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Abstract

Murine cytomegalovirus (MCMV) is an important animal model of human cytomegalovirus (HCMV), a b-Herpesvirus that
infects the majority of the world’s population and causes disease in neonates and immunocompromised adults. CD8+ T cells
are a major part of the immune response to MCMV and HCMV. Processing of peptides for presentation to CD8+ T cells may
be critically dependent on the immunoproteasome, expression of which is affected by MCMV. However, the overall
importance of the immunoproteasome in the generation of immunodominant peptides from MCMV is not known. We
therefore examined the role of the immunoproteasome in stimulation of CD8+ T cell responses to MCMV – both
conventional memory responses and those undergoing long-term expansion or ‘‘inflation’’. We infected LMP72/2 and
C57BL/6 mice with MCMV or with newly-generated recombinant vaccinia viruses (rVVs) encoding the immunodominant
MCMV protein M45 in either full-length or epitope-only minigene form. We analysed CD8+ T cell responses using
intracellular cytokine stain (ICS) and MHC Class I tetramer staining for a panel of MCMV-derived epitopes. We showed a
critical role for immunoproteasome in MCMV affecting all epitopes studied. Interestingly we found that memory ‘‘inflating’’
epitopes demonstrate reduced immunoproteasome dependence compared to non-inflating epitopes. M45-specific
responses induced by rVVs remain immunoproteasome-dependent. These results help to define a critical restriction point
for CD8+ T cell epitopes in natural cytomegalovirus (CMV) infection and potentially in vaccine strategies against this and
other viruses.
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Introduction

Human cytomegalovirus (HCMV) is a b-Herpesvirus, a double-

stranded DNA virus encoding 160 proteins, which infects most of

the world’s population [1]. Infection is asymptomatic in immuno-

competent hosts; however, virus is not cleared after acute infection

and persists lifelong. In immunocompromised hosts, such as those

infected with HIV and bone marrow transplant (BMT) recipients,

HCMV infection may cause severe disease. Murine cytomegalo-

virus (MCMV) is a well-characterized animal model for HCMV,

reflecting many key aspects of the immunology of human infection

[2].

CD8+ T cells are important mediators of immune responses to

HCMV and MCMV [3,4,5,6,7]. CD8+ T cells in combination

with other antiviral mediators limit CMV reactivation in

immunocompetent hosts and protect against disease in immuno-

suppressed hosts. Adoptive transfer of anti-CMV CD8+ T cells

protects from CMV-induced disease in mouse and man [8,9].

During the chronic phase of CMV infection CD8+ T cell

responses to certain epitopes increase in number over time; this

phenomenon, called ‘memory inflation’, is characteristic of CMVs

[10,11,12,13,14]. The ‘‘superboosting’’ nature of the immune

response can be exploited in CMV-based vaccines to induce long-

term protective antiviral CD8+ T cell responses [14,15]. However

the mechanism of memory inflation and the criteria that

distinguish those responses that inflate compared to those that

enter into a classical memory pool are not known.

The CD8+ T cell response to virus infection is driven by the

presentation of peptide by professional antigen presenting cells

(APCs) and infected targets. Generation of the peptide repertoire

requires a series of components responsible for cleavage and

presentation [16]. The immunoproteasome is one such compo-

nent, an inducible form of the proteasome thought to be optimised

for production of MHC class I ligands [17]. All cells contain

constitutive proteasomes and respond to interferon-gamma (IFN-

c) by upregulation of immunoproteasome expression. Immune

cells, including professional APCs such as dendritic cells (DCs) and

macrophages, also constitutively express immunoproteasomes

[18,19,20].

The role of the immunoproteasome in vivo is not yet defined.

Constitutive and immuno-proteasomes produce a different profile

of potential CD8+ T cell epitopes and epitope precursors from a

given polypeptide. In general, immunoproteasome digests contain

more potential MHC class I ligands than the constitutive
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counterparts [21]. However, most known microbial CD8+ T cell

epitopes are produced by both types of proteasome in cell-free

assays and by infected APCs [22]. Mice lacking functional genes

for one or two of the three catalytic subunits of the immunopro-

teasome (LMP7, LMP2 and MECL-1) produce many expected

CD8+ T cell responses to infection, although the overall impact is

not yet clear [19,23,24,25,26]. One study of lymphocytic

choriomeningitis virus (LCMV) infection in LMP72/2 mice,

showed no difference in numbers of CD8+ T cell responses or

difference in viral load and disease [27]. However, the same study

showed that in DNA vaccination with LCMV glycoprotein there is

enhanced presentation of one epitope (GP276) in the absence of

LMP7, a feature noted before in LMP72/2 mice when a rVV

expressing the LCMV glycoprotein was used [19]. Recently, it has

been shown that LMP7 inhibition using a small molecule inhibitor

of LMP7 strongly downregulated the CTL response to LCMV-

GP33 and NP396 (but not sub-dominant epitopes) during LCMV

infection [28]. Thus, while it is known that specific epitopes can

show immunoproteasome dependence, the overall dependence of

antiviral T cell responses on immunoproteasomes is not fully

defined.

MCMV and HCMV encode numerous immunoevasins which

affect components of the MHC class I antigen processing pathway

[29]. IFN-c-mediated upregulation of immunoproteasome expres-

sion is normally an important host response to viral infection.

However, in HCMV- or MCMV-infected cells it has been shown

that upregulation of the immunoproteasome does not occur in

response to IFN-c [30]. In murine cells this effect is mediated by

the MCMV protein M27, which prevents signaling through the

IFN-c receptor (IFNGR) by binding to the cellular signalling

intermediate STAT2 (previously thought to transduce only signals

through the interferon-a receptor (IFNAR)) [31]. It was proposed

that if the repertoire of antiviral CD8+ T cells was selected on

constitutively immunoproteasome-rich professional APCs, such as

DCs and macrophages, they might predominantly be specific for

epitopes that are better presented by the immunoproteasome [30].

If this were true, M27-mediated suppression of immunoprotea-

some expression in infected tissue cells might protect infected cells

from detection by antiviral CD8+ T cells.

We therefore investigated the role of the immunoproteasome in

induction of CD8+ T cell responses to MCMV. LMP72/2 mice

were infected with MCMV or novel recombinant vaccinia viruses

(rVVs) expressing MCMV proteins. Antigen-specific CD8+ T cell

responses to a panel of previously defined peptide epitopes were

quantified by ex vivo MHC class I tetramer analysis and IFN-c
intracellular cytokine stains (ICS). A key role for the immunopro-

teasome was revealed in modulating the immunodominant

response in acute disease and in a range of other epitopes. This

study reveals a major role for the immunoproteasome in

determining the CD8+ T cell repertoire in MCMV, both in acute

infection (7 days) and chronic infection (.50 days).

Results

Responses to M45 are not detected in LMP72/2 mice
In wild type mice, the most dominant CD8+ T cell response to

MCMV after acute infection (day 7) recognizes the Db restricted

epitope M45 HGIRNASFI (hereafter described as ‘‘M45’’)

[32,33]. We aimed to determine the role of the immunoprotea-

some in induction of this response by comparing M45-specific

responses to MCMV infection in C57BL/6 mice with those in

gene-targeted knockout mice lacking a functional gene for the

immunoproteasome subunit LMP7 (LMP72/2) backcrossed onto

a C57BL/6 background [26]. LMP72/2 and C57BL/6 mice were

injected intravenously with MCMV. Seven days later, peripheral

blood or splenocytes were prepared and M45-specific responses

evaluated by tetramer stain or IFN-c ICS (Figure 1). Seven days

post-infection (p.i.) is the peak of the cellular immune responses to

MCMV and conventionally referred to as acute infection.

As expected, 4% of CD8+ T cells from the peripheral blood

stained positive with the M45 tetramer in C57BL/6 mice acutely

infected with MCMV (Figure 1A). In contrast, no M45-specific

CD8+ T cells were detected in the peripheral blood of LMP7-/-

mice. To determine whether M45-specific cells were present at

another site, splenocytes from LMP72/2 and C57BL/6 acutely

infected mice were stained with M45 tetramer. M45-specific

splenocytes were below the limit of detection in infected LMP72/2

mice (Figure 1B), compared to substantial responses (5%) detected

in C57BL/6 mice. The function of M45-specific CD8+ T cells in

the spleens of acutely infected LMP72/2 mice was assessed by ex

vivo IFN-c ICS. No CD8+ T cells from the spleens of infected

LMP72/2 mice produced IFN-c in response to peptide in ex vivo

IFN-c ICS (Figure 1C) compared with 1.5% of CD8+ T cells in

MCMV-infected C57BL/6 controls.

It was possible that the pattern of responses to M45 would be

affected by the immunoproteasome in a temporal fashion (i.e.

responses may be delayed rather than absent). Using MHC class I

tetramer staining to detect M45-specific responses in the blood of

LMP72/2 mice up to 100 days p.i., it is apparent that the response

to M45 remained below the limit of detection at all time points

tested (Figure 1D). In comparison, in C57BL/6 mice, M45-specific

cells were maintained over time at a low level (0.4% of CD8+ T

cells; Figure 1D).

CD8 responses to m141 are not detected in LMP72/2

mice
During acute MCMV infection, a second protein which

contains a highly targeted epitope in C57BL/6 mice is m141

[32]. Compared with 1.2% of CD8+ T cells in acutely infected

C57BL/6 mice (Figure 2A), no m141-specific CD8+ T cells were

detected in the blood of LMP72/2 mice at 7 days p.i. IFN-c was

not produced in response to m141 peptide by splenocytes from

infected LMP72/2 mice, whereas 0.5% of CD8+ T cells from

C57BL/6 mice mounted an IFN-c response to m141 peptide

(Figure 2B). In C57BL/6 mice, the number of m141-specific T

cells did not inflate over time [11]. The m141 specific responses in

the blood of LMP72/2 mice were examined using tetramers

between days 7 and 100 p.i. At no point in time were m141-

specific CD8+ T cells detected in the peripheral blood of

LMP72/2 mice (Figure 2C).

Responses to M38a and m139 are affected by LMP7
deletion

The M38 and m139 proteins of MCMV are major targets of the

CD8+ T cell response in C57BL/6 mice. In contrast to M45 and

m141 described above, CD8+ T cell responses to M38a and m139

both undergo memory inflation. The acute CD8+ T cell response

to M38a is relatively small and expands only later compared to

CD8+ T cells specific for m139, which are also relatively abundant

during the acute phase of infection [11].

Peripheral blood of MCMV-infected LMP72/2 and C57BL/6

mice was assayed for m139-specific CD8+ T cells over a 100-day

time course (Figure 3A). The CD8+ T cell response to m139 in

acute infection was reduced (0.3%) relative to the wild type

response (1.5%), but remained detectable. The difference was

greater in chronic infection; the m139-specific response in

C57BL/6 mice increased to 3.5% by 100 days p.i., whereas the

LMP7 and MCMV
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m139-specific response of LMP72/2 mice remained static over

time (Figure 3A). The same pattern was evident in spleens. IFN-c-

secreting m139-specific CD8+ T cells were also detected in the

spleens of LMP72/2 mice 100 days p.i. by ICS (Figure 3B), but at

a lower frequency than in C57BL/6 controls (1.2% vs 2.5%;

Figure 3B).

Spleens from LMP72/2 and C57BL/6 mice were examined 7

and 100 days p.i. using IFN-c ICS to detect M38a-specific

CD8+ T cells (Figure 4). During acute infection, an M38a-

specific response was not detectable in LMP72/2 mice

compared to a small but readily detectable response (0.4%) in

C57BL/6 mice (Figure 4A). By 100 days p.i., M38a specific

responses were easily detectable in both C57BL/6 and

LMP72/2 mice (Figure 4B) although smaller in LMP72/2

mice (2%) compared to C57BL/6 mice (5%). The increase in

frequency of M38a-specific CD8+ T cells over time in C57BL/6

and LMP72/2 mice indicated that memory inflation had

occurred in both strains.

Figure 1. CD8+ T cell responses to M45 in LMP72/2 mice infected with MCMV. A. LMP72/2 mice and C57BL/6 control mice were injected
intravenously (i.v.) with 16106 plaque forming units (pfu) MCMV or an equivalent volume of phosphate buffered saline (PBS). Seven days p.i.
peripheral blood was sampled by tail bleed. Whole blood was stained with fluorochrome-conjugated soluble tetrameric complexes (M45 H-2
Db 985HGIRNASFI993) and anti-CD8 antibody, and red blood cells lysed, before analysis by FACS. B. Lymphocytes were prepared from peripheral blood
and spleen of LMP72/2 and C57BL/6 control mice 7 days p.i. (n = 5) or PBS treated (blood: n = 2; spleen: n = 4) and subjected to tetramer stain and
FACS analysis as above. The plots show the frequency of M45 Db-specific cells among CD8+ T cells. SEM was less than 0.1%. C. Splenocytes were
prepared from spleens of LMP72/2 and C57BL/6 control mice (n = 5) 7 days p.i. and incubated in either media containing synthetic peptide
HGIRNASFI or media alone, in the presence of Brefeldin A (BFA). After 5 hours cells were stained for CD8 and intracellular IFN-c and analysed by FACS.
The plots show % CD8+ T cells producing IFN-c in response to peptide or media alone. SEM was less than 0.1%. D. Peripheral blood was sampled from
LMP72/2 and C57BL/6 control mice (n = 3) at 7, 40, 60 and 100 days p.i. and subjected to tetramer stains using M45 Db HGIRNASFI tetramer and FACS
analysis as for Figure 1A. The plot shows the frequency of M45 Db- specific cells among CD8+ T cells over a 100 day time course.
doi:10.1371/journal.pone.0014646.g001

LMP7 and MCMV
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Subdominant responses occur in LMP72/2 mice but at
reduced frequencies

Over 20 MCMV-derived CD8 epitopes have been defined in

C57BL/6 mice [32]. It was possible that a previously subdominant

epitope would be increased in LMP72/2 mice, due to altered

antigen processing or altered competition from other responses. As

described above four immunodominant responses occurred at

lower frequencies in LMP72/2 mice relative to C57BL/6 mice

(M45, m139, and M38a and m141). To analyze the other

responses, splenocytes from LMP72/2 and C57BL/6 mice, from

day 7 and .50 p.i., were exposed to a panel of synthetic peptides

corresponding to MCMV-derived CD8+ T cell epitopes previously

defined in C57BL/6 mice (Table S1). Peptide-specific IFN-c
production by splenocytes from infected mice was assessed using

ICS. In acute infection 10 out of 11 epitopes tested that stimulated

responses in C57BL/6 mice also stimulated responses in

splenocytes from acutely infected LMP72/2 mice (Figure 5A).

The frequency of 9 out of 11 responses was reduced relative to the

equivalent responses in wild type mice (Figure 5A). Of the

subdominant responses, two responses, to epitopes from M78 and

M33, occurred at the same frequency in LMP72/2 mice as in

C57BL/6 mice, but overall these did not become immunodomi-

nant. The magnitude of all sub-dominant responses was low, close

to the value of background for the assay.

At later timepoints 5 out of 5 epitopes that stimulated responses

in C57BL/6 mice .50 days p.i. also stimulated responses in

splenocytes from chronically infected LMP72/2 mice (Figure 5B

and C). All responses were reduced in frequency in LMP72/2

mice relative to wild type responses.

The M45 response is reduced in LMP72/2 mice even
when M45 is expressed by rVVs

To determine whether loss of the CD8+ T cell response to M45

in LMP72/2 was a quality associated with herpesvirus infection

rather than a quality of the protein required expression of M45

protein in a different viral context to that in the native herpesvirus.

Therefore, a novel rVV [34] expressing the M45 CD8+ T cell

epitope as part of the full-length M45 protein (referred to as

M45-VV), was constructed (Figure 6A). This was used to infect

LMP72/2 mice and assay for CD8+ T cell responses to M45.

C57BL/6 and LMP72/2 mice were injected intravenously with

M45-VV and 7 days p.i. peripheral blood was sampled. In

C57BL/6 mice, 1% of CD8+ T cells were tetramer-positive

(Figure 6B), while in contrast, peripheral blood from LMP72/2

mice contained no M45-specific CD8+ T cells as determined by

tetramer stains (Figure 6B). Thus the effect of LMP7 functional

gene deletion on response to M45 was similar in LMP72/2 mice

infected with MCMV or with M45-VV.

We next sought to differentiate whether either (1) loss of

immunoproteasome function or (2) a hole in the T cell repertoire

might explain why the CD8+ T cells of LMP72/2 mice failed to

respond to M45 expressed from MCMV (Fig. 1) or M45-VV

(Fig. 6B) [35–36]. To address this question, a second rVV was

constructed that expressed the immunodominant 985–993 epitope

of M45 from a minigene (M45 epitope-VV; Figure 6A and Table

S2). C57BL/6 mice and LMP72/2 mice were intravenously

inoculated with M45 epitope-VV to determine if a CD8+ T cell

response was mounted. On day 7 p.i. 4% of peripheral blood

CD8+ T cells in both C57BL/6 mice and LMP72/2 mice that

received the M45 epitope-VV were specific for the M45 tetramer.

We conclude that absence of M45-specific naı̈ve T-cells (i.e. a hole

in the repertoire) does not explain the failure of LMP72/2 mice to

respond to the M45 protein when expressed from MCMV or a

Figure 2. CD8+ T cell responses to m141 in LMP72/2 mice
infected with MCMV. A. Lymphocytes were prepared from peripheral
blood of LMP72/2 and C57BL/6 control mice 7 days p.i. (n = 3) or PBS
treated (n = 2) and subjected to tetramer stain and FACS analysis as for
Figure 1A, using MCMV m141 tetramer (H-2 Kb 15VIDASFRL23). The plot
shows the frequency of m141 Kb-specific cells among CD8+ T cells. B.
Splenocytes were prepared from spleens of LMP72/2 and C57BL/6
control mice 7 days p.i. (n = 6), pooled, and incubated in the presence of
BFA with either media containing peptide VIDAFSRL or media alone for
5 hours. Cells were stained as in Figure 1C and analysed by FACS. The
plot shows % CD8+ T cells producing IFN-c in response to peptide or
media alone. C. Peripheral blood was sampled from LMP72/2 and C57BL/
6 control mice (n = 3) at 7, 40, 60 and 100 days p.i. and subjected to
tetramer stain and FACS analysis as for A. The plot shows the frequency
of m141 Kb-specific cells among CD8+ T cells over a 100 day time course.
doi:10.1371/journal.pone.0014646.g002

LMP7 and MCMV

PLoS ONE | www.plosone.org 4 February 2011 | Volume 6 | Issue 2 | e14646



vaccinia vector. Rather, the results imply that loss of the LMP7

protein compromises immunoproteasome function, which appears

to be critical if the M45 is to be proteolytically processed such that

the M45 immunodominant epitope is presented to CD8+ T cells.

Discussion

In this study, we addressed the hypothesis that during MCMV

infection CD8+ T cell responses specific for certain epitopes are

better processed by the immunoproteasome than the constitutive

proteasome. Immunoproteasomes and constitutive proteasomes

produce differing sets of potentially antigenic peptides during

MHC class I antigen processing for presentation to CD8+ T cells

[21]. Professional APCs involved in priming naive CD8+ T cells

constitutively express immunoproteasomes [18,20]. In contrast,

non-immune cells require exposure to IFN-c to upregulate

immunoproteasome expression [37]. During MCMV infection

the viral protein M27 prevents IFN-c-mediated upregulation of

immunoproteasome expression in infected cells by blocking

signaling through the IFNGR [30,31]. It was possible that M27-

mediated resistance to upregulation of immunoproteasome

expression would protect infected cells from lysis by CD8+ T cell

responses primed with constitutively immunoproteasome-rich cells

[30]. This, however, is dependent on whether CD8+ T cell

responses to MCMV are specific for epitopes better processed by

the immunoproteasome than the constitutive proteasome (‘‘im-

munoproteasome dependent’’).

Using MCMV infection of LMP72/2 mice and ex vivo CD8+ T

cell assays for number and function, we found that the M45-

specific CD8+ T cell response to MCMV that is immunodominant

in C57BL/6 mice is profoundly affected by loss of immunoprotea-

somes. We also observed that most other responses tested that

stimulated responses in C57BL/6 mice were reduced in LMP72/2

mice. Since all MCMV-derived CD8+ T cell epitopes tested were

affected by the loss of wild-type immunoproteasome in LMP72/2

mice, and in studies of other viruses the effects on different

epitopes from the same virus have been divergent [22], we

speculated that the unusually consistent effect of the immunopro-

teasome was associated with herpesviral infection, and not specific

qualities of the primary sequences of the proteins from which the

epitopes were derived. Expressing the MCMV M45 (a protein

Figure 3. CD8+ T cell response to inflating epitope m139 in LMP72/2 mice infected with MCMV. A. Lymphocytes were prepared from the
peripheral blood of LMP72/2 and C57BL/6 control mice 7 days p.i. (n = 3) or PBS (n = 2) and subjected to tetramer stain and FACS analysis as for
Figure 1A, using MCMV m139 tetramer (H-2 Kb 419TWYGFCLL426). This epitope has been shown to elicit a CD8+ T cell response that increases over
time, or inflates, in C57BL/6 mice. The plot shows the frequency of m139 Kb-specific cells among CD8+ T cells over a 100 day time course. B.
Splenocytes were prepared from spleens of LMP72/2 and C57BL/6 control mice 7 days p.i. (n = 3) and incubated in the presence of BFA with either
media containing synthetic peptide TWYGFCLL or media alone for 5 hours. Cells were stained for surface CD8 and intracellular IFN-c as in Figure 1C
and analysed by FACS. The plot shows % CD8+ T cells producing IFN-c in response to peptide or media alone.
doi:10.1371/journal.pone.0014646.g003

Figure 4. CD8+ T cell responses to inflating epitope M38 in
LMP72/2 mice infected with MCMV. A. Splenocytes were prepared
from spleens of LMP72/2 and C57BL/6 control mice 7 days p.i.(n = 6),
pooled, and incubated in the presence of BFA with either media
containing peptide SSPPMFRV (M38 H-2 Kb 316SSPPMFRV325) or media
alone for 5 hours. Cells were stained for surface CD8 and intracellular
IFN-c as in Figure 1C and analyzed by FACS. The plots show % CD8+ T
cells producing IFN-c in response to peptide or media alone. B.
Splenocytes were prepared from spleens of LMP72/2 and C57BL/6
control mice 100 days p.i. (n = 3) and subjected to IFN-c intracellular
cytokine stain (IFN-c ICCS) as for A.
doi:10.1371/journal.pone.0014646.g004

LMP7 and MCMV
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containing the dominant CD8+ T cell epitope in C57BL/6 mice)

in the context of rVV allowed testing of this. However, no

response to M45 detectable directly ex vivo was induced in

LMP72/2 mice infected with rVV expressing full-length M45.

The virus induced M45-specific responses in C57BL/6 mice, and

LMP72/2 mice produced M45-specific CD8+ T cell responses to

rVV expressing only the M45 minimal epitope from a minigene.

Therefore at least in the case of CD8+ T cell response to M45 the

requirement for wild type immunoproteasome was maintained in

the absence of MCMV infection. This suggested that M45

primary sequence and not viral interference determined the effect

of the immunoproteasome on stimulation of M45-specific CD8+ T

cell responses during MCMV infection. By extension, this suggests

that MCMV-derived CD8+ T cell epitopes with responses reduced

in LMP72/2 mice might have protein primary sequences that

could be better processed by immunoproteasome. Further work

would be required to test this hypothesis more extensively;

however, if true, these would be useful data points for

immunoproteasome cleavage prediction. It should be pointed

out that LMP7 deficient mice also lack a contribution from LMP2

and MECL in immunoproteasomes [38], so it remains open which

of these subunits is actually required for the generation of the

different epitopes.

These findings have a number of implications for viral

pathogenesis. Firstly it is known that M45-specific CD8+ T cell

populations have limited protective capacity in a bone marrow

transplant model [33,39]. This can be potentially explained by the

fact while these responses may be readily generated in LMP7+ DCs,

for example through cross-presentation [40], the target cells

themselves, which are low in immunoproteasomes, will present

only inefficiently. Thus the relative imbalance in immunoprotea-

some distribution between APCs and target cells may have special

relevance in MCMV infection. Other viruses where IFN-c signaling

blockade also occurs [41] might show similar phenomena.

The generalized impact of LMP7 depletion on the pattern of

CD8+ T cell responses to MCMV epitopes was also interesting. A

number of MCMV epitopes have been mapped, although many of

the CD8+ T cell responses are at relatively low levels compared to

the well-defined M45 response focused upon in these studies [32].

A caveat of this study is the accuracy of measurement of changes

in these very small populations. However, it is evident that a shift

in immunodominance towards these subdominant responses did

not occur. We did not in this study measure the overall impact of

LMP7 depletion on viral load over time. However, a number of

previous studies in C57BL/6 mice in which specific deletion of

CD8+ T cells has been performed [7,42], or in CD8 gene

knockout [42,43] or MHC Class I deficient mice [44], did not

show an impact of this single intervention so a substantial effect

would not be expected. The impact of CD8+ T cell depletion may

be substantially different in other mouse strains, such as BALB/c,

where the role of protective NK cells is less evident [43]. Studies

using novel immunoproteasome inhibitors [28], or using mutant

viruses which resist NK cells through deletion [45] or mutation in

M157 [46] may also provide insight into the impact of

immunoproteasome-dependent CD8+ T cell populations on viral

load. Alternatively there may be important but subtle effects on

viral reactivation and latency as evidenced by experiments in the

susceptible BALB/c strain where single responses have been

deleted through viral mutation [47].

Notably responses to M38 and m139 are sustained or increase

over time compared to classical ‘‘memory’’ responses, a phenom-

enon described as memory ‘‘inflation’’. This feature was first

described in the BALB/c (susceptible) model [13,14], but

subsequently observed in the C57BL/6 (resistant) model [11]

using natural and transgenic epitopes. Re-exposure of such

‘‘inflating’’ populations to antigen over time appears to underlie

generation of these CD8+ T cell pools [2], a hypothesis supported

by the ‘‘effector memory’’ phenotypic characteristics detectable in

the cell subsets [11,12]. One reason proposed why specific epitopes

attract ‘‘inflating’’ populations compared to others, is the

generation of peptides that escape the viral mechanisms for

downregulation of antigen processing. In particular, IE-1 derived

peptides might generate inflating populations since they are

generated early after infection [14]. However, this is not uniquely

the case as epitopes from later expressed proteins can also be

associated with inflation [13,32] and there are situations where

distinct peptides may be generated from the same protein (M38) in

which one epitope is inflating while the other is not [11]. We note

that the two inflating epitopes included in this study (M38 and

m139) had the least dependence on immunoproteasomes. We

speculate that this feature could contribute to their unique

immunologic profile. During chronic infection, in addition to the

constraints placed upon antigen presentation by viral gene

expression kinetics and immunoevasins, the ability to be presented

by cells low in LMP7 may provide an additional ‘‘filter’’ to limit

the number of inflating epitopes.

While the M38 CD8+ T cell response does show inflation over

time, the m139 response, whilst still dominant, is maintained stably

and does not substantially further increase over time. This feature

has been noted previously in some MCMV responses [11]; some

responses are clearly maintained by antigen exposure (and thus do

not revert to ‘‘central’’ memory), but show long-term stability

rather than increase. In this case the overall size of the population

may be somewhat reduced compared to wild-type response due to

a limitation in antigen presentation, or alternatively by competi-

tion with newly arising responses.

The question of whether other novel CD8+ T cell responses

arise is an important one. As a marker of overall T cell memory,

there was not a deficit in the proportion of splenic CD8+ T cells

responding to PMA/Ionomycin through IFN-c secretion in LMP7

deficient mice at day 100 (data not shown). Thus it is possible that

responses outside those measured are entering the memory pool.

Further detailed analyses of novel specificities is required to define

any new responses, which may potentially normally be limited by

immunoproteasomes [19].

The responses analyzed in this paper remain functional, as

measured here by IFN-c secretion, although not all cells

demonstrated using tetramer staining were detectable in short

term functional assays (e.g. Fig 1). Overall, when this has been

extensively analyzed [11,12,14] these responses are both function-

Figure 5. Breadth of CD8+ T cell responses to MCMV in LMP72/2 mice. A. Splenocytes were prepared from spleens of LMP72/2 and C57BL/6
control mice 7 days p.i. (n = 5), pooled, and exposed to each of nineteen synthetic peptides corresponding to defined CD8 epitopes of MCMV (Table
S1), or media alone, in the presence of BFA for 5 hours. Splenocytes were subjected to CD8 surface stain, IFN-c ICCS and FACS analysis as for
Figure 1C. Frequency of IFN-c cells among CD8+ T cells in infected C57BL/6 or LMP72/2 mice, 7 days p.i. is shown for each peptide. Data is shown
with background subtracted for both mouse strains, only for responses that in C57BL/6 mice were above background. Background is defined as three
times the sum of the mean and standard error of the mean response to stimulation with media control alone. B. A similar analysis was to that
described in Fig 5A was performed for CD8+ T cell responses detectable at 100 days p.i. C. Example ICCS staining for C57BL/6 and LMP72/2 mice (day
100) in response to M45, m139 and M38 peptides.
doi:10.1371/journal.pone.0014646.g005
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al (in terms of cytokine secretion, killing and proliferation) and

protective, and in contrast to LCMV there is no evidence of

exhaustion. Given recent studies of the impact of LMP7 inhibition

on T cell derived IL-17 in tissue, it would be interesting to explore

this specific aspect in future in MCMV [48].

Combining the data we therefore propose a ‘‘2-cell’’ model for

the role of the immunoproteasome in MCMV (Figure 7). Under

normal circumstances in acute disease, antigen may be presented

or cross-presented on DCs and prime strong responses: since DCs

constitutively express immunoproteasomes, and the responses are

highly immunoproteasome dependent, a wide range of such

responses will be generated. Such responses are, however, unable

to protect infected cells against infection if these cells downregulate

LMP7. As infection is controlled, antigen production is limited by

a variety of factors, including NK cells, but in LMP7lo cells, LMP7

dependent epitopes will not be re-presented and classical memory

Figure 6. CD8+ T cell responses to M45 in LMP72/2 mice infected with M45-expressing rVV. A. Recombinant vaccinia viruses (rVVs) were
constructed containing foreign genes derived from the genomic sequence of MCMV Smith Strain (ATCC VR-194). Foreign genes were full length gene
encoding the MCMV protein M45 (M45-VV), or a ‘minigene’, encoding the antigenic fragment of M45 corresponding to the CD8 epitope M45 H-2
Db 985HGIRNASFI993 (M45 epitope-VV). Genes were designed for insertion between restriction sites for restriction endonucleases Apa I (59) and Kpn I (39). The
diagram shows recombinant genes and proteins encoded by the two rVVs used in this study: M45 VV encoding full-length M45; and M45 epitope-VV,
encoding the minimal Db-restricted CD8 epitope of M45 only. B, C. LMP72/2 or C57BL/6 control mice were injected i.v. with 16106 pfu M45-VV (B), 16106 pfu
M45 epitope-VV (C) or an equivalent volume of PBS. Blood was sampled 7 days p.i. by tail bleed. Peripheral blood lymphocytes were subjected to tetramer stain
with M45 Db HGIRNSFI tetramer and FACS analysis as for Figure 1A. The frequency of cells specific for M45 H-2 Db 985HGIRNASFI993 among CD8+ T cells in the
blood of MVacc and MGVacc - infected and mock-infected C57BL/6 and LMP72/2 mice, 7 days after infection, is shown.
doi:10.1371/journal.pone.0014646.g006
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will ensue. Epitopes that show some independence from LMP7

will have the potential to be re-presented and from this limited

pool, ‘‘inflating’’ epitopes are selected. Since DCs are constitutive

expressors of LMP7, this suggests that the cells responsible for

antigen presentation during chronic infection could include other

APCs or infected cell populations. More generally, this data

suggests that DC-based strategies which prime CD8+ T cell

responses in an immunoproteasome-rich environment may run

the risk of selecting CD8+ T cell populations which are unable to

recognize target cells, in settings where a virus (or even tumor) has

modified its immunoproteasome cargo.

Overall our findings suggest that LMP7 and the immunoprotea-

some play a more significant role in MCMV than previously

suspected from studies of other virus infections. This may be

relevant to human HCMV infection and potentially infection with

other viruses which display comparable dynamics. To what extent

this situation has evolved to provide a viral advantage is not clear,

but the extent of the impact is very evident, and appears to be a

property of the viral sequence itself. These data can be added to the

renewed accumulation of interest in the impact of the immunopro-

teasome in infection and inflammation, following studies on LCMV

[28] and toxoplasma [49] (recently reviewed in Ref. [50]). Further

experiments to explore the role of the immunoproteasome in

herpesviral infections will be of great interest in the future.

Methods

Ethics statement: Mouse experiments were performed accord-

ing to UK Home Office regulations (project licence number PPL

30/2235) and after review and approval by the local ethical review

board at the University of Oxford.

Mice and viruses
C57BL/6 and LMP72/2 mice were bred in a specific pathogen

free animal facility unit at the John Radcliffe Hospital, University

of Oxford, United Kingdom. MCMV (Strain Smith, ATCC: VR-

194) was provided by Professor U.H. Koszinowski, Department of

Virology, Max von Pettenkofer Institute, Munich, Germany.

Vaccinia virus Western Reserve (VVWR, ATCC: VR-1354) was

used. Mice were injected intravenously (i.v.) with 16106 pfu

(100 ml) MCMV or rVV as indicated.

Peptides. Peptide stock solutions (1 mM) (Roswell Park

Memorial Institute media 1640 (RPMI; Sigma), di-methyl

sulfoxide (DMSO) (10%)) were stored at 280uC before use then

at 4uC for up to 2 months. DMSO concentrations in final cell

assays were less than 0.01%. Synthetic peptides with amino acid

sequences matching CD8+ T cell epitopes from MCMV (Table

S1) were custom synthesized to 80–85% purity (Weatherall

Institute for Molecular Medicine peptide synthesis facility, John

Radcliffe Hospital, University of Oxford).

Staining protocols. R10 (RPMI-1640, foetal calf serum

(FCS) (10%), PSG (penicillin (5,000 U/ml) streptomycin (5 mg/

ml) and glutamine (5 mM)), b-mercaptoethanol (b-ME) (50 mM))

was used for temporary storage of lymphocytes after removal of

red blood cells (RBC) and of splenocytes before and during

preparation from whole spleens. FACSWash (PBS, FCS (2%),

EDTA (5 mM)) was used to suspend lymphocytes during staining

for FACS analysis. FACS Fix (phosphate buffered saline (PBS),

Para-formaldehyde (PFA) (1%)) was used to fix lymphocytes after

staining and prior to FACS analysis. Biotinylated MHC class I

molecules refolded with human b-2 microglobulin (b2M) and

peptide were stored in PBS at 280uC before use. Antibodies (Ab)

for fluorescence activated cell sorting (FACS) analysis included

CD8-PerCP or CD8-APC (Invitrogen). Intracellular stains used

IFN-c FITC after stimulation as previously described. All flow

cytometry was performed and analyzed using CellQuest3.3 or

FloJo acquisition software and FACScalibur flow cytometer (BD

Biosciences).

Generation of rVVs. MCMV M45 gene sequence data was

derived from NCBI sequence database, accession: ‘MuHV1_

gpM45’, NCBI GeneID: 3293809. Primers for amplification and

cloning of MCMV gene M45 were Forward primer: aagggc-

Figure 7. ‘‘2-cell’’ model to explain different effect of LMP7 on ‘‘inflating’’ memory and classical memory CD8+ T cell responses to
MCMV. Infected or cross-presenting DCs during acute infection contain immunoproteasomes and constitutive proteasomes and stimulate responses
to epitopes produced by either proteasome. In chronic infection other APCs containing only constitutive proteasomes stimulate responses only to
those epitopes produced by the constitutive proteasome resulting in selection of more immunoproteasome-independent responses during chronic
infection.
doi:10.1371/journal.pone.0014646.g007
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ccaccATGGATCGCCAGCCCAAAGTC; Reverse primer: tag-

gtaccTCAGCGATAATTCACGGAAGGGG). BioX-Act Long

Mix (Bioline) was used for PCR. For the minigene, comple-

mentary oligo-nucleotides (oligos) were designed such that when

annealed they form a single short fragment of dsDNA or insert

encoding the amino acid sequence of the MHC class I epitope

M985HGIRNASFI993 (Sense strand: caccATGCACGGCATCA-

GGAACGCCTCCTTCATCTGAggtac; Antisense strand: cTC-

AGATGAAGGAGGCGTTCCTGATGCCGTGCATggtgggcc).

For cloning, Apa I, Kpn I, Sma I and Xmn I restriction enzymes

and T4 ligase were obtained from New England Biolabs (NEB).

Bacteria competent for transformation used in cloning were

TOP10 (Invitrogen), used for amplification of plasmids less than

12 kilobase pairs (kbp) in length or XL-1 Blue (Stratagene) used for

plasmids greater than 12 kbp.

All rVVs were prepared using previously described protocols

[34] and were confirmed by sequencing. For minigene recombi-

nants two primers were used: (Forward: CAAACCCACCC-

GCTTTTTAT; Reverse: TACGTTGAAATGTCCCATCG).

Sequencing full-length M45 gene required 16 additional primers

(Table S2). rVV prepared from viral plaques was subjected to

PCR using an ‘inside’ primer specific for a sequence unique to the

recombinant M45 full-length gene (GCGCCGCGGCCGCTC-

GGCG) or M45 Db 985HGIRNASFI993 minigene (GATGAAG-

GAGGCGTTCCTGATGCCGTGC) as appropriate. Sequence

Scanner (v1.0, Applied Biosystems) was used to determine quality

of sequence data. Sequence data was searched for mismatches

with published sequence using Clustal W (EMBL). Vaccinia

viruses were grown in thymidine kinase-negative human osteosar-

coma fibroblast cell line TK-143 (ATCC: CRL-8303).

Supporting Information

Table S1 Amino acid sequences of MCMV CD8+ T cell

epitopes referred to in this study.

Found at: doi:10.1371/journal.pone.0014646.s001 (0.11 MB

DOCX)

Table S2 Primers used for sequencing full-length gene M45.

Found at: doi:10.1371/journal.pone.0014646.s002 (0.12 MB

DOCX)
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