcal spp Resistant Resistant 

Heparin   
-Klebsiella pneumoniae Resistant Resistant 
-Klebsiella pneumoniae Resistant Resistant 
-Staph aureus Sensitive Sensitive 
-Coagulase negative staphylococci      Sensitive Sensitive 
-Enterococcus hirae and  
Coagulase negative staphylococci  

Resistant  
Sensitive 

Sensitive  
Resistant 
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Appendix Figure 1: Diagram shows samples taken, positive cultures, and clinically indicated positive cultures in the primary outcome time window that 
meet the criteria for the primary outcome. *The non-skin organism was from a sample taken at 47 hours and 55 minutes after randomisation (POTW = 
primary outcome time window). 
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Appendix Figure 2: Number of children included in the primary outcome, the rate of BSI and catheter-related BSI according to time since 

randomisation  
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  Primary outcome of BSI 

  n=40 n=2 

Rate of BSI per 1000 CVC-days   

n=10 n=40   

  Catheter-related BSI (CR-BSI) 

  n=24 n=1 
 

 


