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Abstract  25 

Background: Mammographic density (MD) varies throughout a woman’s life. We compared the performance of a 26 

fully-automated (ImageJ-based) method to the observer-dependent Cumulus approach in the assessment of within-27 

woman changes in MD over time.  28 

Methods: MD was assessed in annual pre-diagnostic films (from age 40 to early 50s) from 313 breast cancer cases 29 

and 452 matched controls using Cumulus (left medio-lateral-oblique (MLO) readings) and the ImageJ-based method 30 

(mean left-right MLO readings). Linear mixed models were used to compare within-woman changes in MD among 31 

controls. Associations between individual-specific MD trajectories and breast cancer were examined using 32 

conditional logistic regression. 33 

Results: The age-related trajectories predicted by Cumulus and the ImageJ-based method were similar for all MD 34 

measures, except that the ImageJ-based method yielded slightly higher (by 2.54%, 95% CI: 2.07%, 3.00%) estimates 35 

for percent MD. For both methods, the yearly rate of change in percent MD was twice faster after menopause than 36 

before, and higher BMI was associated with lower mean percent MD, but not associated with rate of change. Both 37 

methods yielded similar associations of individual-specific MD trajectories with breast cancer risk.  38 

Conclusions: The ImageJ-based method is a valid fully-automated alternative to Cumulus for measuring within-39 

woman changes in MD in digitised films. 40 

 41 

 42 

The Age Trial is registered as an International Standard Randomised Controlled Trial, number ISRCTN24647151. 43 

Keywords: mammographic density, breast density, breast cancer, pre-menopausal 44 
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Introduction 45 

High mammographic density (MD), which represents a high amount of radio-dense fibroglandular tissue in the 46 

breast, is not only associated with an increased breast cancer (BC) risk, independently of other known risk factors 47 

[1], but it also affects the sensitivity of mammographic screening [2]. MD varies throughout a woman’s life being 48 

influenced by factors such as age, parity, menopausal status and hormonal interventions (e.g. hormone therapy (HT) 49 

and tamoxifen). Thus, it is conceivable that the rate of change in MD over a woman’s lifetime, or at critical periods, 50 

may be more relevant to risk than MD measured at any single point. Results from previous studies [3-9] have been 51 

conflicting, however, some studies [5,7] showed that within-woman changes in MD over time do not convey any 52 

additional risk information beyond that provided by a single measurement, while others [3,4,6,8,9] were consistent 53 

with changes being independently associated with risk. But, with the exception of a small study [4], they all relied on 54 

qualitative (e.g. Wolfe patterns [3] or BI-RADS [8]) or semi-automated approaches, i.e. Cumulus [5-7,9] to capture 55 

within-woman longitudinal changes in MD, all of which are reader-dependent. Reader variability might have 56 

introduced noise in the measurement of within-woman changes in MD, thus, leading to an attenuation of their 57 

association with risk. Furthermore, small within-woman changes cannot be captured when using the broad Wolfe or 58 

BI-RADS categories.  59 

The semi-automated interactive thresholding technique, on which the Cumulus software is based, is currently 60 

considered the “gold standard” approach to measure MD [1]. Cumulus measurements of between-women MD 61 

differences have been shown to have a high between- and within-reader reliability [10], and to be consistently 62 

associated with subsequent BC risk [1]. However, the validity of this method to capture within-woman changes in 63 

MD, which are of a smaller magnitude than between-women differences, is unknown. The ImageJ-based method is a 64 

fully-automated method which attempts to mimic Cumulus, and whose performance to detect between-women 65 

differences in MD has been recently shown to be comparable to that of Cumulus [11,12]. The aim of this study was 66 

to compare the performance of this fully-automated method to that of the reader-dependent Cumulus approach in 67 

the assessment of within-woman changes in MD. We compared the performance of the ImageJ-based method to 68 

that of the “gold-standard” Cumulus in terms of the degree to which they were able to capture: (i) tracking of MD 69 

with age; and (ii) within-woman changes in MD among controls and their determinants; and (iii) association of 70 

within-woman changes in PD with BC risk.  71 
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Materials and Methods 72 

Study design 73 

A nested case-control study of BC in relation to pre-diagnostic MD was undertaken within the Age Trial, a trial of the 74 

efficacy of annual mammographic screening at age 40-48 [13,14]. About 54,000 women from the general population 75 

aged 40-41 years and resident in the catchment areas of 23 National Health Service (NHS) breast screening centres in 76 

Britain were randomized between 1991 and 1996 to the intervention arm of the trial and invited to attend annual 77 

screening with analogue mammography. The first screening round included both cranio-caudal (CC) and medio-78 

lateral oblique (MLO) views of each breast; subsequent rounds included only the MLO view. From age 50 years 79 

onwards women joined the national breast screening programme and were invited for mammography every 3 years. 80 

BC cases among the study population have been ascertained through linkage to the NHS health registers for cancer 81 

incidence and mortality since the start of the trial. Women in the intervention arm who were diagnosed with BC 82 

between 1993 and 2005, and at least one year after their first negative screen, were eligible for the present study 83 

(n=442). For each case, up to six eligible controls were initially randomly selected among women in the intervention 84 

arm who had not been diagnosed with BC at the time of the case’s diagnosis. Controls were matched to the cases on 85 

screening centre, date of birth (± 3 months), date of the first pre-diagnostic screen (± 3 months), and subsequent 86 

screens (± 4 months). For 89 (28.4%) cases, no controls were available and therefore the matching was performed 87 

only on the first three criteria. 88 

Eligible cases and controls were contacted (for cases after obtaining consent from their general practitioners) and 89 

asked to provide written consent for their mammograms to be accessed, and to complete a questionnaire on 90 

anthropometric and reproductive variables, and history of breast cancer in first degree relatives. Analogue films 91 

were retrieved from relevant NHS screening centres and digitized using a high-quality Array 2959 laser digitiser 92 

(Array Corporation Europe, Netherlands). In all, 76% of eligible cases and 80% of eligible controls completed the 93 

questionnaire and gave consent for accessing their mammograms; films could be retrieved for 93% of consented 94 

cases and 89% of consented controls. The first two matched control women for whom both questionnaire data and 95 

films were available were included in the present study.  96 

The study was approved by the UK NHS South-East Multi-Centre Research Ethics Committee (05/MREC01/77).  97 

MD assessment  98 
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MD assessment was performed on MLO images (the only view performed on every screening round). For cases, only 99 

MLO images taken at least one year prior to BC diagnosis were included. For controls, all MLO images up to the time 100 

of diagnosis of the corresponding matched case were read as they were all eligible for control-only analyses; 101 

however, only those taken one year prior to the date of diagnosis of the corresponding case were included in case-102 

control analyses (see below).  103 

MD readings using the Cumulus software (version 3, University of Toronto, Toronto, Ontario, Canada) are labour-104 

intensive and were therefore performed only on the left MLO image. This image was preferred because MD values 105 

from left and right breasts are highly correlated [10], and the pectoral muscle was less likely to be superimposed on 106 

the top of the breast on left images. Images were read in batches of about 250-300 digitized images. All images from 107 

a given case-control set were included in the same batch, with images from the same woman ordered randomly. 108 

Each batch of images was read by one of three observers, blind to the woman’s characteristics and her case-control 109 

status. Each observer used Cumulus to delimit the breast area and select a gray-scale threshold to differentiate 110 

dense and non-dense tissues, with the software then automatically estimating breast area (in cm2), dense area (in 111 

cm2), and percent density (PD). Non-dense area was derived by subtracting the dense area from the breast area. 112 

Within- and between-reader reliability was estimated by including a random 10% sample of all eligible images as 113 

duplicates in each batch; the independent readings provided by these duplicates revealed high within- and between-114 

batch reliability in PD (>0.90 for both for each one of the three observers [12]) Within-observer reliability was >93% 115 

for each one of the three readers and between-observer reliability was >0.82 for all pairs of readers.  116 

The ImageJ-based method has been described elsewhere [11]. Briefly, valid digitized images were analysed by the 117 

ImageJ software (version 1.46, 26 June 2012) which generated MD readings via an algorithm developed on a training 118 

set of independent images with known Cumulus values (further details in Li et al. [11] and Sovio et al. [12]). 119 

Essentially, this approach works by calculating values of various statistical/textural features of the image after 120 

applying different thresholding methods to distinguish dense areas from non-dense areas of the breast. The ImageJ-121 

based software includes a machine-learning approach, combining principal component analyses and penalised 122 

regression, that develops separate prediction models for estimating PD and breast size; absolute dense area is then 123 

estimated from the product of PD and breast size, with non-dense area derived as its complement. ImageJ-based MD 124 

measurements were performed in both left and right MLO images of each woman and the left-right mean used in 125 
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the analyses. This approach was used because a previous study, based on a subset of the data analysed herein, 126 

showed that the mean of ImageJ-based MD readings from the left and right MLO images taken at entry (i.e. closer to 127 

age 41 years) performed as well as Cumulus on a single MLO image in terms of the magnitude of the associations of 128 

the MD estimates with known BC risk factors, and with subsequent risk of BC [12]. However, we also examined 129 

tracking and within-woman changes for the ImageJ-based MD readings taken on the left MLO view only to allow a 130 

more direct comparison with similar analyses for Cumulus readings taken on the same view. The ImageJ-based 131 

method failed to produce valid readings for about 10% of images (mainly due to poor quality of the digitised images, 132 

i.e. tags superimposed on the breast area, unclear breast edge, non-optimal digitisation). Whenever the ImageJ-133 

based estimates were available for only one (left or right) MLO image (for 14.4% cases and 14.1% controls), the value 134 

for that image was used instead.   135 

Statistical Methods 136 

A natural log-transformation was used to normalise the distributions of dense and non-dense area values; no 137 

transformation was required for PD or breast area values. BMI at each mammography was estimated for each 138 

woman by linearly interpolating self-reported BMI at ages 40 and 50 years. For 10.9% cases and 7.3% controls, only 139 

BMI at age 40 or 50 years was available and this value was taken to represent their BMI at the time of each 140 

screening. Menopausal status was derived from information on age at menopause reported in the questionnaire and 141 

was retrospectively determined for each screening appointment. If information on menopausal status was missing 142 

(6.4% for cases; 4.2% for controls) the median age at menopause among cases and controls with non-missing 143 

information was used. Whenever the values the other variables shown in Table 1 were not know they were treated 144 

as missing in the analyses. 145 

MD tracking with age among controls. The readings yielded by each measurement method (i.e. Cumulus, Image-146 

based) and MD measure (i.e. PD, dense area, non-dense area and breast area) combination at a given age were 147 

ranked separately, and Spearman rank correlation coefficients (r) between ranks calculated (for Cumulus measures, 148 

both overall and stratified by reader).  149 

Within-woman changes in MD among controls. Linear mixed models were fitted by restricted maximum likelihood to 150 

estimate individual-specific trajectories [15], separately for each measurement method and MD measure 151 

combination. These models, which take into account the correlation among the repeated observations for each 152 
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woman via one or more random coefficients that capture salient features of each woman trajectory, were specified 153 

in terms of linear and quadratic effects of age (centred at age 45 years), number of children (0, 1, 2, ≥3), having ever 154 

breastfed (if parous), age-specific BMI (categorised as: <22, 22-24.99 and ≥25kg/m2), family history of breast cancer, 155 

and menopausal status (pre- or post-), and, for Cumulus, also an indicator of reader. Interactions between each 156 

variable and current age (on the linear scale) were also included. Different specifications of the random effects 157 

component of the models were compared using likelihood ratio tests, with a random intercept and random slope for 158 

linear age selected for each combination of measurement method and MD measure. The fixed effects parts of the 159 

models were then simplified through backward selection using Wald tests, but always retaining age, BMI and, for 160 

Cumulus, reader. Parity was found to be borderline significant for only some of the MD dimensions and was 161 

therefore dropped from all models to aid comparison. Model-based estimates of the average trajectories of each 162 

MD measure obtained from Cumulus and ImageJ-based values were plotted for different combinations of the 163 

predictors to allow a graphical comparison of the performance of the two methods for each MD dimension. 164 

To test whether models for data obtained from Cumulus and the ImageJ-based method yielded different predicted 165 

trajectories we also fitted a more general model for each MD measure based on readings from both methods and 166 

including a “method” binary indicator, as well as interaction terms between this indicator and each of the other 167 

selected explanatory variables, while allowing method-specific variances of the residual errors. The model was then 168 

simplified by removing terms that were not significant via a backward stepwise procedure using the Wald test as 169 

before.  170 

Within-woman changes in PD and BC risk. An extension of the models described above was used to evaluate the 171 

association between predicted individual trajectories in PD, as yielded by Cumulus or the ImageJ-based method, and 172 

BC risk. The models were specified in terms of the variables used above but centred at age 42 (instead of 45) years in 173 

order to compare the model predictions from age at entry into the study. First, as before, general mixed effects 174 

models were fitted on the cases and fitted again on controls, but using only images taken at least one year prior to 175 

diagnosis for each case and the corresponding period for her matched controls. For both groups the models were 176 

simplified via backward stepwise selection using the variables mentioned above and always including age, BMI, and, 177 

for Cumulus, reader (as before).Woman-specific MD values at age 42 years (the random intercept) and her rate of 178 

change from that age (the random slope for age) were predicted (separately by each method) and then included in 179 
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conditional logistic regression models to estimate the odds ratios (ORs) of BC. Four selected typical individual PD 180 

trajectories were finally plotted relatively to the trajectory of a woman with mean trajectory (i.e. with mean random 181 

intercept and mean random slope). 182 

All analyses were performed in Stata version 13.1. 183 

Results 184 

A total of 313 cases and 452 controls were included in the analysis, corresponding to 308 complete sets (i.e. 185 

consisting of one case and at least one control, with each having at least one MLO image). Cases and controls had, by 186 

design, the same age at first mammographic screen (Table 1). They also had similar ages at menarche, first birth and 187 

menopause, and a similar BMI at ages 40 (when available) and 50 years. Cases were more likely to have a positive 188 

family history of BC, but less likely to be parous, to have ever breastfed, and to be post-menopausal at the time of 189 

their first and last screens (the latter corresponding to the screen taken at least one year prior to BC diagnosis in 190 

cases and equivalent time in corresponding controls) (Table 1). Both Cumulus and the ImageJ-based method showed 191 

that, at ages 42 years, cases had, on average, higher dense area and PD than controls, but lower non-dense and 192 

breast areas (Supplementary Table 1). Cumulus and ImageJ-based PD declined from age 42 to 48 years at a similar 193 

rate among controls, i.e. by 1.17% (standard deviation (SD) 1.91%) and 1.07% (SD 1.79%) per year, respectively, 194 

reflecting marked increases in non-dense area, as well as smaller decreases in dense area, with increasing age 195 

(Supplementary Table 1).  196 

MD tracking among controls.  A high degree of tracking in the four MD measures was observed among controls 197 

according to both measurement methods (Figure 1 and Supplementary Table 2), with within-woman rank 198 

correlations being similar when both methods were based on the left MLO view but slightly higher for the ImageJ-199 

based method when the latter was based on the left-right mean MLO readings (for Cumulus, Figure 1 and 200 

Supplementary Table 2 show data for all observers combined as observer-specific correlation coefficients yielded 201 

similar values (Supplementary Table 3)). The degree of tracking decreased with increasing time between screens for 202 

both methods, but remained high for films taken six years apart, i.e. from age 42 to 48 years (e.g. for PD r: 0.66 for 203 

Cumulus left MLO readings; 0.66 and 0.77 for ImageJ-based left MLO and left-right MLO mean readings, respectively 204 

(Figure 1 and Supplementary Table 2)). Higher degrees of tracking were observed for non-dense and breast areas for 205 

both methods (r for the latter:  ~0.90 for screenings taken 6 years apart; Figure 1 and Supplementary Table 2).  206 
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Within-woman changes in MD among controls. The mixed effect models led to broadly similar average trajectories 207 

for Cumulus (left MLO) and the ImageJ-based method (left-right MLO mean), as shown in Figure 2 for different 208 

combinations of the main predictors (details of the fitted models are given in Supplementary Table 4). Specifically, 209 

PD and dense area measured by either method decreased with increasing age, while non-dense area and breast area 210 

increased. The linear component of the yearly rate of change in PD was more than twice as fast after the 211 

menopausal transition than prior to it for Cumulus (-1.10%; 95% CI: -1.56%, -0.64% vs. -0.50%; 95% CI: -0.81%,-212 

0.18%, respectively). Similarly the yearly rate coefficient in the ImageJ-based model was nearly twice as fast after the 213 

menopause (-1.16%; 95% CI: -1.71%, -0.61% vs. 0.67%; 95% CI: 1.15%, -0.18%, respectively). The impact of reaching 214 

the menopause (set to be at age 50 years in Figure 2) is -2.10 and highly significant for Cumulus but close to zero 215 

(and not significant) for the Image-J based method. BMI was negatively associated with mean levels of PD and dense 216 

area, but positively associated with mean levels of non-dense and breast areas, regardless of the measurement 217 

method used. However, this variable had no effect on the rate of change of the density measures (Supplementary 218 

Table 4). Parity had no effect on mean level and rate of change for any of the MD measures. 219 

For a more direct comparison of the PD trajectories predicted by the two methods we also fitted a common mixed 220 

effects model for both sets of measurements, where a binary indicator of method was included as an explanatory 221 

variable for both the intercept and the rate of change (Table 2). The results show that the average PD trajectories 222 

derived from the ImageJ-based method (left-right MLO mean) were systematically higher than those based on 223 

Cumulus (left MLO) (by 2.54, 95% CI: 2.07, 3.00). In contrast, there was no difference in the mean estimates of non-224 

dense area and total breast area at age 45 years yielded by the two methods but the rate of increase with age was 225 

less steep for the ImageJ-based method (Table 2). Interestingly, the estimated residual SDs are significantly greater 226 

for Cumulus than for the ImageJ-based method for PD (9.10 versus 7.65, p=0.0002) and dense area (13.77 versus 227 

10.09, p<0.0001) and smaller for non-dense area (0.17 versus 0.23, p<0.0001, on a log scale) and total breast area 228 

(0.08 versus 1.11, p<0.0001, on a log scale) (Table 2).  229 

Analyses based only on readings from the left breast for both Cumulus and the ImageJ-based method show similar 230 

patterns. For instance, the PD trajectories derived from the ImageJ-based left MLO readings were also systematically 231 

higher than those produced by Cumulus readings on the same view: by 3.26, 95% CI: 2.76, 3.76 (Supplementary 232 

Table 5). The estimated residual SDs for the ImageJ-based right-left MLO mean readings were lower than, or similar 233 
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to, those for left MLO Cumulus readings (Table 2). However this advantage was lost when only left MLO readings 234 

were used (Supplementary Table 5), pointing to the need for averaging the left and right measures when using the 235 

automatic ImageJ-based readings in order to reduce the impact of measurement error. 236 

Within-woman trajectories in PD and BC risk. The random coefficients (intercepts and slopes) predicted from the PD 237 

models fitted separately on cases and controls (adjusting for age, and BMI) were treated as exposures in conditional 238 

logistic regression models for being a case (further adjusting for parity and family history of BC). The parameter 239 

estimates were then used to calculate ORs of breast cancer for four women with typical PD trajectories, randomly 240 

drawn from the controls with BMI of 22-24.99 kg/m2, who remained pre-menopausal at the end of the follow-up 241 

period, and whose Cumulus readings were performed by the same observer (i.e. observer 1), relatively to a woman 242 

with mean trajectory (i.e. with mean random intercept and mean random slope). Their PD predicted trajectories 243 

were similar for Cumulus and the ImageJ-based (left-right MLO mean) methods although, consistently with Figure 2, 244 

the ImageJ-based PD trajectories tended to be higher than those produced by Cumulus (Figure 3). Their associated 245 

ORs for subsequent BC were also similar. Women with a high PD at baseline, which remained high over time, had the 246 

highest odds of developing BC according to both methods relative to a woman with mean random intercept and 247 

mean slope (OR: 8.10 (95% CI 3.96, 16.6) for Cumulus (left MLO) and 3.42 (2.00, 5.48) for the ImageJ-based method 248 

(left-right MLO mean; Figure 3). In contrast, women with the lowest PD at baseline, despite a slight increase in their 249 

PD over time, had the lowest odds of developing BC according to both measurement methods (OR: 0.07 (95% CI 250 

0.03, 0.16) for Cumulus (left MLO) and 0.23 (0.12, 0.43) for the ImageJ-based method (left-right MLO mean; Figure 251 

3).  252 

Discussion  253 

The ability of the ImageJ-based method to measure between-women differences in MD at a single point in time has 254 

previously been shown to be similar to that of the well-established computer-assisted Cumulus method among post-255 

menopausal Swedish women [11] and pre-menopausal British women [12]. The latter study [12] was conducted on a 256 

subset of images included in the present study, i.e. those taken at baseline when the women were close to age 41 257 

years. Herein we extended this comparison to the assessment of within-woman changes in MD over a ~10 year 258 

period (from age 41 onwards). The findings showed that the ability of the ImageJ-based method (based on the 259 
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average of left and right MLO values) to capture within-woman changes in MD was broadly similar to that of 260 

Cumulus (based on a single MLO reading).  261 

Consistently with a previous study [16], both measurement methods showed that MD measures track over time. The 262 

degree of tracking was similar for both Cumulus and the ImageJ-based method when both approaches were based 263 

on a single (left) image. The degree of tracking for Cumulus was slightly weaker than previously reported reflecting 264 

the fact that  its MD measurements were based on a single image whereas previous Cumulus work [16] was based 265 

on the average of left-right MD measurements. The left–right average MD would have strengthened the degree of 266 

tracking for Cumulus by minimising reader measurement error in the assessment of MD. A similar pattern was 267 

observed in the present study for the ImageJ-based method, with the degree of tracking being stronger for the left-268 

right average MD than for the left MD only. Nevertheless, the odds of remaining in the top fifth of the PD 269 

distribution at later screens for women who were in that category at age 42 years was high according to both 270 

methods. Tracking from age 40 onwards implies that between-woman differences in MD are established earlier in 271 

life, a finding consistent with recent evidence from women aged 15-30 years [17], and that any within-woman 272 

variations after that age are of a much smaller magnitude relative to between-woman differences. These findings 273 

explain why MD remains a predictor of breast cancer risk several years after MD assessment and imply that a single 274 

MD assessment at young ages (at least as early as age ~40 years) would allow identification of women with high 275 

density, and who may benefit the most from risk-lowering interventions or from more intensive screening (e.g. 276 

modalities other than mammography, shorter screening intervals).  277 

The age-related MD trajectories predicted by the two methods were broadly similar. On average, PD and dense area 278 

declined with age. In contrast, the rate of increase in non-dense and breast areas with age was less pronounced for 279 

the ImageJ-based method. The findings from this study are broadly consistent with those reported by previous 280 

studies examining longitudinal trends in MD measures and their correlates. Kelemen et al [18] and Boyd et al [19] 281 

also found that PD decreased with age, with a greater decline observed during the menopausal transition. A decline 282 

in dense area with increasing age and during the menopausal transition, paralleled with a simultaneous increase in 283 

non-dense area, is likely to reflect lobular involution of the breast gland. The amount of fibroglandular tissue 284 

decreases with age and the menopausal transition as a result of the decrease in circulating levels of ovarian-285 



12 
 

produced oestrogens. Increases in the non-dense area may also result from weight gain and consequent increase in 286 

the amount of adipose tissue in the breast.  287 

Reassuringly, both MD measurement methods revealed increased odds of having BC for women with PD trajectories 288 

that started at high value and remained high throughout the follow-up, and lower odds for those whose PD 289 

trajectories start at a low PD value. A detailed examination of whether between-screen changes in MD convey 290 

additional risk information, beyond that provided by a single MD measurement, will be the focus of future analyses 291 

within the Age Trial once a larger number of breast cancer cases has been accrued. 292 

The study has several strengths. Most previous studies on changes in MD have focused on screening attendees and 293 

therefore mainly on women aged 50 and above. Our study population was unique in that it comprised younger 294 

women from the general population who were invited to attend annual routine mammographic screening from age 295 

40/41years. Thus, the young age at recruitment, the availability of multiple screening rounds at short (1-year) 296 

intervals, and the relative long follow-up allowed us to map in detail within-woman changes in MD measures over 297 

time. The study is also one of the few to have examined not only within-woman changes in PD but also changes in its 298 

two components: absolute dense and non-dense areas. For Cumulus, films for a given case-control set were read in a 299 

blind way and in a random order (a key methodological feature for the assessment of tracking). Screening 300 

mammography equipment might have changed during the follow-up period with more recent systems being based 301 

on higher contrast resolutions which make the fibroglandular tissue appear less dense on the films, thus leading to 302 

an overestimation of the decline in MD. However, such changes would have had little impact on our ImageJ – 303 

Cumulus comparisons as any changes would have affected the two methods similarly as their readings were derived 304 

from the same set of images.   305 

The study also had some weaknesses. Only MLO images were available in all screening rounds and, for logistic 306 

reasons (time and costs), the Cumulus readings were performed only on the left MLO view. Information on 307 

correlates of MD measures at baseline, and their rate of change, was collected retrospectively, hence any 308 

misclassification, if present, is likely to have affected similarly the two methods. In particular, screen-specific BMI 309 

data were estimated by linearly interpolating the self-reported BMI values at ages 40 and 50 years. Thus, if BMI 310 

increased with increasing age to a greater (or lower) degree than our BMI estimates, or if the between-screen 311 
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changes in BMI were not linear, residual confounding could have affected the MD trajectories. Information on 312 

contraceptive use and hormone therapy was not available, but this would have affected both methods similarly. 313 

Our findings indicate that the ImageJ-based approach, using the mean of two measurements, is a valid fully-314 

automated alternative to Cumulus for measuring within-woman changes in MD. MD is not only a strong BC risk 315 

factor but it also affects the sensitivity of screening mammography. Despite its relevance, MD assessment currently 316 

has little impact on risk-lowering decisions or screening strategies. Our findings indicate that the ImageJ-based 317 

approach, using the mean of two measurements, is a valid fully-automated alternative to Cumulus for measuring 318 

within-woman changes in MD. Other fully-automated methods have been developed to measure MD in digitized 319 

images (e.g. [20-25]), but the ImageJ-based approach benefits from the fact that it does not require the use of any 320 

special equipment (e.g. phantoms) at the time of mammography and hence it can be applied to historical collections 321 

of images. In addition, it is relatively inexpensive as it was developed as an open source.  322 
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