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Abstract

Despite high rates of exposure, only 5–10% of people infected with Mycobacterium tuberculosis will develop active
tuberculosis (TB) disease, suggesting a significant role for genetic variation in the human immune response to this infection.
Here, we studied TB association and expression of 18 genes involved in the Toll-like receptor (TLR) pathways. Initially, we
genotyped 149 sequence polymorphisms in 375 pulmonary TB patients and 387 controls from Indonesia. We found that
four polymorphisms in the TLR8 gene on chromosome X showed evidence of association with TB susceptibility in males,
including a non-synonymous polymorphism rs3764880 (Met1Val; P = 0.007, odds ratio (OR) = 1.8, 95% c.i. = 1.2–2.7). We
genotyped these four TLR8 polymorphisms in an independent collection of 1,837 pulmonary TB patients and 1,779 controls
from Russia and again found evidence of association in males (for rs3764880 P = 0.03, OR = 1.2, 95% c.i. = 1.02–1.48).
Combined evidence for association is P = 1.261023–661024. In addition, a quantitative PCR analysis indicated that TLR8
transcript levels are significantly up-regulated in patients during the acute phase of disease (P = 9.3661025), relative to
baseline levels following successful chemotherapy. A marked increase in TLR8 protein expression was also observed directly
in differentiated macrophages upon infection with M. bovis bacille Calmette-Guérin (BCG). Taken together, our results
provide evidence, for the first time, of a role for the TLR8 gene in susceptibility to pulmonary TB across different populations.

Citation: Davila S, Hibberd ML, Hari Dass R, Wong HEE, Sahiratmadja E, et al. (2008) Genetic Association and Expression Studies Indicate a Role of Toll-Like
Receptor 8 in Pulmonary Tuberculosis. PLoS Genet 4(10): e1000218. doi:10.1371/journal.pgen.1000218

Editor: Takashi Gojobori, National Institute of Genetics, Japan

Received April 4, 2008; Accepted September 8, 2008; Published October 10, 2008

Copyright: � 2008 Davila et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been supported by funding from the Agency for Science & Technology and Research of Singapore (A*STAR), by the Royal Netherlands
Academy of Arts and Sciences (KNAW, project 99MED01), and the PRIOR project sponsored by the Netherlands Foundation for the Advancement of Tropical
Research (NWO-WOTRO). The Diabetes and Inflammation Laboratory is funded by the Juvenile Diabetes Research Foundation and the Wellcome Trust.The
funding agencies had no role in any aspect of the direction of the study or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: sonia@gis.a-star.edu.sg

¤ Current address: Health Research Unit, Faculty of Medicine, University Padjadjaran, Bandung, Indonesia

Introduction

Although one-third of the world’s population is infected with M.

tuberculosis [1], fewer than 10% of infected –otherwise immuno-

competent- individuals will develop clinical disease during their

lifetime [2]. The immunological mechanisms that distinguish the

majority of individuals who successfully contain these organisms

from the minority who develop progressive mycobacterial disease

are largely unknown.

It is becoming increasingly clear that innate immunity plays a

crucial role in directing many aspects of the host response,

including the ensuing adaptive response, making it a primary host

defense mechanism. The initial phase of this process is pathogen

sensing involving a wide range of pattern recognition molecules.

We and others have postulated that pathogen recognition could be

a key component in determining the outcome of infection [3,4]. At

the same time, evidence is building in a number of diseases,

including TB [5] and meningococcal disease [6], that variations in

genes of a related pathway may have similar functional

consequences, and thus result in a similar phenotype upon

infection.

These observations led us to investigate genetic variants in the

Toll-like receptors (TLRs) [7–11] and related adaptors for

association with human susceptibility to pulmonary TB. So far

fifteen functional TLRs have been identified in mammals and

implicated in specific recognition of pathogen associated molecules

[12]. Upon ligand binding, TLRs initiate a cascade of events

leading to the transcription of NFkB-dependent genes, mostly

inflammatory genes. All functional TLRs, except TLR5 (Gen-

eID:7100), were studied. The latter was excluded due to a low

level of polymorphism and to complex sequence duplications that

could make SNP genotyping difficult. We also studied cytoplasmic
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TLR adaptors including MYD88 (GeneID:4615), TOLLIP (Gen-

eID:54472), TIRAP (GeneID:114609), TICAM1 (GeneID:148022),

TICAM2 (GeneID:353376) and the downstream signaling mole-

cules, IRAK1 (GeneID:3654) and IRAK4 (GeneID:51135), LY96

(MD2) (GeneID:23643) [13] as well as CD14 (GeneID:929) [14], a

surface molecule that partners with TLR4 (GeneID:7099).

Here we identified four single nucleotide polymorphisms within

the TLR8 gene (GeneID:51311) on chromosome X that confer

susceptibility to pulmonary TB in males in an Indonesian

population and in a large independent sample of TB patients

and controls from Russia. Additional evidence in support of TLR8

(NP_619542.1) in immunity to TB disease came from real-time

PCR quantification of elevated levels of TLR8 transcripts

(NM_016610.2; NM_138636.3) during active disease, relative to

the same individuals following successful completion of anti-TB

chemotherapy. In line with this, analysis of differentiated

macrophages upon stimulation with BCG over time showed a

significant increase of TLR8 expression. Taken together, these

results provide strong evidence for the first time, of a role for

TLR8 in adult pulmonary TB infection.

Results

Genetic Association Analysis
Of the 149 SNPs passing quality control as described in

materials and methods, allelic and genotypic association analysis

identified four SNPs in the TLR8 gene with nominal p-values

below 0.05 (Table 1 and Table S1). We also observed two rare

variants, within TOLLIP and TLR9 (GeneID:54106), with

significant p-values that were not followed up in this study due

to their very low allele frequencies. Three of the associated TLR8

variants, rs3764879, rs3788935 and rs3761624 localize in the

putative regulatory regions, within five kilobases upstream of the

gene (Figure 1). The fourth associated polymorphism was a

missense variant, rs3764880 (Met1Val), which would ablate the

putative start codon in one of the transcripts encoded by this gene.

Given that TLR8 is located on the X chromosome, we performed

separate tests for males and females (Table 2). We found a strong

allelic association with the minor allele A of the putatively

functional polymorphism, rs3764880, with susceptibility to

pulmonary TB in males [OR (95% c.i.) = 1.8 (1.2–2.7),

P = 0.007]. Very similar and significant association values were

found in the three promoter variants, attributable to perfect

linkage disequilibrium (r2 = 1) between all four polymorphisms

(Figure 2).

In order to address the significance of our findings, a

permutation analysis of the allelic p-values was carried out

(Table 1). One of the polymorphisms passed the permutation test

(N = 10,000), with its p-value remaining statistically significant at

an adjusted P,0.05. The same analysis was applied separately by

gender. In this case, all four SNPs maintained statistical

significance at an adjusted P,0.05 in males (Table 2).

Analysis of genotypes for polymorphisms located on Chromo-

some X was done using a likelihood ratio test. The same four

variants on TLR8 were found to be more frequent in cases than

controls, indicating susceptibility to disease for carriers of the

minor allele. Due to the fact that males carry only one copy of

each allele, the genotype association outcome was expected to be

the same as for the previous allele association result. Thus, we

analyzed genotypes of female subjects (Table S2). The observed

number of homozygotes for the associated missense polymor-

phism, rs3764880 (AA), may have been too low to detect an effect

(14 affected vs. 9 controls). Nevertheless there was an apparent

trend towards the same outcome observed in the overall sample,

with affected females showing an increase of homozygotes for the

minor allele, compared to the control group.

Investigation of the gene structure of TLR8 showed two distinct

haplotype blocks (Figure 2) in our population. As expected from

our initial results, all four associated polymorphisms appeared in

the same haplotype block (Block1). Performing separate associa-

tion analysis of haplotypes in males and females confirmed the

genetic association in males (Table S3). The minor haplotype (H2)

harboring allele A of rs3764880 showed a pronounced risk effect

of disease among male carriers [OR (95% c.i.) = 1.8 (1.2–2.7)].

The population attributable risk of the associated haplotype in

males was 4% [15].

Author Summary

One third of the world population is infected with
Mycobacterium tuberculosis, the bacterium that causes
tuberculosis; however, only 5–10% of those infected will
develop active disease. Difference in polymorphisms
within genes involved in host immune response has been
proposed as a plausible reason to explain this phenom-
enon. Here, we show genetic association of four polymor-
phisms of TLR8, a member of a well-known receptor family
involved in pathogen recognition, in an Indonesian
population. The association was replicated in males of a
follow up cohort from Russia. Expression levels of TLR8
transcripts and protein showed a marked increase during
bacterial infection, confirming our initial findings. To our
knowledge, this is the first time that TLR8 has been
associated with response to M. tuberculosis. Our results
suggest that it may play a significant role in tuberculosis
susceptibility and disease activity, and thus should be the
focus of concerted studies in human systems.

Table 1. Allelic Distribution and Description of SNPs within TLR8 with p-values,0.05 in Indonesian TB Patients and Controls.

dbSNP rs# Alleles
No. of
Casesa

MAF
Cases

No. of
Controlsa

MAF
Controls Locationb p-value

Permutation
p-valuec OR (95% c.i.)

rs3764879 G/C 153 0.30 124 0.23 Upstream 0.01 0.038 1.4 (1.06–1.84)

rs3788935 G/A 152 0.30 125 0.23 Upstream 0.014 0.05 1.4 (1.07–1.86)

rs3761624 G/A 152 0.30 126 0.24 Upstream 0.016 0.059 1.4 (1.06–1.8)

rs3764880 G/A 152 0.30 126 0.24 M1V, 59UTR 0.016 0.059 1.4 (1.06–1.8)

aNumber of chromosomes carrying the minor allele.
bLocations for both transcripts encoded by TLR8 are shown.
cNumber of permutations = 10,000.
doi:10.1371/journal.pgen.1000218.t001

TLR8 in Tuberculosis
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In order to confirm these results, genotyping of the four

associated polymorphisms was carried out in a follow-up cohort

from Russia (1,873 tuberculosis cases, 1,779 controls). Important-

ly, the minor allele frequency of rs3764880 in the Indonesian

population was strikingly different compared to frequencies in the

Russian cohort, which was concordant with results obtained for

the populations of European and Asian origin from the HapMap

project [16]. Around 30% of the Indonesian subjects carried the A

allele (Met) associated with risk to TB, whereas this same allele was

present in 78% of Russians. Despite these obvious differences in

frequencies, the genetic association with pulmonary TB was

replicated in the Russian males for allele A of rs3764880 OR (95%

c.i.) = 1.2 (1.02–1.48) P = 0.03 (Table 3). Combined evidence for

association in males from both Indonesian and Russian popula-

tions was P = 1.261023–661024. Analysis of haplotype blocks

showed the same trend of association as observed in the

Indonesian cohort. In this case, however, the most common

haplotype was the one harboring rs3764880A, and displayed a risk

effect among male carriers [OR (95% c.i.) = 1.22 (1.01–1.47)]

(Table S3).

mRNA Expression Study
A subset of 23 patients with active pulmonary TB was selected

from the cohort recruited from the outpatient clinic in Jakarta,

Indonesia. After informed consent, blood samples were taken from

each of the patients during their initial diagnosis with active

Figure 1. Transcript variants of TLR8 and location of genotyped SNPs within both transcripts. Exons are shown as rectangles, filled areas
represent translated sequence, open areas indicate untranslated regions. The associated polymorphism resulting in a coding change exclusive of
transcript variant 2 (rs3764880) is underlined.
doi:10.1371/journal.pgen.1000218.g001

Figure 2. Linkage Disequilibrium Plot and Haplotype Structure
of TLR8. D’ values displayed within each diamond, missing value
indicates D’ = 100%. Color scheme gradient indicates r2 values. At the
top, direction of transcription is designated by an arrow. Length of each
block, in kilobases (kb), is shown between brackets. Underlined
polymorphisms indicated associated SNPs in allelic analysis. Block with
significant p-values is displayed within an open rectangle.
doi:10.1371/journal.pgen.1000218.g002

Table 2. Allele Distribution of TLR8 Polymorphisms among Indonesian TB Patients and Controls by gender.

dbSNP ID Males Females

No. of
Cases (%)a

No. of
Controls (%)a p-value

Permutational
p-valueb O.R. (95% c.i.)

No. of
Cases (%)a

No. of
Controls (%)a p-value O.R. (95% c.i.)

rs3764879 77 (34.6) 49 (21.7) 0.0024 0.012 1.9 (1.2–2.9) 76 (27.1) 74 (24.3) 0.44 1.1 (0.8–1.7)

rs3788935 76 (34.3) 50 (22.1) 0.0039 0.017 1.8 (1.2–2.8) 76 (27.1) 74 (24.3) 0.44 1.1 (0.8–1.7)

rs3761624 76 (34.3) 51 (22.4) 0.007 0.02 1.8 (1.2–2.7) 76 (27.1) 74 (24.3) 0.44 1.1 (0.8–1.7)

rs3764880 76 (34.3) 51 (22.4) 0.007 0.02 1.8 (1.2–2.7) 76 (27.1) 74 (24.3) 0.44 1.1 (0.8–1.7)

aNumber and percent of chromosomes carrying the minor allele.
bNumber of permutations = 10,000.
doi:10.1371/journal.pgen.1000218.t002

TLR8 in Tuberculosis
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pulmonary TB disease (at the time of admission), and again

following resolution of disease (6 months after completion of a

standard anti-tuberculosis multi-drug chemotherapy). Real-time

reverse transcription PCR was used to study the mRNA levels of

18 genes (Table S4). We observed that both TLR8 transcripts,

TLR8v1 (p = 9.3661025), TLR8v2 (p = 5.2961025) and MYD88

(NM_002468.3) (p = 4.0961025) were the most significantly

upregulated in TB patients during active disease, relative to their

convalescence. Both variants of TLR8 showed a greater than two-

fold increase in expression, whereas MYD88 increased by 1.9-fold

(Table 4). Transcript levels of TLR7 (NM_016562.3) and CD14

(NM_001040021.1) were also significantly increased

(p = 2.561023; 361022 respectively), whereas TIRAP

(NM_148910.2) showed a downregulation of mRNA expression,

fold change = 0.2, but without statistical significance (Table 4).

TLR8 Protein Expression Study
Expression of TLR8 over time was assessed in human THP1

macrophages after infection by M. bovis BCG (Figure 3).

Uninfected control cells showed no change of TLR8 protein

levels over time (Figure 3A, B). However, infected macrophages

showed a marked raise of TLR8 expression at 20 hours post-

infection (Figure 3D). It is noteworthy that even cells that didn’t

take up the whole bacteria displayed an important increase on

TLR8 (Figure 3D).

Discussion

Here we describe a genetic association study aiming to identify

polymorphisms within the TLR pathway which confer increased

susceptibility to adult pulmonary TB and for the first time report

evidence implicating TLR8. Association of the TLR8 sequence

variants with pulmonary TB disease was seen in two independent

case-control collections from Indonesia and Russia. Real-time

PCR experiments showed the up regulation of TLR8 transcripts in

TB patients during acute disease. Protein expression levels of

TLR8 were also shown to increase in macrophage cell lines after

infection with BCG.

The cloning and characterization of human TLR7/8/9 revealed

significant similarity of their protein sequences [17,18], defining,

together with TLR3 (GeneID:7098), a new sub-family within the

Toll-like receptor genes. In contrast to the other TLRs, their

protein products are localized intracellular rather than at the cell

surface, mostly in association with the endosomal vacuolar system

[19]. Although only TLR9 (NP_059138.1) has been experimen-

tally proven to recognize mycobacterial DNA [20], single-stranded

RNA derived from pathogens has been proposed as a likely ligand

of TLR7 (NP_057646.1) and TLR8 [21,22]. The translocation of

TLR9 from the endoplasmic reticulum to the lysosome following

CpG binding has recently been described [23]. TLR8 and TLR9

are very closely related to each other, raising the possibility that

both receptors share a similar mode of activation. M. tuberculosis is

an intracellular pathogen that resides in characteristic phago-

somes, which are not acidic and generally do not mature into

phagolysosomes [24,25]. However, the mycobacterial phagosome

interacts with early endosomes, where the bacteria could

encounter TLR8.

We found evidence that TLR8 polymorphisms are associated

with susceptibility to pulmonary TB among males. Initially we

detected association in the Indonesian population and then

observed the same effect in a large independent Russian TB

collection, suggesting that this might be a true effect. Nevertheless,

our combined evidence (P = 661024) does not completely exclude

association by chance and further studies in statistically powerful

sample collections are important. TLR8 is located on Chromo-

some X, which suggests that any allele conferring susceptibility to

Table 3. p-value of TLR8 Polymorphisms in Russian Males and combined (Russian and Indonesian) cohorts.

dbSNP ID Alleles Russian cohort Combined p-value

No. of Cases (%)a No. of Controls (%)a p-value OR (95% c.i.)

rs3764879 G/C 1067 (79.7) 994 (76.3) 0.03 1.2 (1.02–1.48) 661024

rs3788935 G/A 1069 (79.8) 997 (76.4) 0.03 1.2 (1.02–1.48) 961024

rs3761624 G/A 1070 (79.8) 1000 (76.5) 0.04 1.2 (1.01–1.46) 1.561023

rs3764880 G/A 1069 (79.7) 997 (76.3) 0.03 1.2 (1.02–1.48) 1.261023

aNumber and percent of chromosomes carrying the risk allele shown in bold.
doi:10.1371/journal.pgen.1000218.t003

Table 4. Genes tested on mRNA Expression in Acute vs.
Convalescence Indonesian TB Samples.

Gene
Name mRNA ID

Fold
change p value

Bonferroni
p-value

TLR1 NM_003263.3 1.556 5.5*1022 NS

TLR2 NM_003264.3 1.595 7.8*1022 NS

TLR3 NM_003265.2 0.825 0.63 -

TLR4 NM_138554.2 1.45 0.86 -

TLR6 NM_006068.2 1.885 0.17 -

TLR7 NM_016562.3 1.78 2.5*1023 0.047

TLR8 NM_016610.2 (variant 1) 2.278 9.4*1025 1.8*1023

TLR8 NM_138636.3 (variant 2) 2.41 5.3*1025 1*1023

TLR9 NM_017442.2 1.453 0.18 -

TLR10 NM_030956.2 0.949 0.84 -

MYD88 NM_002468.3 1.898 4.1*1025 7.8*1024

TICAM1 NM_182919.1 0.87 0.52 -

TICAM2 NM_021649 0.6 0.37 -

LY96 NM_015364.2 1.28 0.12 -

TOLLIP NM_019009.2 0.964 0.99 -

TIRAP NM_148910.2 0.236 7*1022 NS

CD14 NM_001040021.1 2.457 3*1022 NS

IRAK1 NM_001569.3 1.26 0.1 -

IRAK4 NM_016123.1 1.283 0.3 -

doi:10.1371/journal.pgen.1000218.t004

TLR8 in Tuberculosis
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disease may well have a higher impact among males who carry only

one copy of the gene. Indeed, the genetic association was more

significant in affected males. Hence, inferences about gender-specific

effects could possibly be drawn from our findings, where male

carriers of rs3764880 allele A showed an increased susceptibility to

pulmonary TB. One might expect to find the same association

among females homozygous for the same allele, and a tendency

towards an altered distribution of affected females homozygous for

the minor allele (10%) was indeed observed when compared to

female controls (6%) in the Indonesian cohort (Table S2).

In our data the four associated TLR8 polymorphisms correlate

perfectly with each other both in the Indonesian and the Russian

samples. Therefore, we were unable to distinguish the variant

primarily associated with TB from the polymorphisms associated

merely because of linkage disequilibrium. It is also possible that in

this study we did not genotype the causal polymorphism. Hence,

future experiments should cover all common variation in the

associated TLR8 gene region in order to pinpoint the causal

polymorphism. Nevertheless, one of the associated polymorphisms

in this study, rs3764880 (Met1Val), is a good functional candidate.

Its allele G, associated with protection from TB, abolishes a

putative start codon within the alternative transcript variant 2

(Figure 1). Asian populations appear to have an unusually elevated

derived allele frequency for this missense variant compared to

other ethnic groups [16]. It is remarkable that despite the large

differences in allele frequencies between the two populations

studied, a genetic association was detected with the same SNPs

and in the same direction. Such a significant rise in allele

frequency, presumably occurring in Asia, could indicate an

important selective advantage or disadvantage for this allele in

some environments. Some of the effects of replacing the first

methionine of transcript 2 by valine has recently been established

[26]. In vitro studies have shown that the G variant affects NF-

kappa B activation, as well as response to different TLR8 ligands.

Furthermore, the initial amino acids are predicted to act as a signal

peptide for this intracellular membrane-bound protein. Therefore,

the loss of this sequence could, among other possibilities, affect

intracellular trafficking, proper protein folding, or the stability of

the mature protein [27,28]. Further genetic and functional studies

of the associated polymorphisms, and other polymorphisms

identified by gene resequencing, should add considerably to our

understanding of TLR8 function in general, and specifically in

response to TB infection.

Two TLR8 transcript variants have been characterized thus far

[17,18]. Using quantitative RT-PCR we show here that both

display significantly upregulated expression in TB patients during

Figure 3. Increased Expression of TLR8 in THP1 cells upon BCG stimulation. THP-1 differentiated macrophages were either uninfected (a,b)
or infected with GFP BCG (c,d). Macrophages were harvested for TLR8 expression measured by phycoerytrhin (PE) intensity at 1 hr (c) or 20 hrs (d)
post infection and fixed cells were imaged by confocal microscopy.
doi:10.1371/journal.pgen.1000218.g003

TLR8 in Tuberculosis
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the acute phase of their disease, suggesting a functional role for

TLR8 during MTB infection. THP1 differentiated macrophages

displayed an increase of TLR8 protein levels after infection with

M. bovis BCG. Interestingly, the rise in expression could be

observed even in cells that had not visibly phagocytosed whole

bacteria. Although TLR8 ligands remain as yet unidentified, our

results are compatible with the hypothesis that a secreted bacterial

product might be involved in triggering a TLR8 response, after

being taken up by the host cell.

In summary, we report for the first time evidence of associations

of TLR8, a key gene implicated in the innate immune response,

with pulmonary TB in Indonesian and Russian populations.

Because it is not expressed in mouse, TLR8 is among the least

studied members of the toll-like receptor family, but our results

suggest that it may play a significant role in TB susceptibility, and

thus should be the focus of concerted studies in human systems.

Material and Methods

Subject Recruitment
Indonesia. 439 new pulmonary tuberculosis patients above

15 years of age were recruited from an outpatient tuberculosis

clinic in central Jakarta (Indonesia) [29]. Diagnosis was based on

clinical presentation and chest X-ray examination, confirmed by

sputum microscopy positive for mycobacteria [30]. 490 randomly

selected control subjects with the same sex and age (+/210%),

were recruited from neighbouring households. First-degree

relatives of patients were excluded. Control subjects with signs

and symptoms suggesting active tuberculosis or a history of prior

anti-TB treatment were also excluded. Self and parental ethnicities

were recorded upon recruitment. A Javanese origin characterized

three groups - the Jawa, Betawi, and Sunda - and altogether

comprised more than 80% of the total sample. The non-Javanese

category included individuals born on other Indonesian islands.

Subjects were considered of mixed ethnicity when one parent was

of Javanese ethnic origin and the other non-Javanese (Table 5).

Prior to recruitment, subjects diagnosed with diabetes mellitus

and HIV coinfection, both of which are considered to be major

risk factors for tuberculosis development, were not considered.

Further tests on recruited subjects were done to confirm absence of

diabetes mellitus and HIV coinfection. (Details described else-

where [31]). Briefly, subjects with levels of fasting blood glucose

over 126 mg/dL were considered to have diabetes. HIV testing

was performed using dipstick test (Abbott, Determine). Thirty five

additional subjects were positive for diabetes.

In order to define a homogeneous phenotype, patients suspected of

extra-pulmonary tuberculosis (N = 27) were not considered in the

analyses. Controls with suspected tuberculosis after chest X-ray

examination (N = 24) or a history of tuberculosis (N = 7) were also

excluded.

Russia. 1,837 cases of pulmonary TB and 1,779 controls

were recruited from two Russian cities: St Petersburg and Samara.

Clinical data has been described elsewhere [32]. In summary, all

TB cases were confirmed by sputum culture of M. tuberculosis.

Patients with extra-pulmonary TB or HIV-positive were not

included in the study. Local blood bank donors with no known

history of TB were recruited as controls.

The demographic and clinical data of the Indonesian and Russian

cohorts are shown in Table 5. In both groups patients and controls

showed a comparable male/female ratio, with males comprising

60% of the subjects in Indonesians and 73% in Russians. Only the

Indonesian group had data available on BCG scarring, showing a

smaller number of patients with evidence of scarring compared to

the control group [38% vs. 43%] (see also ref. 29).

Analysis of population stratification. The self-reported

ethnicity of each subject and his/her parents was carefully

considered in an effort to avoid spurious genetic associations arising

from population stratification. In order to detect traces of population

stratification in the Indonesian cohort, a large subset of individuals

included in this first stage of the study, 330 cases and 368 controls,

were genotyped for an independent set of 299 SNPs. One of the SNPs

was out of HWE and, thus, excluded from the analysis. These SNPs

were chosen to be more than 10 kilobases away from any known

gene, to have average minor allele frequencies around 30% and to be

in linkage equilibrium with one another. The correction factor was

calculated according to the method of Devlin and Roeder [33].

Briefly, an inflation factor was calculated as the median of the chi-

square values for all 298 SNPs, divided by 0.675 and then squared. It

resulted in a value below 1 (0.82), which indicated that there was no

significant population stratification in the Indonesian group (Table

S5). Evidence of absence of population stratification in the Russian

cohort has been described previously [32].

DNA and RNA Extraction
Genomic DNA was extracted from whole blood following a

protocol described elsewhere [34]. After genotyping, 74 samples

were excluded from the Indonesian cohort because of sample

duplication and/or familial relationships not originally reported,

but identified by RelPair [35].

Table 5. Demographic and Clinical Data of the Study Populations.

Indonesian Russian

TB Patients (N = 375) Controls (N = 387) TB Patients (N = 1,837) Controls (N = 1,779)

Age years (median) 14–75 (28) 15–70 (32) 17–86 (43.8) 16–66 (30)

Gender male(%):female(%) 228(60.8%):147(39.2%) 232(60%):155(40%) 1341(73%):496(27%) 1308(73.5%):471(26.5%)

BCG Scar Present (%) 143 (38%) 168 (43%) - -

Self reported ethnicity (%)

Caucasian 0 (0) 0 (0) 1,837 (100) 1,779 (100)

Javanese 326 (86.9) 314 (81.1) - -

Non Javanese 29 (7.7) 21 (5.4) - -

Mixed 19 (5.1) 29 (7.5) - -

Unknown 1 (0.3) 23 (5.9) - -

doi:10.1371/journal.pgen.1000218.t005
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RNA was successfully extracted using an RNeasy Mini Kit

(Qiagen, Germany) from peripheral blood mononuclear cells

(PBMCs) of a subset of 23 patients.

Consent forms approved by local Institutional Review Boards of

the Medical Faculty of University of Indonesia and the Eijkman

Institute for Molecular Biology in Jakarta were signed upon

recruitment by all participants. Written informed consents from all

Russian subjects as well as permission from ethics committees were

obtained [32].

SNP Genotyping
Selection of SNPs was carried out using an in-house database,

GISSNP, which integrates data from public databases (Ensembl,

Celera, dbSNP build 123/126) as well as proprietary data.

Polymorphisms with the following characteristics were preferen-

tially chosen: putative functional variants resulting in changes in

the protein sequence, minor allele frequencies over 5%, average

spacing of one SNP every 1 to 2 kilobases. To screen for possible

regulatory elements, flanking regions five kilobases upstream and

downstream of the gene were also covered.

Design of a custom Oligo Pool Assay (Illumina) was imple-

mented following the manufacturer’s specifications. Genotyping

was performed with a BeadStation 500G Genotyping System

(Illumina). Genotypes were analyzed with Beadstudio software also

from Illumina. Ten SNPs were genotyped with a Sequenom

primer extension-based protocol described elsewhere [36,37]. The

genotype concordance among the two systems used for genotyping

in this study has been reported to be over 99.5% [37]. Assessment

of genotypes was done by laboratory personnel without any prior

knowledge of the diagnosis of the subjects.

Genotyping of 247 SNPs from 18 candidate genes was

performed in the Indonesian cohort. We found that 75 SNPS

(30%) of the genotyped polymorphisms were monomorphic in this

population (Table S4). Variants with call-rates below 90% (N = 17)

were not considered. Six SNPs showed deviations from Hardy-

Weinberg equilibrium (HWE) in the control group, and were

removed from further analysis (Table S4). Association analyses

were applied to the remaining 149 polymorphic SNPs with reliable

genotypes (Table S1).

Genetic Association Statistical Analysis
Hardy-Weinberg equilibrium was calculated in the control group

using HelixTree v4.4.1 (GoldenHelix Inc., Bozeman, MT, United

States) and Exemplar (Sapio Sciences, LLC, York, PA, United

States). Similarly, allelic association analysis was carried out in both

software packages. Allelic p-values were calculated by means of a

262 chi-square table. A two-sided Fisher Exact test, when counts in

any cell fell below five, as well as odds ratios were calculated with

Exemplar. Allelic analysis of SNPs located on Chromosome X was

performed with Haploview v3.31 [38]. A likelihood ratio test was

applied to calculate genotypic associations of SNPs on Chromosome

X. Combined p-values were calculated by Fisher’s combined

probability test which allows pooled information across several tests

that share the same null hypothesis [39].

The statistical significance of nominal allelic p-values was

assessed by permutation analysis (N = 10,000) with Haploview v3.31.

Haplotype blocks and linkage disequilibrium plots were

constructed with Haploview v3.31 using the default algorithm

proposed by Gabriel et al [40].

Taqman Quantitative Reverse Transcription PCR
A subset of 23 patients with active pulmonary TB was selected

from a cohort recruited from an outpatient clinic in Jakarta,

Indonesia. Blood samples were taken from each of the patients at 2

time points: the active phase of pulmonary TB disease (at the time

of admission), and the convalescent phase (6 months after

admission and standard anti-tuberculosis multi-drug chemother-

apy). Real-time reverse transcription PCR was used to study

expression levels of 18 genes (Table S4) on peripheral blood

mononuclear cells (PBMCs). Briefly, an aliquot of 10 ml RNA was

reverse transcribed to cDNA using the high capacity cDNA kit

(Applied biosystems Asia Pte Ltd). The obtained cDNA was

diluted 1/5 with water and 10 ml was used for amplification.

Generation of GFP M. bovis BCG
The gfp cDNA cloned into mycobacterial-E.coli shuttle plasmid

pMV206 was a gift from Dr. Alain Baulard (Pasteur Institute,

France). The plasmid was incorporated into competent BCG cells

by electroporation. GFP BCG was observed by the FACS Calibur

flow cytometer (Becton Dickinson).

Differentiation and Infection of THP-1 Cells
The monocytic cell line THP-1(ATCC, Rockville, MD) cells were

cultured in RPMI 1640 supplemented with 10%FBS, penicillin

(100 U/ml) and streptomycin (100 ug/ml) (Invitrogen). Cells were

plated at a density of 26105/ml in 8-well chamber coverglass (LAB-

TEK). Monocytes were allowed to adhere and differentiate into

macrophages for 48 hours with 5 nM PMA (Sigma Aldrich) at 37uC
in a humidified atmosphere of 5% CO2. Differentiated macrophages

were infected with GFP BCG at an MOI of 20:1 and incubated at

37uC, 5% CO2. Infected cells at 1 hr post infection were washed

twice with RPMI without antibiotics to remove uningested and

unadhered bacteria. Cells were then harvested for TLR8 expression

as mentioned below. Infected cells at 20 hours post infection were

washed to remove uningested and unadhered bacteria at 4 hours

post infection to minimize cell death and re-incubated for a further

16 hours. Cells were then fixed with 4% paraformaldehyde (Sigma

Aldrich) for 15 minutes at room temperature and cell membrane

was disrupted with 1% saponin (Sigma Aldrich) for 20 mins at room

temperature. Mouse anti-human TLR8 phycoerytrhin (PE) anti-

body (Imgenex) was used at 3 ug/ml for 1 hour at room

temperature and excess antibody was washed twice with PBS

(Sigma Aldrich). To prevent bleaching of the dyes during confocal

viewing, anti fade prolong gold with DAPI (Invitrogen) was added to

slides so that it formed a protective layer over the cells. Slides were

stored at 4uC in the dark until confocal viewing.

Confocal Image Acquisition
The LSM 510 scanhead of the confocal laser-scanning microscope

system (Zeiss 5 duo, Germany) was used to detect intracellular

fluochrome. Cells were scanned by triple excitation for PE (red), GFP

(green) and DAPI (blue) fluorescence. A 636 oil objective with

numerical aperture of 1.4 was used and images were captured.

Supporting Information

Table S1 Location, Allele, Genotype Frequencies, and Allelic p-

values of 149 Analysed SNPs.

Found at: doi:10.1371/journal.pgen.1000218.s001 (0.06 MB

XLS)

Table S2 Genotype Distribution of TLR8 Polymorphisms among

Indonesian TB Patients and Controls in All and Females.

Found at: doi:10.1371/journal.pgen.1000218.s002 (0.02 MB

XLS)

Table S3 Haplotype Analysis and Distribution of TLR8

Polymorphisms among Male TB Patients and Controls from Both

Cohorts.
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Found at: doi:10.1371/journal.pgen.1000218.s003 (0.02 MB

XLS)

Table S4 Candidate Genes and SNPs Analyzed.

Found at: doi:10.1371/journal.pgen.1000218.s004 (0.02 MB

XLS)

Table S5 Allele Frequencies of 298 SNPs Tested for Population

Stratification in the Indonesian Cohort.

Found at: doi:10.1371/journal.pgen.1000218.s005 (0.07 MB

XLS)
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