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Analysis of matched case-control studies
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There are two common misconceptions 
about case-control studies: that 
matching in itself eliminates (controls) 
confounding by the matching factors, 
and that if matching has been 
performed, then a “matched analysis” 
is required. However, matching in a 
case-control study does not control for 
confounding by the matching factors; 
in fact it can introduce confounding by 
the matching factors even when it did 
not exist in the source population. 
Thus, a matched design may require 
controlling for the matching factors in 
the analysis. However, it is not the case 
that a matched design requires a 
matched analysis. Provided that there 
are no problems of sparse data, control 
for the matching factors can be 
obtained, with no loss of validity and a 
possible increase in precision, using a 
“standard” (unconditional) analysis, 
and a “matched” (conditional) analysis 
may not be required or appropriate.

Matching on factors such as age and sex is commonly 
used in case-control studies.1 This can be done for con-
venience (eg, choosing a control admitted to hospital 
on the same day as the case), to improve study effi-
ciency by improving precision (under certain condi-
tions) when controlling for the matching factors (eg, 
age, sex) in the analysis, or to enable control in the 
analysis of unquantifiable factors such as neighbour-
hood characteristics (eg, by choosing neighbours as 
controls and then controlling for neighbourhood in the 
analysis). The increase in efficiency occurs because it 
ensures similar numbers of cases and controls in 
 confounder strata. For example, in a study of lung 

 cancer, if controls are sampled at random from the 
source population, their age distribution will be much 
younger than that of the lung cancer cases. Thus, when 
age is controlled in the analysis, the young age stratum 
may contain mostly controls and few cases, whereas the 
old age stratum may contain mostly cases and fewer 
controls. Thus, statistical precision may be improved if 
controls are age matched to ensure roughly equal num-
bers of cases and controls in each age stratum.

There are two common misconceptions about 
case-control studies: that matching in itself eliminates 
confounding by the matching factors; and that if match-
ing has been performed, then a “matched analysis” is 
required.

Matching in the design does not control for con-
founding by the matching factors. In fact, it can intro-
duce confounding by the matching factors even when it 
did not exist in the source population.1 The reasons for 
this are complex and will only be discussed briefly here. 
In essence, the matching process makes the controls 
more similar to the cases not only for the matching fac-
tor but also for the exposure itself. This introduces a 
bias that needs to be controlled in the analysis. For 
example, suppose we were conducting a case-control 
study of poverty and death (from any cause), and we 
chose siblings as controls (that is, for each person who 
died, we matched on family or residence by choosing a 
sibling who was still alive as a control). In this situa-
tion, since poverty runs in families we would tend to 
select a disadvantaged control for each disadvantaged 
person who had died and a wealthy control for each 
wealthy person who had died. We would find roughly 
equal percentages of disadvantaged people among the 
cases and controls, and we would find little association 
between poverty and mortality. The matching has intro-
duced a bias, which fortunately (as we will illustrate) 
can be controlled by controlling for the matching factor 
in the analysis.

Thus, a matched design will (almost always) require 
controlling for the matching factors in the analysis. 
However, this does not necessarily mean that a matched 
analysis is required or appropriate, and it will often be 
sufficient to control for the matching factors using sim-
pler methods. Although this is well recognised in both 
recent2 3  and historical4 5  texts, other texts6-9 do not dis-
cuss this issue and present the matched analysis as the 
only option for analysing matched case-control studies. 
In fact, the more standard analysis may not only be 
valid but may be much easier in practice, and yield bet-
ter statistical precision.

In this paper I explore and illustrate these problems 
using a hypothetical pair matched case-control study.

Options for analysing case-control studies
Unmatched case-control studies are typically  analysed 
using the Mantel-Haenszel method10  or  unconditional 

Summary pOintS
Matching in a case-control study does not control for confounding by the matching 
factors
A matched design may require controlling for the matching factors in the analysis
However, it is not the case that a matched design requires a matched analysis
A “standard” (unconditional) analysis may be most valid and appropriate, and a 
“matched” (conditional) analysis may not be required or appropriate

http://
http://crossmark.crossref.org/dialog/?doi=10.1136/bmj.i969&domain=pdf&date_stamp=2016-02-25


doi: 10.1136/bmj.i969 | BMJ 2016;352:i969 | the bmj

ReseaRch Methods and RepoRting

2

logistic regression.4 The former involves the familiar 
method of producing a 2×2 (exposure-disease) stratum 
for each level of the confounder (eg, if there are five age 
groups and two sex groups, then there will be 10 2×2 
tables, each showing the association between exposure 
and disease within a particular stratum), and then pro-
ducing a summary (average) effect across the strata. 
The Mantel-Haenszel estimates are robust and not 
affected by small numbers in specific strata (provided 
that the overall numbers of exposed or non-exposed 
cases or controls are adequate), although it can be diffi-
cult or impossible to control for factors other than the 
matching factors if some strata involve small numbers 
(eg, just one case and one control). Furthermore, the 
Mantel-Haenszel approach works well when there are 
only a few confounder strata, but will experience prob-
lems of small numbers (eg, strata with only cases and 
no controls) if there are too many confounders to adjust 
for. In this situation, logistic regression may be pre-
ferred, since this uses maximum likelihood methods, 
which enable the adjustment (given certain assump-
tions) of more confounders.

Suppose that for each case we have chosen a control 
who is in the same five year age group (eg, if the case is 
aged 47 years, then a control is chosen who is aged 
45-49 years). We can then perform a standard analysis, 
which adjusts for the matching factor (age group) by 
grouping all cases and controls into five year age groups 
and using unconditional logistic regression4  (or the 
Mantel-Haenszel method10); if there are eight age 
groups then this analysis will just have eight strata (rep-
resented by seven age group dummy variables), each 
with multiple cases and controls. Alternatively we can 
perform a matched analysis (that is, retaining the pair 
matching of one control for each case) using condi-
tional logistic regression (or the matched data methods, 
which are equivalent to the Mantel-Haenszel method); 
if there are 100 case-control pairs, this analysis will 
then have 100 strata. 

The main reason for using conditional (rather than 
unconditional) logistic regression is that when the 
 analysis strata are very small (eg, with just one case and 
one control for each stratum), problems of sparse data 
will occur with unconditional methods.11  For example, 
if there are 100 strata, this requires 99 dummy variables 
to represent them, even though there are only 200 study 
participants. In this extreme situation, unconditional 
logistic regression is biased and produces an odds ratio 
estimate that is the square of the conditional (true) esti-
mate of the odds ratio.5 12

Example of age matching
Table 1  gives an example of age matching in a popula-
tion based case-control study, and shows the “true’ 
findings for the total population, the findings for the 
corresponding unmatched case-control study, and the 
findings for an age matched case-control study using 
the standard analysis. Table 2 presents the findings for 
the same age matched case-control study using the 
matched analysis. All analyses were performed using 
the Mantel-Haenszel method, but this yields similar 
results to the corresponding (unconditional or condi-
tional) logistic regression analyses.

Table 1 shows that the crude odds ratio in the total 
population is 0.86 (0.70 to 1.05), but this changes to 2.00 
(1.59 to 2.51) when the analysis is adjusted for age (using 
the Mantel-Haenszel method). This occurs because 
there is strong confounding by age—the cases are 
mostly old, and old people have a lower exposure than 
young people. Overall, there are 390 cases, and when 
390 controls are selected at random from the non-cases 
in the total population (which is half exposed and half 
not exposed), this yields the same crude (0.86) and 
adjusted (2.00) odds ratios, but with wider confidence 
intervals, reflecting the smaller numbers of non-cases 
(controls) in the case-control study.

Why matching factors need to be controlled in the 
analysis
Now suppose that we reconduct the case-control study, 
matching for age, using two very broad age groups: old 
and young (table 1 ). The number of cases and controls 
in each age group are now equal. However, the crude 
odds ratio (1.68, 1.25 to 2.24) is different from both the 
crude (0.86) and the adjusted (2.00) odds ratios in 

Table 1 | Hypothetical study population and case-control study with unmatched and matched standard analyses
Young participants Old participants Total Odds ratio (95% CI)
Exposed Not exposed Exposed Not exposed Exposed Not exposed Crude Age adjusted

Total population:
 Cases 80 10 100 200 180 210

0.86 (0.70 to 1.05) 2.00 (1.59 to 2.51)*
 Non-cases 80 000 20 000 20 000 80 000 100 000 100 000
Unmatched case-control study:
 Cases 80 10 100 200 180 210

0.86 (0.65 to 1.14) 2.00 (1.38 to 2.89)
 Controls 156 39 39 156 195 195
Matched case-control study standard analysis:
 Cases 80 10 100 200 180 210

1.68 (1.25 to 2.24) 2.00 (1.42 to 2.81)*
 Controls 72 18 60 240 132 258
*“True” age adjusted.

Table 2 | Hypothetical matched case-control study with matched analysis
Control

Pair matched odds ratio (95% CI)Exposed Not exposed
Case exposed 84 96

2.00 (1.40 to 2.89)
Case not exposed 48 162
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the  total population. In contrast, the adjusted odds 
ratio (2.00) is the same as that in the total population 
and in the unmatched case-control study (both of these 
adjusted odds ratios were estimated using the standard 
approach). Thus, matching has not removed age con-
founding and it is still necessary to control for age (this 
occurs because the matching process in a case-control 
study changes the association between the matching 
factor and the outcome and can create an association 
even if there were none before the matching was con-
ducted). However, there is a small increase in precision 
in the matched case-control study compared with the 
unmatched case-control studies (95% confidence inter-
vals of 1.42 to 2.81 compared with 1.38 to 2.89) because 
there are now equal numbers of cases and controls in 
each age group (table 1).

a pair matched study does not necessarily require a 
pair matched analysis
However, control for simple matching factors such as 
age does not require a pair matched analysis. Table 2  
gives the findings that would have been obtained from 
a pair matched analysis (this is created by assuming 
that in each age group, and for each case, the control 
was selected at random from all non-cases in the same 
age group). The standard adjusted (Mantel-Haenszel) 
analysis (table 1 ) yields an odds ratio of 2.00 (95% con-
fidence interval 1.42 to 2.81); the matched analysis 
(table 2) yields the same odds ratio (2.00) but with a 
slightly wider confidence interval (1.40 to 2.89).

advantages of the standard analysis
So for many matched case-control studies, we have a 
choice of doing a standard analysis or a matched analy-
sis. In this situation, there are several possible advan-
tages of using the standard approach.

The standard analysis can actually yield slightly bet-
ter statistical precision.13  This may apply, for example, 
if two or more cases and their matched controls all have 
identical values for their matching factors; then com-
bining them into a single stratum produces an estima-
tor with lower variance and no less validity14  (as 
indicated by the slightly narrower confidence interval 
for the standard adjusted analysis (table 1 ) compared 
with the pair matched analysis (table 2 ). This particu-
larly occurs because combining strata with identical 
values for the matching factors (eg, if two case-control 
pairs all concern women aged 55-59 years) may mean 
that fewer data are discarded (that is, do not contribute 
to the analysis) because of strata where the case and 
control have the same exposure status. Further gains in 
precision may be obtained if combining strata means 
that cases with no corresponding control (or controls 
without a corresponding case) can be included in the 
analysis. When such strata are combined, a conditional 
analysis may still be required if the resulting strata are 
still “small,”13 but an unconditional analysis will be 
valid and yield similar findings if the resulting strata are 
sufficiently large. This may often be the case when 
matching has only been performed on standard factors 
such as sex and age group.

The standard analysis may also enhance the clarity of 
the presentation, particularly when analysing sub-
groups of cases and controls selected for variables on 
which they were not matched, since it involves standard 
2×2 tables for each subgroup.15

A further advantage of the standard analysis is that it 
makes it easier to combine different datasets that have 
involved matching on different factors (eg, if some have 
matched for age, some for age and sex, and some for 
nothing, then all can be combined in an analysis adjust-
ing for age, sex, and study centre). In contrast, one mul-
ticentre study16 (of which I happened to be a coauthor) 
attempted to (unnecessarily) perform a matched analy-
sis across centres. Because not all centres had used pair 
matching, this involved retrospective pair matching in 
those centres that had not matched as part of the study 
design. This resulted in the unnecessary discarding of 
the unmatched controls, thus resulting in a likely loss of 
precision.

Conclusions
If matching is carried out on a particular factor such as 
age in a case-control study, then controlling for it in 
the analysis must be considered. This control should 
involve just as much precision as was used in the orig-
inal matching14 (eg, if exact age in years was used in 
the matching, then exact age in years should be con-
trolled for in the analysis), although in practice such 
rigorous precision may not always be required (eg, five 
year age groups may suffice to control confounding by 
age, even if age matching was done more precisely 
than this). In some circumstances, this control may 
make no difference to the main exposure effect esti-
mate—eg, if the matching factor is unrelated to expo-
sure. However, if there is an association between the 
matching factor and the exposure, then matching will 
introduce confounding that needs to be controlled for 
in the analysis.

So when is a pair matched analysis required? The 
answer is, when the matching was genuinely at (or 
close to) the individual level. For example, if siblings 
have been chosen as controls, then each stratum would 
have just one case and the sibling control; in this situa-
tion, an unconditional logistic regression analysis 
would suffer from problems of sparse data, and condi-
tional logistic regression would be required. Similar 
situations might arise if controls were neighbours or 
from the same general practice (if each general practice 
only had one or a few cases), or if matching was per-
formed on many factors simultaneously so that most 
strata (in the standard analysis) had just one case and 
one control.

Provided, however, that there are no problems of 
sparse data, such control for the matching factors 
can be obtained using an unconditional analysis, 
with no loss of validity and a possible increase in 
precision.

Thus, a matched design will (nearly always) require 
controlling for the matching factors in the analysis. It is 
not the case, however, that a matched design requires a 
matched analysis.
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