
Genetic and dietary factors influencing the progression of nuclear cataract 1 

Ekaterina Yonova-Doing, MSc 
1
, Zoe A. Forkin, BSc

1,3
, Pirro G. Hysi, MD, PhD

1
, Katie M. 2 

Williams, MPhil, FRCOphth
 2

, Tim D. Spector, MD,PhD
1
 , Clare E Gilbert, FRCOphth, MD 

4
, 3 

Christopher J. Hammond, MD, FRCOphth
1,2

  4 

 5 

1. Department of Twin Research and Genetic Epidemiology, Kings College London 6 

2. Department of Ophthalmology, Kings College London 7 

3. University of Warwick Medical School 8 

4. London School of Hygiene and Tropical Medicine 9 

Corresponding author: Christopher J. Hammond, MD, FRCOphth, Departments of 10 

Ophthalmology & Twin Research, King's College London, 3rd Floor, Block D, South Wing, St. 11 

Thomas' Hospital, Westminster Bridge Rd., London SE1 7EH, UK. 12 

Meeting presentations: Presented in part at the Association for Research in Vision and 13 

Ophthalmology Meeting, May 6 – 10, 2012, Fort Lauderdale, Florida 14 

Financial support: The study was funded by the Wellcome Trust and the Guide Dogs for the 15 

Blind Association. The sponsor or funding organization has no role in the design or conduct of 16 

this research. 17 

Conflict of interest: The authors have no proprietary or commercial interest in any materials 18 

discussed in this article. 19 

Running head: Genetics and diet influences on nuclear cataract progression 20 

Address for reprints: Christopher J. Hammond, MD, FRCOphth, Departments of Ophthalmology 21 
& Twin Research, King's College London, 3rd Floor, Block D, South Wing, St. Thomas' 22 

Hospital, Westminster Bridge Rd., London SE1 7EH, UK. 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

Revised manuscript - without track changes



Abstract 33 

Purpose: To determine the heritability of nuclear cataract progression and to explore 34 

prospectively the effect of dietary micronutrients on the progression of nuclear cataract. 35 

Study design: Prospective cohort study 36 

Participants: Cross-sectional nuclear cataract and dietary measurements were available for 2054 37 

white female twins from the TwinsUK cohort. Follow-up cataract measurements were available 38 

for 324 of the twins (151 monozygotic and 173 dizygotic twins).   39 

Methods: Nuclear cataract was measured using a quantitative measure of nuclear density 40 

obtained from digital Scheimpflug images. Dietary data was available from EPIC food frequency 41 

questionnaires. Heritability modelling was carried out using maximum likelihood structural 42 

equation twin modelling. Association between nuclear cataract change and micronutrients was 43 

investigated using linear and multinomial regression analysis. The mean interval between 44 

baseline and follow-up examination was 9.4 years. 45 

Main outcome measures: nuclear cataract progression 46 

Results: The best fitting model estimated that the heritability of nuclear cataract progression was 47 

35% (95% CI: 13%-54%); individual environmental factors explaining the remaining 65% (95% 48 

CI 46-87%) of variance. Dietary vitamin C was protective against both nuclear cataract at 49 

baseline and nuclear cataract progression (β=-0.0002, p=0.01 and β=-0.001, p=0.03 50 

respectively), while manganese and intake of micronutrient supplements were protective against 51 

nuclear cataract at baseline only (β=-0.009, p=0.03 and β=-0.03, p=0.01 respectively).  52 



Conclusions: Genetic factors explained 35% of the variation in progression of nuclear cataract 53 

over a 10 year period. Environmental factors accounted for the remaining variance, and in 54 

particular dietary vitamin C protected against cataract progression assessed almost 10 years after 55 

baseline.  56 
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Age-related cataract is the leading causes of blindness in the world, affecting about 20 million 73 

people, particularly in Sub-Saharan Africa
1
. Its prevalence increases from 2.9% in the 43-54 age 74 

group to 40% in the over 75 years old group
2
. As the world’s population ages, cataract will 75 

remain a serious healthcare and socioeconomic burden, both in terms of healthcare provision, 76 

and blindness in less developed countries.  77 

Nuclear cataract is the most common form of age-related cataract
2
. Apart from age, other factors 78 

associated with nuclear cataract are smoking, oxidative stress and dietary antioxidant intake 
3-5

. 79 

However, studies of the effect of dietary vitamin C intake
6-11

, serum vitamin C levels
6, 9, 11-13

 or 80 

vitamin C supplementation
6, 10, 14

 on nuclear cataract formation have given often conflicting 81 

results. Case-control studies
7, 11, 12, 14

 and some cohort studies
6, 9, 10

 have found protective effects. 82 

Other prospective cohort studies have either found no effect overall
8, 13, 15

 or protective effects 83 

only in subgroups
8, 15

. Similarly to vitamin C, dietary
6, 16

 and supplemental
14, 17

 vitamin E intake 84 

as well as vitamin E blood levels
6, 13

 have been shown to be inversely related with nuclear 85 

cataract. Randomised clinical trials of vitamins C and E supplementation alone or in combination 86 

with other vitamins failed to find an effect
18, 19

. Vitamin A has been associated with reduced risk 87 

of nuclear cataract
9, 20, 21

, as have been lutein and zeaxanthin
22-24

. The studies exploring dietary 88 

nutrients and cataract progression have similar findings to those looking at prevalent cataract, 89 

with cohort studies finding a protective effect 
16, 25

. However, supplement trials have largely 90 

failed to find an effect while supplement trials have failing to find an effect
18, 26, 27

.    91 



As opposed to vitamins and micronutrients
28

, the role of minerals in cataract formation in general 92 

and in nuclear cataract in particular is poorly studied. 93 

Together with epidemiological factors, genetic factors also play role in cataract formation. We 94 

have previously reported that genetic factors explain 48% of cross-sectional variance in age-95 

related nuclear cataract
29

. In a recent genome-wide meta-analysis, variants in two genes, CRYAA 96 

and KCNAB1, were found to be associated with nuclear cataract in Asian populations
30

 but no 97 

findings are available for populations of European origin. In comparison to epidemiological 98 

factors, little is known about genetic susceptibility factors in age-related cataract. 99 

Factors that lead to development of a phenotype may be different from factors underlying 100 

change, such as progression of lens opacity. We therefore set out to establish the relative 101 

importance of genes on progression of nuclear cataract using a classical twin model with a highly 102 

quantitative measure of nuclear cataract. We also examined how intake of micronutrients and 103 

supplements associated with nuclear cataract at baseline affects nuclear cataract progression over 104 

a decade.  105 

Methods 106 

Subjects 107 

Nuclear cataract data at baseline were available for 2515 white female twins (mean age of 62.3, 108 

range 50.1-83.1) from the TwinsUK cohort, 2054 of whom had also completed a food frequency 109 

questionnaire (FFQ) around the time of their eye-examination (median=2 years). The 461 twins 110 

with cataract data but without FFQ data were 2.5 years younger on average and were less 111 

affected by cataract. Cataract progression data was collected in 324 twins (151 monozygotic 112 

(MZ) twins and 173 dizygotic (DZ) twins with a mean age at follow-up of 69.8±5.4 years (range: 113 



58.3-83.6 years) as part of the Healthy Ageing in Twins (HATS) study between 2006 and 2010
31

. 114 

Individuals included in the follow up were all part of our original cataract heritability study of 115 

1012 twin participants assessed in 1998 and 1999
29

. The mean time between baseline and second 116 

visits was 9.4 years (range: 7-12 years). The smaller number of individuals with follow up data is 117 

mainly due to the fact that the HATS study (where the follow up data was collected) was not 118 

designed specifically as a cataract follow-up study, and had different selection criteria: 119 

participants were over 40 years of age and had to have previously attended clinical phenotyping 120 

irrespective of whether they had an eye examination or not (N=4610). The TwinsUK study 121 

started in 1992, but eye measures were only performed on subjects over 50 years of age in 1998-122 

1999, and subsequently from 2006. That meant that individuals (age ≥ 50) who attended the 123 

HATS visit who did not have eye examinations in 1989-1999 had their baseline cataract 124 

assessment during HATS (2006-2011, N=1523). Reasons for only having longitudinal data for 125 

324 of the original 1012 twins included: deceased  (N=52), withdrawn participation from the 126 

TwinsUK registry (N=169), non-contactable (N=30), refused further phenotyping (N=82); 127 

cataract surgery (N=11), refusal of dilating drops or unavailability of ophthalmic testing at 128 

HATS visit (344).” 129 

Both the baseline study and HATS study received local research ethics approval and were 130 

conducted according to the tenets of the Declaration of Helsinki. All the participants gave written 131 

informed consent. 132 

Phenotyping  133 

Nuclear cataract scores 134 



Digital black and white lens photographs were taken using a Scheimpflug camera (Case 2000, 135 

Marcher Enterprises Ltd, Worcester, UK) and same camera was used at both baseline and 136 

follow-up. Nuclear cataract was measured quantitatively by calculating the pixel density in the 137 

centre of the lens nucleus, also known as the central nuclear dip score (NDS)
29

. This score 138 

measures the amount of white scatter (opalescence) and more opacification results in higher 139 

pixel density. As NDS uses black-and-white images, it does not assess the brunescence of the 140 

lens. Nuclear cataract progression was measured as the difference in measurements between the 141 

visits:  ΔNDS = NDS at follow-up – NDS at baseline. Both NDS and ΔNDS were not normally 142 

distributed and were therefore transformed using natural logarithm prior to the analysis. 143 

Nutrient intake 144 

Intake of micronutrients (vitamins and minerals) and supplements intake was estimated using the 145 

self-administered EPIC FFQ taken at the baseline visit. This questionnaire explored the average 146 

frequency of intake of 131 foods and supplements over 1 year period
32, 33

. Nutrient intake was 147 

calculated using an established nutrient database and the dietary variables were adjusted for 148 

calorie intake, yielding an energy-adjusted mg/ug of each nutrient per person per day
32, 34, 35

. We 149 

considered the following micronutrients in the analysis: sodium, potassium, calcium, 150 

magnesium, phosphorus, iron, copper, zinc, chloride, manganese, iodine, retinol, carotene, 151 

vitamin D, vitamin E, thiamine, riboflavin, niacin, tryptophan, vitamin B6, vitamin B12, folate, 152 

pantothenate, biotin and vitamin C. 153 

Data on supplement intake were available for 33 different supplements. However, the percentage 154 

of individuals taking any single supplement was 10% or less. Supplements were, therefore, 155 

grouped as follows: any supplements, micronutrient supplements (vitamins and mineral in any 156 



combination), micronutrient supplements excluding multivitamins (eg. vitamin C only, vitamin D 157 

only, iron only, ACD complex), minerals only (eg. iron only, calcium only), and other 158 

supplements (eg. Aloe Vera, Echinacea, Ginkgo, omega-3). Each supplement group was coded 159 

as binary variable, with yes indicating that they took one or more of the supplements in a specific 160 

group.  161 

Statistical Analysis 162 

Modelling of Heritability 163 

Heritability analyses were performed on 310 twins (155 pairs: 72MZ and 83DZ) as data were 164 

missing on 14 co-twins. Zygosity was determined by a standardised questionnaire and confirmed 165 

using genome-wide single nucleotide polymorphism genotyping data or DNA short tandem 166 

repeat fingerprinting.  167 

Twin studies are able to estimate the heritability of a trait (the amount of variance explained by 168 

genetic factors) using maximum likelihood structural equation modelling. The variance of the 169 

trait and the covariance within twin pairs are used to estimate additive genetic effects (A), 170 

shared/family environmental effects (C), and individual environmental effects (E). We 171 

implemented the modeling in the OpenMx package (http://openmx.psyc.virginia.edu). The 172 

goodness of fit of the full ACE model and sub-models were compared with the observed data 173 

and the best fitting model was selected. 174 

Nutrient factor analysis  175 

Comparisons of means and proportions for all variables between individuals with or without 176 

follow-up data, or between MZ and DZ twins per group in terms of age, nuclear cataract scores, 177 

http://openmx.psyc.virginia.edu/


nutrient and supplement intake were performed using two-sample two-tailed t-tests or z-tests, 178 

assuming equal variance. 179 

Association was assessed using linear regression analyses. Univariable linear regression was 180 

firstly carried out where each factor or supplement group was individually regressed against 181 

NDS at baseline. All nutrients or supplement groups showing significant univariable association 182 

(p<0.05) were then included in a multivariable linear regression model; independent variables 183 

were identified using stepwise backwards procedure with threshold for removal set at 0.05. 184 

Factors showing significant (p<0.05) association in the multivariable model were tested for 185 

association with progression. We used linear models to establish the relationship between NDS 186 

(continues variable) and nutrients but because NDS had to be normalised, giving a clinical 187 

interpretation of the betas becomes more difficult. Therefore, in addition to the linear models we 188 

calculated risk reduction by calculating relative risk ratios (RRR) using multinomial regression. 189 

In this case NDS, ΔNDS and the associated nutrients were divided into tertiles and the first tertile 190 

was set as reference while supplement intake per supplement group was kept binary. In all cases, 191 

models were adjusted for family structure and for age, either at the first visit only (baseline 192 

analysis) or for both age at baseline and Δage=age at follow-up – age at baseline. All analyses 193 

were carried using STATA10 statistical package (www.stata.com).    194 

Results 195 

Cross-sectional data were available for 2054 white female twins (827 MZ and 916 DZ), 324 196 

(151MZ and 173 DZ) of whom also had nuclear cataract measured at follow-up. Baseline 197 

characteristics, nutrient and supplement intake are shown in Table 1 and an example of a lens 198 

image is available in Figure 2. The twins with follow-up data were on average 1.1 years younger 199 



at baseline (60.4 vs 61.5 years) and, given their younger age, had less cataract (mean NDS scores 200 

of 55.3 and 60.4 respectively) compared to those with only cross-sectional data. In both cases 201 

these differences were not statistically significant (p>0.05). The MZ and DZ twins with follow-202 

up data were similar in terms of age and NDS scores (p>0.05). The MZ and DZ twins with cross-203 

sectional data only were similar in terms of age but the MZ twins had slightly higher NDS score 204 

(61.6 versus 59.3, p=0.02).  205 

There were also no statistically significant differences between groups in terms of micronutrient 206 

intake except for iron (p=0.02), thiamine (p=0.04) and biotin (p=0.01). The twins with follow-up 207 

data had slightly lower iron and thiamine intake (mean of 12.6 mg and 1.7mg respectively) and 208 

slightly higher biotin intake (mean of 49.7mg) compared individuals without follow-up data. 209 

There were also no significant differences in supplement intake between the two groups 210 

(p>0.05). There were no statistically significant differences between MZ and DZ twins in terms 211 

of nutrient or supplement intake (p>0.05).    212 

As expected, nuclear cataract scores progressed in all participants (Figure 1). The mean baseline 213 

central nuclear dip score was 55 ±11 (range: 32-99) with the score increasing by an average of 214 

19.9±16.9 (range 1-137) over the period of follow-up.  The heritability analysis, conducted on 215 

155 twin pairs (72MZ and 83DZ pairs), showed that the best fitting model was one explained by 216 

additive genetic factors and unique (individual) environment, with no significant effect of 217 

common environment or non-additive genetic factors. Calculations estimated the heritability to 218 

be 0.35, meaning that genetic factors explained 35% (95% CI: 13-54%) of variance in 219 

progression of nuclear cataract with, individual environmental factors accounting for the 220 

remaining 65% (95% CI: 46-87%).  221 



To test associations between micronutrient intake and cataract progression we used univariable 222 

regression (Table 2) followed by stepwise regression in 2054 female twins who had baseline data 223 

on nutrient intake. Seven micronutrients showed significant association (p<0.05) with NDS and 224 

were used in multivariable analysis: these were potassium, magnesium, manganese, phosphorus, 225 

the vitamins C and E, and folate. Following stepwise multivariable regression, two factors 226 

remained significantly associated with NDS at baseline: vitamin C (β=-0.0002, SD=6.3E-05, 227 

p=0.01) and manganese (β=-0.009, SD=0.04, p=0.03). From these two nutrients only vitamin C 228 

showed association with cataract progression (β=-0.001, SD=0.001, p=0.03). A sensitivity 229 

analysis, excluding subjects with greatest progression (>100 units of change), did not alter the 230 

result. Comparing people in the highest and the lowest tertiles of vitamin C intake was associated 231 

with 19% risk reduction at baseline (relative risk ratios (RRR) of 0.81, 95%CI: 0.68-0.96) and a 232 

33% risk reduction of cataract progression (RRR of 0.66 [0.47-0.91])(Table 3). Manganese 233 

intake was associated with 20% risk reduction (RRR of 0.80, 95%CI: 0.67-0.95) at baseline 234 

(Table 3).  235 

Two supplement groups, micronutrient supplements and minerals only, showed significant 236 

association with NDS (p<0.05)(Table 2) but only micronutrient supplements stayed significant in 237 

the multivariate model (β=-0.03, SD=0.01, p=0.01) and their intake led to 18% risk reduction in 238 

people within the highest compared to the lowest tertile of nutrient intake (RRR=0.82, 95%CI: 239 

0.57-1.20) (Table 3). We found no statistically significant association between taking 240 

micronutrients in supplemental form and progression of nuclear cataract.  241 

Discussion 242 

This study has found that progression of nuclear cataract over a ten year period in a group of UK 243 



female twins is influenced by genetic factors which explain 35% of variance. The heritability 244 

estimate of cataract progression is lower than our previous cross-sectional estimates of 245 

susceptibility to development of nuclear cataract in this cohort
29

 and it is also lower than the 246 

heritability estimated in the 324 individuals estimated from the nuclear score measurement at 247 

follow-up (61%, 95%CI: 45%-72%). This is consistent with previous studies showing 248 

heritability is generally lower when examining change, compared to cross-sectional studies
36-38

. 249 

In addition to early developmental differences and the body’s response to environmental factors 250 

in adulthood, environmentally driven processes or accumulated ‘errors’ (such as somatic gene 251 

mutation and epigenetic remodeling) might play a greater role in determining change during 252 

ageing than genetic factors
38

.   253 

This study has also identified vitamin C as a micronutrient affecting nuclear cataract progression. 254 

We also replicate the previously found association between cross-sectional cataract and vitamin 255 

C intake. Vitamin C intake has long been studied in relation to age-related cataract as it is the L-256 

enantiomer of ascorbate. Ascorbate is present in significant concentration in the aqueous humour 257 

that bathes the lens and may reduce oxidation products in the lens, thus reducing oxidative 258 

stress
39, 40

. However the conclusions of the many studies into its effects on cataract development 259 

are inconsistent and often conflicting
6-15

. Many of these studies have been in relatively well-260 

nourished populations, and are cross-sectional, though cross-sectional studies in India where 261 

overall antioxidant levels may be lower have found an inverse relationship between vitamin C 262 

and cataract
9, 20

. Our results are similar to the CAREDS study that showed vitamin C intake, 263 

assessed with food frequency questionnaire 10 years prior to cataract assessment, to be protective 264 

of nuclear cataract prevalence
15

. The Blue Mountains Eye Study also found that vitamin C 265 

intake, both dietary and supplements together, resulted in a lower nuclear cataract incidence over 266 



10 years
10

. This study is the first, to our knowledge, to show that dietary vitamin C intake 267 

protects against progression of nuclear lens opacity.  268 

We also found dietary manganese to be protective against cross-sectional nuclear cataract 269 

independently of vitamin C. We cannot exclude that this association was a type I error, given we 270 

did not find an association between dietary manganese and nuclear cataract progression and the 271 

lack of dose-response (Table 3), although factors associated with incidence and progression do 272 

not always overlap.  Manganese is an important antioxidant present in the human lens
41-43

, and 273 

its concentration has been reported to be lower in cataractous lenses in comparison with normal 274 

lenses
43, 44

. This study was not designed to elucidate the cause-effect relationship underlying the 275 

associations we found and we, therefore, cannot distinguish whether manganese depletion is a 276 

cause or effect of cataractogenesis. Further studies are needed to answer this question. We also 277 

detected an association between supplemental intake of micronutrients and cross-sectional 278 

nuclear cataract but not between supplemental nutrients and cataract progression. These results 279 

are similar to those reported in the Blue Mountain Eye Study
45

.  As only 10% or fewer 280 

participants in our study took any single supplement, we had to group supplements together and, 281 

therefore, we could not draw conclusions on the effect on any single supplement or of 282 

components of supplements (eg. supplemental vitamin C).  283 

We used a highly quantitative measure of cataract from digital images (NDS), which essentially 284 

measures the nuclear opalescence (or “white scatter”) of the lens. The measure was also highly 285 

reproducible: the intraclass correlation coefficient for the worse eye, in 30 subjects from our 286 

original study
29

 who came for repeat measurements, was 0.93. The fact that every subject 287 

measured showed progression suggests that NDS is sensitive to change. Many epidemiological 288 

studies have used the Lens Opacity Classification System (LOCS) grading scale, comparing 289 



phenotype to standardised photographs of 6 stages of lens opacification, which includes both 290 

nuclear opalescence and nuclear colour or brunescence
46

. LOCS III was developed to increase 291 

steps between scores to allow greater sensitivity to change, accepting a lower inter-grader 292 

reproducibility. Longitudinal studies using the LOCS III scale show relatively little change: in a 293 

Longitudinal Study of Cataract Group only 24% of participants had an increase in nuclear 294 

opacities over an average of 4.6 years
25

. Although our central NDS is not the same measure, it is 295 

highly correlated with average nuclear opalescence graded digitally or at the slit lamp
29

. Digital 296 

image-derived nuclear dip scores using pixel density counts may be better suited for measuring 297 

progression, and allowed our study the power to detect associations with a relatively small 298 

sample size.  299 

A potential limitation is that our cohort is based on twin volunteers rather than a population 300 

study, but they are unselected and from across the UK and unlikely to significantly differ from 301 

the UK general population
47

. Twin studies use the “Equal Environment Assumption”, that the 302 

degree of shared family environment is the same for both monozygotic and dizygotic twin pairs. 303 

This is generally found to be true, though there are few studies of elderly subjects which explore 304 

this assumption. In addition, the TwinsUK cohort is predominantly a female cohort and we could 305 

not assess any gender differences in risk factors. The findings of this study can only be 306 

generalizable to Caucasian women of similar age as it reflects cataract progression in a group of 307 

white British women between, on average, the ages of 60 and 70, and so may not reflect other 308 

population groups or age ranges. In this article, we aimed to explore the effect on nuclear 309 

cataract formation of all micronutrients, however we had no data on carotenoid (lutein and 310 

zeaxanthin) intake. We also lacked power to explore the effects of smoking on cataract 311 

progression as 85% of participants have never smoked.    312 



Those participants with follow-up data collected were seen as part of the HATS study which was 313 

not designed as a cataract follow up study. This meant that the number of subjects fell to 324 314 

individuals, thus reducing the amount of data we could analyse and our power. The individuals 315 

who were lost to follow up in HATS were in general of lower socioeconomic status, had higher 316 

self-rated health status and were less health aware
31

. Any introduced bias would have probably 317 

resulted in loss of power as this group of individuals are more likely to have less heathy diets and 318 

more cataract.  For this reason we decided to test the association with progression only for 319 

nutrients which were associated with NDS at baseline. Those with follow-up data were on 320 

average 1.8 years younger than the original cohort, but they were in general not significantly 321 

different in other respects or in nutrient or supplement intake, hopefully reducing potential 322 

selection bias in the progression data. As in any observational study, ours is potentially 323 

susceptible to residual confounding, missing data or misspecification of variables.  324 

In summary, this study has shown that progression of nuclear cataract over a 10 year period is 325 

influenced by genetic factors with a heritability of 35%. Dietary vitamin C and manganese, both 326 

factors related to oxidative stress, appear to influence cross-sectional nuclear cataract and 327 

vitamin C intake also significantly influences nuclear cataract progression. 328 
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Figures 344 

Figure 1: Consort diagram of the study 345 

Legend: This figure shows the number of individuals that participated in the different parts of the 346 

study and reasons for none-participation at follow-up  347 

Figure 2: Black and white Scheimpflug lens images 348 

Legend: This figures shows Scheimpflug lens images of a healthy lens (left) and a lens with 349 

nuclear cataract (right). The centre of the lens (lens nucleus) on the right is much whiter than the 350 

one on the left.      351 

Figure 3: Progression of nuclear cataract between the two visit dates 352 

Legend: This figure is graphical representation of the progression of nuclear cataract (deltaNDS) 353 

between the two visits. NDS – nuclear dip score, deltaNDS=NDS at follow-up – NDS at 354 

baseline. The y-axes show frequency of deltaNDS per bins with width of 6.25 points. 355 



Tables 356 

Table 1: Baseline sample characteristics and nutrient intakes in individuals with or without 357 

follow-up data  358 

Legend: This table shows the baseline characteristics for the participants as well as the baseline 359 

intake of micronutrients (mean ± standard deviation) and supplements per supplement group (% 360 

of users). The supplement groups studied are as follows: any supplement, micronutrient 361 

supplements (vitamins and mineral in any combination), micronutrient supplements excluding 362 

multivitamins (eg. vitamin C only, vitamin D only, iron only, ACD complex), minerals only (eg. 363 

iron only, calcium only), and other supplements (eg. Aloe Vera, Echinacea, Ginkgo, omega-3). 364 

The * denotes statistically significant difference (p<0.05) between subjects with and without and 365 

without follow-up. 366 

Table 2: Results from univariable regression models of nuclear cataract scores and nutrient 367 

intake of micronutrients and supplement groups 368 

Legend: This table shows the results of the univariable linear regression analysis between 369 

nuclear cataract (natural logarithm transformed nuclear dip score) and energy adjusted 370 

micronutrient intakes and between nuclear cataract and supplement intake per supplement group. 371 

$ denotes that in the case of supplement groups, supplement intake was coded binary (presence 372 

vs absence of intake of at least one of the components in the group). All analyses were adjusted 373 

for age and family structure. * denote statistically significant associations at p<0.05 374 

Table 3: Results of multinomial regression analysis for factors associated with 375 

cross-sectional nuclear cataract and with nuclear cataract progression 376 

Legend: This table shows the results from the multinomial regression analysis for factors 377 



associated with cross-sectional (vitamin C and manganese) and progression (vitamin C). The 378 

relative risk ratio (RRR) with its 95% confidence intervals (95%CI) for each tertile of nuclear 379 

dip score (NDS) or progression (ΔNDS) is reported. The minimum and maximum NDS score per 380 

tertile are also reported.   381 

 382 
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Table 1: Baseline sample characteristics and nutrient intakes in individuals with or without follow-up data  

 Subject without follow-up  Subjects with follow-up 

 Total MZ DZ Total MZ DZ 

Number of individuals 1730 827 916 324 151 173 

Zygosity ratio (MZ:DZ) 01:01.1 - - 01:01.2 - - 

Age (mean ± sd) 61.5 ±6.5 61.7±6.7 61.4±6.4 60.4± 5.1 60.8± 5.5 60.0±5.2 

NDS (mean ± sd) 60.4 ±17.2 61.3±17.4 59.0±14.2 55.3±11.2 55.3±11.4 55.3±11.1 

  

Sodium (mg) 2262.8±508.7 2265.3±476.3  2258.7± 535.6 2237.4±456.4 2227.7±444.4 2247.2±444.4 

Potassium (mg) 4013.5±637.4 3997.0±622.4 4026.9±650.6 4033.7±580.5 4094.5±588.4 3972.5±469.4 

Calcium (mg) 1117.1±284.7 1118.5±284.9 1125.1±284.6 1118.9±291.5 1138.3±295.0  1099.4±568.0 

Magnesium (mg) 347.3±56.4 347.3±56.8 347.2±56.0 343.8±55.0 347.0±58.0 340.6±287.5 

Phosphorus (mg) 1527.1±247.0 1527.1±234.9 1527.1±257.8 1522.0±239.3 1532.0±251.0 1512.1±227.5 

Iron (mg)* 13.1±3.0 13.2±3.2 13.0±2.8 12.6±2.6 12.5±2.7 12.7±2.5 

Copper (mg) 1.5±0.5 1.5±0.6 1.5±0.4 1.5±0.4 1.5±0.4 1.6±0.5 

Zinc (mg) 10.2±1.7 10.2±1.8 10.1±1.7 10.2±1.7 10.2±1.8 10.1±1.6 

Chloride (mg) 3629.6±792.9 3633.6±749.4 3623.0±828.6 3578.0±721.3 3566.7±690.3  3589.4±753.3 

Manganese (mg) 4.2±1.2 4.1±1.1 4.2±1.2 4.2±1.1 4.3±1.1 4.2±1.1 

Iodine(mg) 225.0±75.8 224.2±75.2 225.8±76.5 229.2±64.2 230.0±61.4 228.5±67.2 

Retinol (ug) 579.5±817.8  569.1±570.6 554.8±496.6 611.8±472.9 588.2±422.6 635.6±519.0 

Carotene (ug) 5343.4±3067.4 5503.7±3263.8 5200.4±2874.9 5305.6±3915.4 5663.8±4823.8 4945.0±2679.4 

Vitamin D (ug) 2.7±1.4 2.7±1.1 2.6±1.5 2.8±1.1 3.0±1.0 2.6±1.0 

Vitamin E (mg) 11.5±3.2 11.6±3.4 11.4±3.1 11.7±3.4 11.9±3.6 11.5±3.2 

Table



  

Legend: This table shows the baseline characteristics for the participants as well as the baseline intake of micronutrients (mean ± standard 

deviation) and supplements per supplement group (% of users). The supplement groups studied are as follows: any supplement, micronutrient 

supplements (vitamins and mineral in any combination), micronutrient supplements excluding multivitamins (eg. vitamin C only, vitamin D 

only, iron only, ACD complex), minerals only (eg. iron only, calcium only), and other supplements (eg. Aloe Vera, Echinacea, Ginkgo, omega-

3). The * denotes statistically significant difference (p<0.05) between subjects with and without and without follow-up. NDS – nuclear dip score. 

Thiamin (mg)* 1.8±0.4 1.8±0.4 1.8±0.4 1.7±0.3 1.7±0.3 1.7±0.3 

Riboflavin (mg) 2.5±0.7 2.4±0.7 2.5±0.7 2.4±0.6 2.5±0.6 2.4±0.7 

Niacin (mg) 22.0±5.7 22.2±5.1 21.8±6.2 21.3±4.5 21.3±4.6 21.2±4.4 

Tryptophan (mg) 17.4±3.0 17.5±2.7 17.3±3.3 17.2±2.5 17.3±2.5 17.1±2.6 

Vitamin B6 (mg) 2.6±0.6 2.6±0.6 2.5±0.5 2.5±0.5 2.5±0.5 2.5±0.5 

Vitamin B12 (ug) 6.5±3.2 6.7±3.6 6.4±2.9 6.7±2.3 6.7±2.3 6.7±2.4 

Folate (ug) 402.2±113.1 400.7±114.0 403.2±112.3 395.7±98.9 402.0±95.9 389.4±101.8 

Pantothenate (mg) 7.4±16.0 7.5±21.3 7.2±8.6 6.8±4.2 6.5±2.1 7.1±5.6 

Biotin (mg)* 48.1±10.5 47.7±10.3 48.5±10.8 49.7±10.3 50.6±10.2 48.7±10.3 

Vitamin C (mg) 165.1±73.9 167.6±74.2 163.0±73.7 166.8±65.0 166.9±68.1 166.7±65.0 

 

 Any supplement (%) 55.1 54.8 55.4 55.0 54.1 55.9 

Micronutrients (%) 32.57 32.4 33.2 31.7 32.8 30.8 

Micronutrients excluding 

multivitamins (%) 23.6 24.1 23.2 21.6 24.2 19.3 

Minerals only (%) 7.4 7.8 7.0 6.9 6.4 7.2 

Other supplements (%) 44.9 46.2 44.4 47.1 44.2 49.5 



Table 2: Results from univariable regression models 

 

beta standard error p-value 

 

Micronutrients 

Sodium (mg) 5.41E-06 9.58E-06 0.56 

Potassium (mg)* -1.58E-05 7.54E-06 0.04 

Calcium (mg) -1.95E-05 1.52E-05 0.20 

Magnesium (mg)* -0.010 0.004 0.01 

Phosphorus (mg)* -4.01E-05 1.94E-05 0.04 

Iron (mg) -1.15E-04 0.002 0.95 

Copper (mg) 0.001 0.008 0.86 

Zinc (mg) -7.76E-04 0.003 0.77 

Chloride (mg) 3.79E-06 6.10E-06 0.53 

Manganese (mg)* -0.010 0.004 0.01 

Iodine(mg) -1.10E-04 6.07E-05 0.07 

Retinol (ug) 2.36E-06 3.90E-06 0.55 

Carotene (ug) -1.67E-06 1.40E-06 0.23 

Vitamin D (ug) -0.004 0.003 0.22 

Vitamin E (mg)* -0.003 0.001 0.04 

Thiamin (mg) -0.013 0.013 0.30 

Riboflavin (mg) -0.011 0.006 0.08 

Niacin (mg) -1.10E-04 8.26E-04 0.89 

Tryptophan (mg) -0.001 0.001 0.27 

Vitamin B6 (mg) -0.002 0.009 0.81 

Vitamin B12 (ug) -0.001 0.001 0.50 

Folate (ug)* -9.91E-05 4.06E-05 0.02 

Pantothenate (mg) -2.81E-05 1.87E-04 0.88 

Biotin (mg) -3.01E-04 4.17E-04 0.47 

Vitamin C (mg)* -1.742E-04 6.19E-05 0.01 

 Supplement groups
$
 

Any supplement -0.015 0.009 0.12 

Micronutrients* -0.032 0.013 0.01 

Micronutrients excluding 

multivitamins  -0.023 0.012 0.06 

Minerals only* -0.038 0.016 0.02 

Any other supplement 0.005 0.014 0.72 

 

Legend: This table shows the results of the univariable linear regression analysis between 

nuclear cataract (natural logarithm transformed nuclear dip score) and energy adjusted 

micronutrient intakes and between nuclear cataract and supplement intake per supplement 

Table



group. $ denotes that in the case of supplement groups, supplement intake was coded binary 

(presence vs absence of intake of at least one of the components in the group). All analyses 

were adjusted for age and family structure. * denote statistically significant associations at 

p<0.05 

 



Table 3: Results of multinomial regression analysis for factors associated with cross-sectional 

nuclear cataract and with nuclear cataract progression 

 Cross-sectional results 

 vitamin C RRR 95%CI p-value 

NDS tertiles 

34.5-53.2 reference      

53.3-54.5 0.89 0.77-1.02 0.09 

54.6-229.2 0.81 0.68-0.96 0.01 

 manganese RRR 95%CI p-value 

NDS tertiles 

34.5-53.2 reference      

53.3-54.5 0.76 0.66-0.87 0.001 

54.6-229.2 0.8 0.67-0.95 0.01 

 micronutrients RRR 95%CI p-value 

NDS tertiles 

34.5-53.2 reference    

53.3-54.5 0.82 0.60-1.12 0.82 

54.6-229.2 0.82 0.57-1.20 0.82 

 Progression results 

 vitamin C RRR 95%CI p-value 

ΔNDS tertiles 

1.0-12.6 reference      

12.7-19.3 0.75 0.54-1.04 0.09 

19.4-137.1 0.66 0.47-0.91 0.01 

 

Legend: This table shows the results from the multinomial regression analysis for factors 

associated with cross-sectional (vitamin C and manganese) and progression (vitamin C). The 

relative risk ratio (RRR) with its 95% confidence intervals (95%CI) for each tertile of nuclear 

dip score (NDS) or progression (ΔNDS) is reported. The minimum and maximum NDS score 

per tertile are also reported.   
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