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Genomic approaches for understanding
dengue: insights from the virus, vector, and
host
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Abstract

The incidence and geographic range of dengue have
increased dramatically in recent decades. Climate
change, rapid urbanization and increased global travel
have facilitated the spread of both efficient mosquito
vectors and the four dengue virus serotypes between
population centers. At the same time, significant
advances in genomics approaches have provided
insights into host–pathogen interactions,
immunogenetics, and viral evolution in both
humans and mosquitoes. Here, we review these
advances and the innovative treatment and control
strategies that they are inspiring.
the 17 prioritized by the World Health Organization
Background
Although only nine countries had experienced severe
dengue epidemics prior to 1970, the disease is now en-
demic in more than 100 countries (Fig. 1) [1]. Today, an
estimated 3.6 billion people live in areas at risk for epi-
demic transmission, with nearly 400 million infections oc-
curring annually [2]. This significant public health threat
is no longer confined to the tropics — autochthonous
dengue transmission has now been recorded in several
European countries [3], and in 2014, Japan reported its
first outbreak of the disease in 70 years [4].
Dengue virus (DENV) is a positive-sense, single-

stranded RNA virus of the family Flaviviridae. The four
DENV serotypes (DENV1, 2, 3, and 4) are primarily trans-
mitted between humans by the mosquito Aedes aegypti,
with Aedes albopictus as a secondary vector. In many
cities, rapid urbanization has resulted in densely packed
human and mosquito populations and in an increased
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availability of mosquito breeding sites, creating ideal
conditions for transmission. At the same time, increased
global travel efficiently transports viruses and vectors
between population centers [5]. In the future, climate
change and consequent increases in temperature and
humidity are largely expected to further increase the
risk of dengue transmission in both tropical and tem-
perate regions [6–8].
The neglected tropical diseases (NTDs) disproportion-

ately affect the world's poorest populations, and are
caused by a diverse array of viral, bacterial, protozoan,
and helminthic pathogens. Collectively, they have an ap-
proximate global prevalence of 1.0–1.2 billion cases [9,
10]. Dengue, one of the best-studied NTDs, is among

(WHO) [9]. Funding for dengue research has increased
steadily over the past decade, with the vast majority of
resources going toward vaccine development [11]. Des-
pite this, an effective tetravalent (eliciting immunity
against all four serotypes) vaccine remains elusive
[12–15], as does an antiviral that is effective against
the virus. Research gaps also exist in the areas of vec-
tor control and surveillance.
Technologies that allow us to examine complex host–

pathogen interactions from a whole-genome perspective
have become more widely available and affordable. This
progress is crucial for the development of treatment and
control strategies for NTDs, which often suffer from a
lack of basic research. This review concentrates on
whole-genome studies that have been undertaken on
DENV, mosquitoes, and humans to address key research
questions. From the virus perspective, we explore studies
of inter- and intra-host genetic variation and its effect
on viral fitness and transmission. From the host perspec-
tive, we review gene-expression-profiling analyses char-
acterizing mosquito and human responses to DENV
infection, as well as studies identifying genes that affect
susceptibility to virus infection. We further explore the
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Fig. 1 Countries or areas where dengue has been reported, 2013. Image taken from [199]; data on dengue are from the WHO
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impact of the mosquito midgut microbiota on the virus.
Finally, we review the role that genomics studies can play
in informing and enabling clinical management, vaccine
and drug development, and vector-control strategies.

Virus genetic diversity and its implications for
evolution and virulence
Viral inter-host variation
In humans, infection with DENV results in a spectrum
of clinical outcomes, ranging from self-limiting, uncom-
plicated dengue fever (DF) to the more severe dengue
hemorrhagic fever (DHF), which is characterized by in-
creased vascular permeability and thrombocytopenia
(low platelet count). In the most severe cases, these
hemorrhagic manifestations lead to potentially fatal
hypovolemic shock, a condition known as dengue shock
syndrome (DSS). Infection with one serotype of DENV
confers short-lived immunity against heterologous sero-
types, but after this immunity wanes, heterologous infec-
tion carries an increased risk of severe disease. This
phenomenon, known as enhancement, may be mediated
through antibody responses that are directed against the
previous instead of the current serotype, leading to in-
creased viral replication [16] (reviewed in [17]).
The ~10.7 kb DENV genome encodes three structural

proteins (capsid [C], premembrane [prM], and envelope
[E]) and seven non-structural (NS) proteins (NS1, NS2A,
NS2B, NS3, NS4A, NS4B, and NS5) (Fig. 2) [18, 19].
Within each of the four DENV serotypes, which share
~65–70 % amino acid sequence similarity [20], virus
strains are further classified into distinct genotypes, which
can vary by ~6–8 % at the nucleotide level and by 3 % at
the amino acid level [21–24]. Amplification and sequen-
cing of DENV directly from patient samples has now be-
come routine in many laboratories, making a large
number of DENV sequences available for studies on gen-
etic variation and viral evolution.
Owing to its association with frequent and severe

epidemics, DENV2 is the serotype for which the most
sequence data are available. Phylogenetic analysis of
DENV2 E gene sequences reveals five genotypes, known
as the American, Cosmopolitan, Asian, Southeast Asian/
American, and sylvatic genotypes [25–27]. Although
these genotypes are largely distinguished by their geo-
graphical distributions, they also commonly contain vi-
ruses from different locations, an indication of how far
infected humans and mosquitoes can spread the virus.
This pattern is also true for the other DENV serotypes
[21, 28], and is likely to become more complex with in-
creased human movement.
Epidemiological data suggest that certain viral geno-

types may differ in their ability to cause severe disease
(although given suitable conditions, such as enhancing
levels of antibody, all serotypes and genotypes have the
potential to do so). The introduction of an Asian geno-
type of DENV2, probably from Vietnam, into Cuba in
1981 and its subsequent spread into the Americas was
followed by major outbreaks of DHF [22, 29]; later
phylogenetic analyses suggested an association between
imported Asian DENV2 genotype sequences and DHF/
DSS [25]. American genotype viruses, by contrast, are
not known to cause severe dengue, even in outbreaks
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Fig. 2 The dengue virus genome. The ~10.7 kb DENV genome encodes three structural proteins (capsid [C], premembrane [prM], and envelope
[E]) and seven non-structural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). UTR untranslated region
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where secondary infection is common, like that in Peru
in the early 1990s [30].
Whole-genome comparisons revealed characteristic

differences between DHF/DSS-causing Asian genotype
viruses and American genotype viruses [31]. Most not-
ably, differences at amino acid 390 of the E protein and
in the 5' and 3' untranslated regions (UTRs) affect viral
replication in monocyte-derived dendritic cells and in
macrophages, with the introduction of the American
genotype variant attenuating replication of Asian geno-
type viruses [32, 33]. Asian genotype viruses also dis-
played more efficient infection and dissemination in Ae.
aegypti mosquitoes [34, 35], suggesting that they are also
more easily transmitted.
It remains to be seen whether similar distinctions exist

within the DENV1 and DENV4 serotypes [36], but cer-
tain genotypes of DENV3 have been associated with
DHF outbreaks in Tahiti, Fiji, and Sri Lanka (reviewed in
[19, 28]). Functional studies to identify and characterize
potential virus determinants of pathogenicity, as de-
scribed above for DENV2, are lacking.
Some researchers have recently proposed the emer-

gence of a fifth serotype of DENV, based on an atypical
virus isolated in 2007 from a patient in Borneo. Reported
to be phylogenetically distinct and to elicit an antibody
response that differs from that initiated by DENV sero-
types 1–4, this virus is thought to circulate among non-
human primates, but whether sustained transmission be-
tween humans can occur remains unclear [37]. A recent
study suggests, however, that there is more antigenic
heterogeneity within serotypes than previously thought.
By mapping neutralizing antibody responses to a range
of DENV1–4 isolates, Katzelnick et al. found that many
viruses, while falling within a single serotype on the basis
of gene sequence, were as antigenically similar to viruses
of other serotypes as they were to each other [38]. This
finding has important implications for vaccine develop-
ment, and claims of 'atypical' virus isolates should also
be evaluated with it in mind.
Although we have focused on viral genetics in this sec-

tion, disease outcomes are in fact influenced by complex
interactions between viral and host immunological fac-
tors. This was demonstrated in a study carried out in
Nicaragua, where an abrupt increase in severe disease
has been observed over several years of DENV2 epi-
demics. OhAinle et al. [39] found that severe disease in
later epidemics was associated with waning DENV1 im-
munity in the population, as well as with replacement of
the circulating DENV2 NI-1 virus clade with a new and
fitter clade, NI-2B. The contribution of virus clade to in-
creased severity was best explained in the context of
serotype-specific immunity — NI-1 viruses were more
virulent in children who were immune to DENV1, while
NI-2B viruses were more virulent in DENV3-immune
children [39].

Viral intra-host variation in humans
Like other RNA viruses, DENV has a RNA-dependent
RNA polymerase (RdRp, encoded by NS5) that has an
intrinsically high error rate (~1 × 10-4, corresponding to
approximately one mutation per 11 kb DENV genome)
[40]. When coupled with a burst size of ~103–104 ge-
nomes per cell [32, 41], this error rate results in a popu-
lation of related but genetically distinct viral genomes,
organized around a consensus sequence, within each in-
dividual human or mosquito host. Sometimes termed a
quasispecies, these variants are thought to interact co-
operatively on a functional level, and to contribute col-
lectively to the overall fitness of the virus population,
allowing it to adapt to changing environments (reviewed
in [40]). High-fidelity poliovirus mutants are markedly
attenuated and less able to access the central nervous
system in mouse models [42, 43]; high-fidelity mutants
of chikungunya virus (a mosquito-borne alphavirus) also
show reduced replication and dissemination in both
mice and Ae. aegypti [44], demonstrating the importance
of genetic diversity during infection. For mosquito-borne
viruses, intra-host genetic diversity may also offer an ad-
vantage for surviving the distinct selection pressures en-
countered when cycling between human and mosquito
hosts [44, 45].
Until recently, studies of DENV intra-host genetic

diversity in patient samples involved the Sanger-
sequencing of multiple clones of short regions of one or
two viral genes, such as C, E, and NS2B [23, 46–49].
These studies confirmed the presence of measurable
intra-host genetic variation in DENV populations, with
diversity levels and variant positions differing widely
among patients. One study reported lower viral intra-
host variation in DHF/DSS than in DF patients, suggest-
ing a relationship between genetic diversity and clinical
outcome [47]. Another study found no such association
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between intra-host variation and disease severity, viremia
levels, or immune status [23]. These contrasting results
may be attributable to a number of variables, including
differing immune status and host genetics of patient
populations, different circulating virus strains, differ-
ences in variant-calling approaches, and statistical noise
from low sampling rates. Notably, the latter study, by
Thai et al. [23], used a statistically rigorous approach to
differentiate true variants from those arising from PCR
or sequencing errors, and this probably resulted in their
finding levels of diversity that were much lower than
those reported previously. Despite this, multiple distinct
lineages of the same DENV1 genotype were detected
within individual patients, suggesting that mixed infec-
tions may be an important contributor to intra-host gen-
etic diversity [23].
High-throughput next-generation sequencing (such as

that on the Illumina and 454 platforms) is now being
used to study intra-host genetic variation across the en-
tire DENV genome at high coverage (and thus increased
sampling rates) [50–53]. This has uncovered varying
intra-host diversity levels among both viral genes and
different regions of the same gene, indicating that selec-
tion pressures vary across the genome. For example, a
study of Nicaraguan DENV2 patient samples found that
highly immunogenic E-protein domains displayed high
levels of intra-host genetic diversity, suggesting that im-
mune selection pressures on viral variants operate even
during acute infection [50]. The viruses in this study
were classified into two clades, separated by nine amino
acid differences, within the same genotype. Intra-host di-
versity levels were found to be strongly associated with
clade identity, suggesting that some amino acid differ-
ences may impact diversity, with those in NS5, for ex-
ample, having the potential to affect polymerase error
rates.

Viral intra-host variation in mosquitoes
In mosquitoes, RNA interference (RNAi), a key antiviral
defense mechanism in insects, has been proposed to be
a driver of viral intra-host genetic diversity. This has
been best studied in the Culex mosquito–West Nile
virus (family Flaviviridae) system [54], in which greater
intra-host diversity levels were reported in mosquitoes
than in vertebrate hosts [55, 56]. At the same time, host
alternation subjects arboviruses to frequent and signifi-
cant drops in population size. Only a small percentage
of the total virus population circulating in the human is
ingested by the mosquito host in its ~2 μl bloodmeal,
and an even smaller number of viruses will eventually
seed infection in the mosquito gut. Drops in population
size also occur during subsequent spread through vari-
ous tissues and organs of the insect, as well as during
the injection of microliter volumes of infected saliva into
human hosts. It is unclear how these processes shape
the diversity and repertoire of the viral population.
To track changes in viral intra-host genetic diversity

during human-to-mosquito transmission, we and collab-
orators infected Ae. aegypti mosquitoes by allowing
them to feed directly on DENV2-infected patients [57].
We then deep-sequenced human- and matched
mosquito-derived DENV populations, and used the
variant-caller LoFreq [51] to detect true single nucleo-
tide viral variants [58]. Human-, mosquito-abdomen-,
and mosquito-salivary-gland-derived DENV popula-
tions showed dramatically different variant repertoires:
>90 % of variants were lost at each stage of transmis-
sion, most probably due to large population drops that
occur during the seeding of infection. Overall levels of
viral diversity remained unchanged, however, suggest-
ing that a new array of variants is regenerated by the
time of sampling.
The selection pressures imposed on certain viral genes

also differed between human and mosquito hosts. Spe-
cifically, we observed stronger selection pressures on the
prM, E, and NS1 genes in human-derived populations
than in mosquito-derived populations, consistent with
these gene products being known targets of the human
antibody response [59], which has no insect equivalent.
By contrast, most variants, even when maintained across
transmission stages, appeared to be of neutral fitness
value in the mosquito host as their frequencies remained
largely unchanged [58].
Viral deep sequencing may also be used to identify po-

tential drug targets. A recent study identified a shared
cold-spot, or region with a statistically significant lack of
variants, in the NS3 gene of DENV1 populations from
human sera and from Ae. aegypti and Ae. albopictus
mosquitoes that were intrathoracically inoculated with
this sera. The authors suggest that such genetically con-
strained regions, in which drug-resistant mutations are
presumably less likely to arise, can be further explored
as antiviral targets. Interestingly, while variants that were
common to both mosquito species were observed, there
was also evidence of species-specific selection pressures,
with two variants in NS5 reproducibly appearing in Ae.
aegypti but not in Ae. albopictus [60].
To enable more detailed phylogenetic analyses, molecu-

lar biological and statistical methods have been developed
to reconstruct full-length viral haplotypes on the basis of
short-read sequence data [61, 62]. The continuously in-
creasing length of sequence reads (such as the multi-
kilobase reads now provided by the Pacific Biosciences RS
platform) should facilitate such approaches, and also make
it possible to obtain viral haplotypes directly from
sequence data.
Despite the growing number of studies characterizing

DENV intra-host genetic diversity, the impact of this



Sim and Hibberd Genome Biology  (2016) 17:38 Page 5 of 15
diversity on viremia or clinical outcome is not well
understood, and studies using rigorous variant-calling al-
gorithms to filter out process errors have found no such
associations [23, 50]. However, most studies have sam-
pled virus populations during the acute, viremic phase of
the disease; it will be important to determine if disease
severity may be associated with the genetic diversity of
the infecting viral population, rather than with diversity
after the onset of symptoms.

Virus interactions with the mosquito vector
Immune responses to DENV
Once ingested in a bloodmeal taken from an infected
human, DENV first infects the midgut epithelium of the
mosquito. It subsequently disseminates to other organs
via the hemolymph, finally infecting the salivary glands.
The virus is secreted into mosquito saliva, and injected
into a human host during a subsequent blood-feeding
event [5]. Mosquitoes remain infected and able to trans-
mit the virus for life (~2–3 weeks in the wild), but
DENV does not appear to exert a fitness cost on the vec-
tor during natural infection [63].
The mosquito innate immune system can distinguish

between broad classes of microbes, and mounts a potent
response against viruses, bacteria, and fungi (reviewed in
[64]). Whole-genome DNA microarray and RNA-
sequencing analyses revealed that DENV infection of the
mosquito midgut, carcass, and salivary gland transcrip-
tionally regulates numerous genes related to innate im-
munity, metabolism, and the stress response [65–69].
Among the immunity-related genes, those associated
with Toll signaling [65–67], and to a lesser extent Janus
kinase/signal transducers and activators of transcription
(JAK-STAT) signaling, were prominently represented
[65, 68]. RNAi-mediated gene knockdowns in adult mos-
quitoes subsequently confirmed key roles for these two
pathways in anti-DENV immunity [65, 68]: knockdown
of Cactus, a negative regulator of the Toll pathway NF-
kB-like transcription factor Rel1, renders mosquitoes
more refractory to DENV infection; whereas knockdown
of the adaptor protein MyD88, which is required for Toll
signal transduction, increases viral loads in the insect
[65]. Similarly, knockdown of protein inhibitor of acti-
vated STAT (PIAS), a negative regulator of the JAK-STAT
pathway, reduces infection levels, whereas knockdown of
the pathway receptor Dome or the JAK ortholog Hop has
the opposite effect [68].
The Toll (Rel1)-regulated transcriptome, as deter-

mined by expression profiling of Cactus-silenced mos-
quitoes, comprises almost 2000 genes, consistent with
the pathway's diverse roles in immunity and develop-
ment. Immunity-related signaling molecules and effector
genes feature prominently in this dataset, and overlap
considerably with those regulated by DENV infection
[65]. The Toll-regulated, DENV-induced antimicrobial
peptides (AMPs) cecropin and defensin have been
shown by gene knockdown to inhibit DENV prolifera-
tion in mosquitoes, possibly through disruption of host
cell or viral envelope membranes [66, 70]. Although the
Toll pathway has clear antiviral roles, more functional
evidence is required to implicate other Toll-regulated
genes in anti-DENV defense mechanisms.
By contrast, immunity-related genes comprise only a

small proportion of the mosquito’s JAK-STAT-regulated
transcriptome (as determined through expression profil-
ing of PIAS-silenced mosquitoes), suggesting that this
pathway restricts DENV through a non-classical re-
sponse [68]. Two JAK-STAT-regulated, DENV-induced
putative effectors that restrict DENV replication have
been identified, but their modes of action remain unchar-
acterized. Dengue virus restriction factor 1 (DVRF1) is a
putative transmembrane protein that presumably func-
tions as a pathway receptor, and DVRF2 contains anti-
freeze and allergen domains and may be involved in virus
recognition [68].

RNAi defense mechanism
The RNAi mechanism is a key Ae. aegypti defense
against DENV and other arboviruses [71–73]. The ex-
ogenous small interfering RNA (siRNA) response, the
best studied of the RNAi pathways, is initiated when
long, virus-derived double-stranded RNA (dsRNA) is
recognized and cleaved by Dicer-2 (Dcr2) into siRNAs,
usually of 21 base pairs (bp) in length. These duplex siR-
NAs are loaded onto the RNA-induced silencing com-
plex (RISC), which unwinds them, degrading one of the
strands and using the other for targeted degradation of
single-stranded viral RNA that has a complementary se-
quence (reviewed in [74]).
Deep sequencing of small RNAs from DENV-infected

Ae. aegypti revealed nearly equal ratios of positive- to
negative-sense DENV-derived small RNAs, suggesting
that most small RNAs are derived from dsRNA replicative
intermediates rather than from intra-strand secondary
structures [75]. Interestingly, only 0.005–0.06 % of all small
RNA reads map specifically to DENV [75, 76], a percentage
similar to that observed for West Nile virus in Culex mos-
quitoes [54] but much lower than that for alphaviruses
(10 % for Sindbis virus in Ae. aegypti) [77]. It has been pro-
posed that sequestration of flavivirus replication complexes
in membrane-enclosed vesicles in mosquito (and mamma-
lian) cells [78], which restricts Dcr2 access to dsRNA repli-
cative intermediates, may account for this. Further, given
the low abundance of DENV-derived small RNAs, it has
also been suggested that Dcr2 cleavage of dsRNA alone is
sufficient to keep viral replication in check [75].
Although 21-bp virus-derived siRNAs dominate dur-

ing middle- and late-stage infection [75, 76], virus-



Sim and Hibberd Genome Biology  (2016) 17:38 Page 6 of 15
derived small RNAs of 24–30 bp in length are the most
prevalent species during early-stage infection [76]. These
longer small RNAs are most likely generated by the
PIWI RNA (piRNA) pathway, suggesting a role for this
Dcr2-independent pathway in anti-DENV defense [76],
as has been proposed for other arboviruses [79, 80].

Genetic and transcriptomic variation underlying vector
competence
Vector competence — the intrinsic ability of a mosquito
to become infected by, support replication of, and trans-
mit a pathogen — varies widely between and within
mosquito populations [81–84]. It is genetically deter-
mined, but is also influenced by environmental factors
(reviewed in [85]). Ae. aegypti vector competence for
DENV appears to be an additive trait that is under the
control of multiple genetic loci [86, 87]. Mapping studies
have identified several quantitative trait loci (QTLs) that
are associated with the ability of DENV to establish in-
fection in the midgut (cross the midgut infection barrier)
or to disseminate out of it and infect other tissues (cross
the midgut escape barrier) [87–89]. The specific genes
or polymorphisms involved, however, have yet to be
identified definitively.
In addition, vector competence is influenced by

genotype-by-genotype (GxG) interactions, in which in-
fection and dissemination are affected by the specific
combination of mosquito and virus genotypes [90, 91].
This complicates genetic mapping because the resistance
loci or alleles may differ depending on the mosquito
population and the virus strain [92]. For example, nat-
ural polymorphisms in Ae. aegypti Dcr2 have been found
to be associated with resistance to DENV infection, but
in a virus isolate-specific manner. It has been proposed
that this specificity is due to differences in the affinity of
Dcr2 for particular viral dsRNA sequences [93].
Roughly two-thirds of the ~1.4 Gb Ae. aegypti genome

is composed of transposable elements, repeats, or dupli-
cations [94, 95], making marker development difficult.
Tools are being developed to circumvent these chal-
lenges — for example, a recently published single-
nucleotide polymorphism (SNP) chip is capable of
screening 50,000 SNPs in 96 samples simultaneously
[95] — and should facilitate more comprehensive,
genome-wide studies of vector competence. Targeted-
enrichment and deep-sequencing approaches have been
developed for the detection of polymorphisms and copy
number variations that are associated with insecticide re-
sistance in Ae. aegypti [96]; these approaches could poten-
tially also be adapted to studies of vector competence.
Variation at the transcriptome level is also associated

with susceptibility to DENV [84, 97–100]. Microarray
expression profiling of the DENV-responsive transcrip-
tomes of refractory and susceptible Ae. aegypti strains
revealed differentially expressed gene clusters. These were
predominantly related to metabolism and to the stress re-
sponse, as well as to a common core of DENV-responsive
genes, which were mostly related to key signaling path-
ways, including the JAK-STAT, Wnt, mitogen-activated
protein kinase (MAPK), and mammalian target of rapa-
mycin (mTOR) pathways [97–99]. In another study, per-
formed in the absence of DENV infection, expression
profiling of a panel of strains from geographically distinct
endemic regions found that numerous immunity-related
transcripts were more abundant in refractory strains than
in susceptible ones, suggesting that basal levels of immune
activation impact susceptibility [84]. Given the well-
documented role of gut bacteria in stimulating basal im-
munity in mosquitoes [65, 101, 102], it is possible that
the co-evolution of these strains with unique suites of
microbial species may have resulted in transcriptomic
divergence.
Mosquito genes found (using genomic methods) to be

associated with vector competence for DENV are listed
in Table 1.

Impact of the mosquito microbiome on vector
competence
Mosquitoes harbor bacterial communities that have di-
verse impacts on nutrition, digestion, metabolism, devel-
opment, immunity, and other aspects of insect biology
[103, 104]. The adult mosquito gut, in particular, is a site
of complex reciprocal interactions between the natural
gut microbiota, the mosquito host response, and
bloodmeal-acquired pathogens such as DENV. Import-
antly, the gut microbiome is known to influence vector
competence for DENV and other mosquito-borne patho-
gens (reviewed in [105]).
Removal of native gut bacteria by antibiotic treatment

has been reported to render Ae. aegypti more susceptible
to DENV infection; these aseptic mosquitoes also display
reduced levels of AMP expression [65]. In addition, sev-
eral bacterial isolates derived from field-collected mosqui-
toes have the ability to inhibit DENV replication when
reintroduced into aseptic mosquito midguts [102, 106]. In
some cases, bacteria are thought to activate basal level
production of immune effectors such as AMPs, and thus
prime the mosquito against subsequent viral infection [65,
70, 102]. This is consistent with known functional over-
laps between the mosquito antibacterial and antiviral re-
sponses [65, 66, 70, 102]. Other bacteria have been shown
to inhibit DENV independently of the mosquito, and are
thought to produce secondary metabolites that have direct
antiviral activity [106].
Bacteria of the genus Wolbachia are maternally inher-

ited, intracellular endosymbionts that naturally infect a
wide range of insects, including Drosophila and Ae. albo-
pictus, but not Ae. aegypti. Stable trans-infection of Ae.



Table 1 Genes associated with susceptibility to DENV in humans and mosquitoes

Host Gene Type of variation Method Associated with Reference(s)

Human MICB Genetic GWAS Severe dengue [153]

Human PLCE1 Genetic GWAS Severe dengue [153]

Mosquito Early trypsin Genetic QTL analysis Midgut infection [86, 87]

Mosquito Dicer-2 Genetic Candidate gene sequencing GxG interactions [93]

Mosquito Cecropin Transcriptomic Microarray/RNAi Midgut, salivary gland infection [66, 70]

Mosquito Defensin Transcriptomic Microarray/RNAi Midgut infection [70]

Mosquito DVRF1 Transcriptomic Microarray/RNAi Midgut infection [68]

Mosquito DVRF2 Transcriptomic Microarray/RNAi Midgut infection [68]

Mosquito Vacuolar ATPase Transcriptomic Microarray/RNAi Midgut infection [84, 189]

Mosquito High mobility group box protein (HMGB) Transcriptomic Microarray/RNAi Midgut infection [84]

Mosquito ML33 Transcriptomic Microarray/RNAi Midgut infection [186]

Mosquito NPC1b Transcriptomic Microarray/RNAi Midgut infection [186]

GWAS genome-wide association study, GxG genotype-by-genotype, QTL quantitative trait loci, RNAi RNA interference
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aegypti has been achieved through embryo microinjec-
tion [107, 108], producing mosquitoes that are more re-
sistant to a range of pathogens, including DENV,
chikungunya virus (CHIKV), yellow fever virus (YFV),
and Plasmodium [109–111]. Microarray analyses indi-
cate that Wolbachia induces the expression of Toll path-
way and other immunity-related genes in stably trans-
infected Ae. aegypti [70, 112, 113]. However, as Wolba-
chia restricts DENV in Drosophila and Ae. albopictus
(two species with a long natural history of Wolbachia
infection) in the absence of immune activation, it has
been suggested that immune priming is not the funda-
mental mechanism of virus restriction, although it may
enhance the trait in heterologous mosquito hosts [113,
114]. Wolbachia has also been shown to compete with
the virus for crucial host resources [115], and to modu-
late the expression of certain mosquito microRNAs,
thereby altering host gene expression to facilitate its
own replication [116, 117].
In mosquitoes, Wolbachia is particularly suited for use

in a population-replacement transmission-blocking strat-
egy because of its ability to induce cytoplasmic incom-
patibility (CI), a phenomenon (maintained in stably
trans-infected Ae. aegypti) in which crosses between un-
infected females and infected males result in embryonic
lethality (reviewed in [118]). This increases the repro-
ductive success of infected females and allows Wolba-
chia to spread rapidly through insect populations despite
possible fitness costs.
Sequencing-based, culture-independent approaches

are increasingly being used to obtain comprehensive
profiles of field mosquito microbiomes [119–122]. In
Anopheles gambiae, the major African vector of malaria,
targeted deep sequencing of microbial 16S ribosomal
RNA revealed distinct gut microbiome communities at
the aquatic larval and pupal stages and the terrestrial
adult stage [119]. This finding is consistent with the fact
that gut contents are usually cleared upon metamor-
phosis during the larvae-to-pupae and pupae-to-adult
transitions [123], and implies that repopulation of the
microbiome occurs at each stage. Bloodmeals drastically
reduced gut microbiome diversity and led to an expan-
sion of members of the Enterobacteriaceae family. These
bacteria possess antioxidant mechanisms that may allow
them to cope with the oxidative and nitrosative stresses
associated with bloodmeal catabolism, suggesting that
they benefit the mosquito by helping to maintain gut
redox homeostasis [119].
1A study characterizing the microbiomes of wild-caught

Aedes, Anopheles, and Culex mosquitoes from Kenya
found that the gut microbiome of an individual adult mos-
quito was typically dominated by one bacterial taxon,
while also containing many other much less abundant
taxa. Although different mosquito species shared remark-
ably similar gut bacteria, there was enormous variation
within individuals of the same species [120].
The composition and dynamics of endogenous mos-

quito gut microbiota may affect natural rates of disease
transmission, as well as the success of transmission-
blocking strategies that involve the introduction of native
or non-native bacterial species into mosquito populations.
Recent studies, for example, suggest that vertical transmis-
sion of Wolbachia in An. gambiae (another non-naturally
infected mosquito species) is inhibited by native Asaia
[124, 125]. The development of improved 16S sequencing
methods that allow species-level identification [126], as well
as metagenomic sequencing approaches that yield informa-
tion on microbial function in addition to identity
[127, 128], should help us understand complex relation-
ships between bacterial communities and their insect hosts.
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Virus interactions with the human host
Transcriptome profiling of the human host
DENV probably infects a wide range of cell types in the
human host. Mouse studies suggest that hepatocytes are
perhaps the most important cells for replication [129],
but most human studies have concentrated on mono-
cytes, macrophages, and dendritic cells [130, 131]. Acute
disease, occurring 3–8 days after viral transmission from
the mosquito, typically begins with a 3–7-day febrile
phase, accompanied by symptoms such as headache, my-
algia, arthralgia, retro-orbital pain, and rash. While most
patients subsequently recover without complications,
some progress to severe disease at around the time of
defervescence (abatement of fever; reviewed in [132]).
Longitudinal studies using DNA microarray expression

profiling to track transcriptomic changes in the blood of
DENV-infected patients have identified two distinct
phases of gene expression during the febrile stage. In the
early acute phase (day 0–1, day 0 being the day of fever
onset), genes associated with innate immunity, inter-
feron (IFN)- and cytokine-mediated signaling, chemo-
taxis, and complement pathway activity reach peak
expression but their expression declines by day 3–4, mir-
roring viremia levels. This marks a shift to the late acute
phase, which is characterized by the expression of genes
associated with the cell cycle and DNA repair, which
peaks at day 5–6 [133, 134].
These results are consistent with cross-sectional stud-

ies that have identified IFN, NF-kB, Toll-like receptor
(TLR), retinoic acid-inducible gene-I-like receptor (RLR),
complement, and ubiquitin–proteasome pathway-related
genes as prominent features of the febrile-stage transcrip-
tional signature [135–140]. A number of these host re-
sponses look to have either pro-inflammatory profiles that
may lead to later disease pathology or antiviral activities
(or both) [137, 141], and may represent promising novel
drug targets. The first clinical trial of a therapy exploiting
a host target to inhibit viral replication did not, however,
show sufficient activity [142]. The antiviral innate immune
response profile wanes rapidly, and by the defervescent
stage, transcripts of genes that are involved in biosyn-
thesis, metabolism, and the adaptive immune response are
most prominent [135, 136, 139, 140]; these may be less
easily used as therapeutic targets.
Hemorrhagic manifestations leading to DSS typically

appear around defervescence (day 4–7 of illness), when
the host immune response is well established and
viremia is rapidly declining. This suggests that vascular
permeability is mediated by the host inflammatory re-
sponse rather than by the virus directly. The onset of
shock appears to be associated with an attenuated im-
mune response, with several studies reporting reduced
transcript abundances of IFN-stimulated and other in-
nate immunity-related genes in DSS compared with
those in well-matched DF patients prior to [143, 144]
and at the point of defervescence [135, 139]. Thus, the
host responses that contribute to vascular permeability
may occur well before the onset of DSS, with rapid early
disease progression being an important determinant of
severe outcome, probably reflecting an earlier and larger
peak viral load and a consequent earlier and larger host
response [135].
Prospective studies designed to capture these early

events found that dengue patients who eventually progress
to DHF/DSS display an early increased abundance of tran-
scripts associated with activated neutrophils, including
those encoding granulocyte enzymes, membrane-bound
integrin receptors, and microbicidal peptides such as
defensins [136, 145, 146]. Several of these proteins might
compromise capillary integrity — the serine proteases
ELA2 and CTSG, for example, are known to cleave vascu-
lar endothelial cadherin [147]. It has thus been proposed
that high viral antigen loads and immune complex forma-
tion (as seen in secondary dengue) during early infection
induce neutrophil activation and degranulation, which
then contribute to the triggering of vascular permeability
[136]. Intriguingly, the platelet drop observed in patients
and associated with disease severity may not be linked
with these vascular permeability changes, but may instead
be an independent event resulting from the inhibition of
platelet production by the early inflammatory response
[129]. (While most studies cited here classified patients as
having DF, DHF, or DSS, we note that the WHO in 2009
revised its guidelines so that patients are now classified as
having 'dengue with or without warning signs' or 'severe
dengue' [148].)
While a detailed discussion is outside the scope of this

review, techniques such as mass spectrometry and immu-
noassays have also been used to study human host re-
sponses to DENV infection and to distinguish mild from
severe dengue disease at the proteome level [149–152].

Genetic associations
In addition to expression profiling, genome-wide associ-
ation studies (GWAS) have also contributed to our un-
derstanding of the pathogenesis of severe dengue. Strong
associations with increased susceptibility to DSS have
been identified at two distinct loci: MICB (MHC class I
polypeptide-related sequence B), located within the major
histocompatibility complex (MHC) region on chromo-
some 6; and PLCE1 (Phospholipase C, epsilon 1), located
on chromosome 10 (Table 1) [153].
MICB encodes an inducible activating ligand for the

NKG2D type II receptor on natural killer (NK) cells and
CD8+ T cells. Binding of MICB to NKG2D activates
antiviral functions such as cytotoxic granule release and
cytokine production [154]; it is possible that dysfunc-
tional NK or CD8+ T-cell activation during early
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infection results in the higher viral burdens associated
with severe dengue [155, 156]. Interestingly, a separate
GWAS detected an association between the closely re-
lated MICA gene and hepatitis C virus (HCV)-induced
hepatocellular carcinoma [152], suggesting an important
role for the MIC proteins in flaviviral pathogenesis.
Mutations in PLCE1 are also associated with nephrotic

syndrome [157, 158], a childhood kidney disorder in
which dysfunction of the glomerular basement mem-
brane impairs blood filtering function, leading to hypo-
volemia in severe cases. This aspect of nephrotic
syndrome shares striking similarities with DSS, and has
led to the discovery that proteinuria may be predictive
of severe dengue [159]. PLCE1 has also been associated
with blood pressure [160], suggesting a role in the main-
tenance of normal vascular endothelial barrier function.
Disturbances in this vascular integrity may be the cause
of DSS, offering the potential for a novel therapeutic ap-
proach to prevent it. This process may also go some way
to explaining the association of DSS with pediatric den-
gue, as children are intrinsically more prone to vascular
leak [161].

Implications and future challenges for clinical
management and transmission control
Clinical management of dengue
Dengue is a significant burden on healthcare systems.
Without specific antivirals, the case management of
high-risk dengue patients is entirely supportive, involv-
ing constant monitoring and timely fluid support to pre-
vent hypovolemic shock [132]. Nevertheless, the diverse
clinical spectrum of dengue disease, as well as its initial
similarity to other viral febrile illnesses, presents a chal-
lenge in the early identification of this relatively small
high-risk group (perhaps 5 % of cases), resulting in the
frequent hospitalization of patients with uncomplicated
dengue or the non-hospitalization of patients who would
benefit from interventions. WHO guidelines [148] rec-
ommend the use of warning signs to identify high-risk
patients, but these have potential to be overly sensitive
[162–164] and they generally occur during, or just one
day before, the development of severe illness (4–7 days
post-fever onset), providing only a narrow window for
clinical intervention [164, 165].
Transcriptomic profiling of patients at early time points

has greatly increased our understanding of dengue patho-
genesis, and has identified host-response biomarkers that
are associated with subsequent development of warning
signs and progression to severe disease [133, 134, 136,
140, 144, 166]. Prognostic models combining mRNA and
protein biomarkers with clinical parameters (such as
platelet count) have also been developed and tested in
proof-of-concept studies [133, 166, 167]. These have
potential to further refine clinical triage, and would be
particularly useful in primary healthcare settings;
evaluation in larger prospective studies is needed for
them to be applied more widely.

Vaccine and drug development
There remains a pressing need for effective vaccines and
specific antivirals against dengue. The approval in
December 2015 of Sanofi-Pasteur's tetravalent vaccine
Dengvaxia (CYD-TDV) for use in Mexico in a select age
group (9–45 years) is certainly an achievement, but is
unlikely to be a single solution. Although CYD-TDV is
well tolerated in the short term and substantially reduces
dengue hospitalizations, it shows serotype-specific effi-
cacy, with less protection against serotype 2, and also
provides limited protection against primary infection
[14, 15]. Third-year follow-up data also indicate that
CYD-TDV is associated with increased hospitalization
risk for dengue in children below 9 years of age, raising
the possibility that waning antibody titers predispose this
age group to infection and more serious clinical presen-
tations [12, 13], and highlighting the need for vaccines
to elicit potent and balanced antibody responses even in
dengue-naive recipients. On the therapeutics front, the
candidate antivirals celgosivir (a host α-glucosidase in-
hibitor) and balapiravir (a nucleoside analog) were not
found to be effective in clinical trials, despite promising
activity in in vitro and animal models [142, 168]. This
failure may be due to the very small window of thera-
peutic opportunity for antivirals, suggesting that prophy-
lactic approaches might be required. In addition, anti-
inflammatory approaches using re-purposed therapies
have also proven to be ineffective to date [169, 170], al-
though this might be due to their targeting of inappro-
priate host responses [171].
Efforts to develop improved next-generation vaccine

and antiviral candidates will benefit from structural
and functional genomics studies in both virus and
host [172–174], which may identify regions of the
viral genome [51, 58, 60] or novel host–viral interac-
tions [141, 175] as potential targets.
Viral sequencing may be used to evaluate the effect of

antivirals and vaccines on DENV populations, and to
monitor the emergence of resistant or immune escape
mutants. For example, although balapiravir induces
C >N mutations by inhibiting the incorporation of cyto-
sine bases into RNA templates by viral NS5 [176], deep se-
quencing revealed no differences in the frequency of these
mutations between viral populations from drug- and
placebo-treated patient groups [51]. This may provide
a molecular explanation for its lack of efficacy in clin-
ical trials [168].
In another study, DENV populations from mice

treated with UV-4B, a host α-glucosidase inhibitor [177]
soon to enter clinical trials, harbored significantly more
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variants than those from vehicle-treated mice. They also
showed high ratios of non-synonymous to synonymous
variants in the glycosylated M and NS1 proteins, sug-
gesting that the drug is driving positive selection in these
regions of the genome. Despite this, no escape mutants
emerged even after multiple rounds of virus replication;
the authors suggest that this reflects the better stability
of antiviral approaches that target host factors [52].

Control strategies targeting the mosquito vector
Novel control strategies targeting the mosquito vector
are being tested in natural settings. Field releases of Ae.
aegypti carrying the wMel strain of Wolbachia successfully
introduced the bacterium into Australian mosquito popula-
tions, where it has remained established to date [111, 178].
Ongoing releases in Vietnam, Indonesia, Brazil, and
Colombia [179], where dengue is much more common
than in Australia, should yield information on the im-
pact of population replacement on disease transmission.
Strategies involving genetically modified mosquitoes

are also under development. The most advanced of
these, termed release of insects carrying a dominant le-
thal allele (RIDL), seeks to eliminate vector populations
by releasing males carrying a transgene that renders
their offspring non-viable. One such construct induces
cellular toxicity specifically in the flight muscles of fe-
male pupae, resulting in adult females that are unable to
fly [180]; another induces lethality at the late larval or
pupal stage [181]. Trials of RIDL mosquito strains have
been carried out in the Cayman Islands, Brazil, and
Malaysia by the company Oxitec, with a 95 % population
reduction reported at the Brazilian field site [182–185].
Mosquito transcriptomics studies have yielded a pleth-

ora of DENV-responsive genes; these are increasingly be-
ing functionally characterized, and some have been found
to play pro- or antiviral roles in the vector [186–189].
Such studies can identify candidate molecules for use
in experimental transmission-blocking strategies, such
as the transgenic overexpression of immune pathway
activators or antiviral effectors [190–192], and the
paratransgenic engineering of bacterial or fungal
members of the microbiome to express anti-pathogen
molecules [193–195]. Recent reports of Anopheles
species engineered with the CRISPR-Cas9 gene drive
system so that they are refractory to Plasmodium in-
fection [196, 197] suggest that population replacement
strategies are technically feasible, but should be adopted
with caution [198].
In practice, control strategies targeting the vector will

probably be complicated by genetic and transcriptomic
divergence in mosquito and virus strains, and by the in-
fluence of the native gut microbiota. A combination of
functional genomics and extensive field testing will most
probably be required to overcome these challenges.
Conclusion
In microbiology, there is increasing appreciation that
host genetics, host gene expression, host immune back-
ground, and pathogen genetics are interrelated and
should not be studied in isolation. The impact of DENV
on the human host, in terms of clinical phenotype and
host response, is shaped by host genetics, prior immune
exposure, and virus genetics; in mosquitoes (and possibly
even in humans), the gut microbiota adds an additional
layer of complexity. Reciprocally, immune selection pres-
sures exerted by either host shape the genetic diversity of
DENV populations, potentially impacting their virulence,
immunogenicity, or transmissibility.
Genomics approaches have allowed us to interrogate

host–pathogen interactions on an unprecedented scale.
This provides opportunities for integrating information
from different taxa to attain a comprehensive picture of
DENV in human and mosquito hosts. For example, with
more whole-genome virus sequences becoming available,
it will be possible to correlate DENV polymorphisms
with host genotypes and clinical phenotypes, with spe-
cific immune pressures such as antiviral use, or with dif-
ferent subsets of mosquito gut bacteria. Continued
dissection of such interactions to reveal their molecular
mechanisms will provide new and better targets for the
development of vaccines and antivirals, as well as for
transmission-blocking strategies targeting the vector.
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