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Fractional Brownian motion and
multivariate-t models for longitudinal
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counts in HIV-positive patients
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Longitudinal data are widely analysed using linear mixed models, with ‘random slopes’ models particularly
common. However, when modelling, for example, longitudinal pre-treatment CD4 cell counts in HIV-positive
patients, the incorporation of non-stationary stochastic processes such as Brownian motion has been shown
to lead to a more biologically plausible model and a substantial improvement in model fit. In this article, we
propose two further extensions. Firstly, we propose the addition of a fractional Brownian motion component,
and secondly, we generalise the model to follow a multivariate-t distribution. These extensions are biologically
plausible, and each demonstrated substantially improved fit on application to example data from the Concerted
Action on SeroConversion to AIDS and Death in Europe study. We also propose novel procedures for residual
diagnostic plots that allow such models to be assessed. Cohorts of patients were simulated from the previously
reported and newly developed models in order to evaluate differences in predictions made for the timing of
treatment initiation under different clinical management strategies. A further simulation study was performed
to demonstrate the substantial biases in parameter estimates of the mean slope of CD4 decline with time that
can occur when random slopes models are applied in the presence of censoring because of treatment initiation,
with the degree of bias found to depend strongly on the treatment initiation rule applied. Our findings indicate
that researchers should consider more complex and flexible models for the analysis of longitudinal biomarker
data, particularly when there are substantial missing data, and that the parameter estimates from random slopes
models must be interpreted with caution. © 2015 The Authors. Statistics in Medicine Published by John Wiley &
Sons Ltd.
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1. Introduction

Longitudinal data are commonly analysed using linear mixed models, as formalised by Laird and
Ware [1], with ‘random slopes’ models (also including random intercepts) particularly common in the
biomedical literature. However, the standard random slopes model makes a strong assumption about the
relationship between the outcome variable and time, that is, that this follows a separate linear trajectory
for each individual with independent normally distributed errors for each observation point. This under-
lying assumption is implausible in many biomedical scenarios, and the use of more realistically complex
models to account for patterns of variability in the data may allow more information to be gained and lead
to a reduction of variance and bias in the estimation of model parameters, particularly in the presence of
missing data.

In this paper, we focus on modelling the progression of CD4 cell counts in human immunodeficiency
virus (HIV)-positive patients prior to treatment. These are a type of white blood cell for which counts
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are monitored over time in order to evaluate the progress of the disease and state of the immune system.
Statistical analyses of CD4 cell count data are used to evaluate the natural history of HIV infection and to
inform epidemiological simulations. Observational datasets of pre-treatment CD4 cell counts obtained in
clinical practice are usually subject to a high degree of attrition with increasing time from diagnosis, as
patients drop out of the cohort because of treatment initiation, loss to follow-up or death. Furthermore, the
timing of observations can be very irregular between and within patients, meaning that flexible statistical
structures are required in order to adequately describe patterns of variability in the data.

Taylor et al. [2] proposed the addition of a scaled Brownian motion component to a random slopes
linear mixed model, finding that this led to a significant improvement in model fit in terms of Akaike’s
information criterion for a dataset of 722 measurements obtained from 87 seroconverters, patients who
had been observed to transition from an HIV-negative to HIV-positive state. Babiker et al. [3] fitted such
a model to a dataset of CD4 observations from over 15 000 seroconverters and used this to generate
CD4 data for simulated cohorts of patients in order to carry out sample size and power calculations
for a clinical trial randomising subjects to different treatment initiation rules. Taylor et al. [2, 4] also
investigated the use of an integrated Ornstein–Uhlenbeck process, of which Brownian motion is a special
case, as did Wolbers et al. [5]. Fractional Brownian motion is an alternative flexible generalisation of the
standard Brownian motion process [6], but its use within the linear mixed model framework has not been
investigated. Fractional Brownian motion may be useful for modelling CD4 or other biomarker data as,
unlike the integrated Ornstein–Uhlenbeck process, it can allow more erratic variation over time than does
simple Brownian motion.

A common finding when assessing the goodness of fit of a statistical model based on the normal
distribution, including linear mixed models for the analysis of longitudinal data, is the observation of
heavier tails than expected on diagnostic plots of residuals. A natural extension to the standard linear
mixed model is to allow the set of observations for each individual as a whole to follow a multivariate-
t distribution. The use of such a model for multivariate regression analysis was proposed by Lange et
al. [7] and was further developed as an extension of the linear mixed model by Welsh and Richardson
[8] and Pinheiro et al. [9]. None of these papers included the use of non-stationary stochastic process
components for the modelling of longitudinal biomarker data.

The multivariate-t distribution was used by Wang and Fan [10] to model CD4 counts in a small sample
of 30 HIV-positive patients taken from a historic trial of antiretroviral (ART) medication. Here, obser-
vations were recorded on a regular schedule, and Wang and Fan used a random slopes structure with an
additional first-order autoregression parameter for the residual error. The same authors have also reported
the fitting of a similar multivariate-t model for both CD4 and CD8 cell counts with a second-order autore-
gressive structure to a sample of 50 patients from the same historic dataset using a Bayesian approach
[11]. Matos et al. [12] reported the use of a multivariate-t model for right-censored HIV RNA assays in
untreated patients with acute infection using a nonlinear random effects model for the mean with inde-
pendent error terms; their model was fitted to 830 observations in 320 individuals. We hypothesised that
combining the use of a multivariate-t model with the addition of a non-stationary stochastic process com-
ponent would lead to a further substantial improvement in model fit for pre-treatment CD4 data. The
inclusion of a stochastic process component in the model is important to reflect the erratic trajectories of
the CD4 counts of individual patients over time.

Verbeke and Lesaffre found that estimation of fixed effects parameters using linear mixed models is
consistent in the presence of non-normal distributions for the random effects, although they presented
a correction to the estimated covariance matrix for the parameter estimates when non-normality of ran-
dom effects is suspected [13]. Jacqmin-Gadda et al. used simulations to show that inference for fixed
effects is robust to misspecification of the error distribution when using linear mixed models in some sit-
uations [14]. However, these analyses did not take into account the potential for missing or unbalanced
data where this is dependent on the observed values of the outcome variable (i.e. data that are ‘miss-
ing at random’ (MAR) in Rubin’s terminology [15]). Gurka et al. showed that using overly simplistic
covariance structures for linear mixed models can lead to inflation of the Type I error rate even for large
samples in the absence of missing data [16]. There is therefore a motivation to further investigate biases
that may arise from the application of overly simplistic models to realistic datasets that include cen-
soring. This is an important issue for the analysis of observational pre-treatment CD4 counts in which
the timing of censoring from the dataset due to treatment initiation is likely to be strongly linked to the
preceding observed values for each individual and the statistical inferences drawn may be more dependent
on model choice.

We aimed to further develop the available statistical models for longitudinal biomedical data, incor-
porating both fractional Brownian motion processes for flexible modelling of intra-individual variation
and multivariate-t distributions to relax the assumption of multivariate normality. The motivating dataset
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of pre-ART CD4 counts used for analysis is introduced in Section 2. Theoretical characteristics of the
models fitted and methods for maximum likelihood estimation are described in Section 3. Checking of
model adequacy for the data under investigation is crucial, particularly in the presence of missing data.
Residual diagnostics for models based on the multivariate-t distribution are discussed, and novel methods
are proposed for the critical evaluation of such models in Section 4. Application of the models devel-
oped to the dataset of pre-ART CD4 counts is described in Section 5, informing simulation studies that
are presented to demonstrate differences in predictions made by the more complex models regarding the
timing of treatment initiation in population cohorts and to show that the application of simpler mod-
els can lead to substantial bias in parameter estimates when there is censoring dependent on observed
values of the outcome variable. Practical and methodological implications of the work are discussed
in Section 6.

2. Dataset

We demonstrate the use of the statistical methods developed through a reanalysis of the dataset of pre-
ART CD4 counts described by Babiker et al. [3], comprising all available measurements prior to the
occurrence of acquired immune deficiency syndrome (AIDS)-defining illness or initiation of ART up to
December 2007 from 21 cohorts (originating from 12 countries) participating in the Concerted Action
on SeroConversion to AIDS and Death in Europe (CASCADE) study [17]. Only patients with a well-
estimated date of HIV seroconversion are included in the CASCADE study, providing a natural ‘zero’
time in each patient for statistical modelling. The total dataset includes 89 176 CD4 count observations in
15 274 individuals. However, only 3955 (4.4%) measurements from 789 (5.2%) patients were recorded
at a time of more than 10 years, and so we chose to model only those CD4 measurements obtained
up to 10 years from the time of seroconversion. This resulted in a dataset of 85 221 measurements in
15 164 individuals. A further 365 observations were excluded for which an identical CD4 measurement
was recorded only 1 day after the previous count for that patient, as these were found to cause problems
with model estimation and were assumed to result from data-entry errors, resulting in a dataset of 84 856
measurements for analysis.

The CD4 cell counts are measured as cells per microlitre, and we followed established practice in
modelling the counts on a square-root scale [3]. As an illustrative example, the CD4 measurements were
modelled only in terms of time from seroconversion, expressed as continuous in years, although it would
be possible to include other predictive variables. The median number of CD4 observations per individual
in the analysed dataset was 4, with a range of 1–57 and an interquartile range of 2–8. There was no rigid
pattern to the timing of observations in each patient, with a median interval between measurements of
112 days (interquartile range, 70–182). The highly unbalanced nature of the dataset and the irregular
observation schedule necessitate the use of flexible modelling strategies that can accommodate such
features. Visual inspection of the CD4 data suggests that the trajectories over time for each individual
do not follow predictable paths and that there may be between-patient differences in variability over
time, motivating the combination of stochastic process components and the multivariate-t distribution,
respectively, as presented in this paper. A total of 9831 (64.8%) patients were censored from the dataset at
initiation of ART, 1111 (7.3%) because of a recorded AIDS event and 318 (2.1%) at death. Two thousand
four hundred and forty-four (16.1%) patients can be considered lost to follow-up (with no clinic visit
recorded for 12 months and no censoring event), and the remaining 1460 (9.6%) were in follow-up at the
time that the data were gathered.

We hope that the models developed will form the basis for improved epidemiological simulations, as
required for the planning of clinical trials and population health analyses, and provide more accurate
estimates of the mean CD4 count over time were there to be no censoring of data. Furthermore, the char-
acterisation and quantification of within-patient and between-patient variability in CD4 count trajectories
may help develop understanding of the natural history of untreated HIV.

3. Stochastic process and multivariate-t models

3.1. Characteristics of Brownian motion and related processes

3.1.1. Scaled Brownian motion. In a mathematical sense, Brownian motion (also known as a Wiener
process) is a non-stationary stochastic process that constitutes a continuous-time generalisation of a sim-
ple random walk [18], in which successive increments are independent of the history of the process.
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When considered in terms of a given set of observation points (these may be irregularly spaced in time),
a scaled Brownian motion process, denoted Wt at time t, is defined by the following properties:

W0 = 0

Wt − Ws ∼ N(0, 𝜅(t − s)) for 0 ⩽ s < t, 0 < 𝜅.

The process starts at zero at time zero (t = 0), and increments of the process are stationary, independent
(for disjoint periods of time) and normally distributed with mean zero and variance equal to the difference
in time between observation points scaled by a positive constant factor 𝜅. The following characteristics
arise from these conditions:

E[Wt] = 0

Var[Wt] = 𝜅t

Cov[Ws,Wt] = 𝜅 × min(s, t).

The distribution of a set of n observations relating to a given series of time points therefore follows a
multivariate normal (MVN) distribution with a mean vector of n zeros and covariance matrix defined by
the formulae given. As such, Brownian motion is an example of a Gaussian process and can be readily
incorporated into the theoretical framework of linear mixed models, as will be discussed in Section 3.2.

3.1.2. Scaled fractional Brownian motion. Fractional Brownian motion represents a generalisation of a
Brownian motion process in which increments for disjoint time periods are not constrained to be indepen-
dent, although they do remain stationary. The process was introduced by Mandelbrot and van Ness[6].
The characteristics of a fractional Brownian motion process are determined by an additional parame-
ter, referred to as H or ‘the Hurst index’, that may take a value in the range (0,1). Standard Brownian
motion represents a special case of fractional Brownian motion, corresponding to H = 1

2
. As for standard

Brownian motion, the expectation of the value of the process is zero for all points in time.
When H <

1
2
, successive increments of the process are negatively correlated. This has the conse-

quence, firstly, that the path of the trajectory appears ‘jagged’ and, secondly, that realisations of the
process tend to revert towards the mean of zero. For H >

1
2
, successive increments of the process are pos-

itively correlated. This means that the path of the process has a relatively ‘smooth’ appearance, and also
that individual realisations of the process tend to diverge away from the mean of zero. Illustrative simu-
lated realisations of fractional Brownian motion processes generated with varying values of H are shown
in Figure 1.

As for Brownian motion, a positive scale parameter (𝜅) can be added to the standard definition of frac-
tional Brownian motion, corresponding to the variance of the process at t = 1. We may then characterise
the properties of the process as follows:

W0 = 0

E[Wt] = 0

Var[Wt] = 𝜅|t|2H

Cov[Ws,Wt] =
𝜅

2

(|s|2H + |t|2H − |t − s|2H) .
Fractional Brownian motion is defined as a continuous-time stochastic process. However, as we are con-
cerned with modelling biomedical measurements obtained at specific time points, we have focused here
on the properties of the process relating to a finite set of observations. As for simple scaled Brownian
motion, scaled fractional Brownian motion is a Gaussian process that follows a MVN distribution for any
given set of observation points, with expectation zero and covariance matrix as defined.

3.2. Marginal distribution for stochastic process models

For models incorporating Gaussian processes such as Brownian motion, the fact that the marginal distri-
bution of the full vector of observations of the outcome variable is MVN means that parameter estimation
can be achieved through adjustment of the methods used for standard linear mixed models. The linear
mixed model for longitudinal data can be expressed in the following form [1]:
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Figure 1. Realisations of fractional Brownian motion processes with varying values of H and scale parameter
fixed at 1. A finite set of 1000 observations was generated in each case.

𝐲i = 𝐗i𝜷 + 𝐙i𝐛i + 𝐞i

𝐛i ∼ MVN(0, 𝚿)
𝐞i ∼ MVN(0, 𝐑i).

(1)

Here, 𝐲i represents the vector of ni observations for the ith individual, 𝐗i represents their design matrix
for the ‘fixed effects’ parameters 𝜷,𝐙i represents the subset of the columns of the design matrix associated
with the ‘random effects’ for each individual 𝐛i and 𝐞i is the vector of residual errors for each measurement
occasion. The vectors of random effects 𝐛1, 𝐛2, ...,𝐛N and residual errors 𝐞1, 𝐞2, ..., 𝐞N for each of the
N individuals are independent of one another. It can be easily shown that this formulation leads to the
following marginal distribution for 𝐲i:

𝐲i ∼ MVN(𝐗i𝜷, 𝐙i𝚿𝐙T
i + 𝐑i).

When linear mixed models are fitted to longitudinal data, it is common to assume that the residual
errors for each observation within each individual, 𝐞i, are independent and with constant variance, 𝜎2,
that is, 𝐑i as defined in (1) is equal to 𝜎2𝐈ni

. However, other forms for 𝐑i are widely used, particularly for
the analysis of longitudinal or spatial data. An example is provided by the exponential decay correlation
structure [19], for which the elements (rjk) of 𝐑i are calculated as a function of the ‘distance’ s between
each pair of observations (in the context of longitudinal data this would be the time difference) and a
‘range’ parameter 𝛾 as follows:

rjk = 𝜎2 exp

(
−

sjk

𝛾

)
.

Alternatively, the remaining variability in the model, once the random effects have been accounted for,
can be subdivided into a component relating to a Gaussian process (independent of other model compo-
nents) with expectation zero for all time points and an independent residual error for each observation
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(here assumed to have constant variance); this effectively just creates a class of parameterisations for 𝐑i.
Defining 𝚺i as the covariance matrix resulting from the chosen Gaussian process and set of time points
𝐭i for the ith individual, the linear mixed model can then be expressed as follows:

𝐲i = 𝐗i𝜷 + 𝐙i𝐛i + Wi[𝐭i] + 𝐞i

𝐛i ∼ MVN(0, 𝚿)
Wi[𝐭i] ∼ MVN(0, 𝚺i)

𝐞i ∼ MVN(0, 𝜎2𝐈ni
)

(2)

with marginal distribution

𝐲i ∼ MVN(𝐗i𝜷, 𝐙i𝚿𝐙T
i + 𝚺i + 𝜎2𝐈ni

).

3.3. Multivariate-t distribution for longitudinal data

There are a number of multivariate generalisations of the univariate-t distribution, and a thorough review
of this topic is provided by Kotz and Nadarajah [20]. However, we shall refer to the multivariate-t
distribution as that with the probability density function as follows:

f
(
𝐲i;𝝁i,𝐕i, v

)
=

𝚪
((

v + ni

)
∕2

)
𝚪 (v∕2) vni∕2𝜋ni∕2 ||𝐕i

||1∕2
(

1 + 1
v

(
𝐲i − 𝝁i

)T 𝐕−1
i

(
𝐲i − 𝝁i

))(v+ni)∕2
.

Where ni represents the length of the random vector 𝐲i (∈ R
ni ), 𝐕i is a ni × ni positive-definite scale

matrix, 𝝁i is a ni×1 location vector and v is a degrees of freedom parameter. The mean of the distribution
is 𝝁i if v > 1 and otherwise undefined, and the variance of the distribution is v

v−2
𝐕i if v > 2 and otherwise

undefined. This is the most commonly used definition of the multivariate-t distribution.
In the present context, the mean vector 𝝁i will be represented as 𝐗i𝜷, that is, a function of a design

matrix 𝐗i and vector of parameters 𝜷. As for linear mixed models based on the normal distribution, the
scale matrix 𝐕i can be divided into components relating to a random effects structure and a residual
error structure, 𝐙iΨ𝐙T

i and 𝐑i, respectively. Pinheiro et al. consider the situation in which the degrees of
freedom parameter may vary between subgroups of individuals, but we shall assume that this is a single
constant [9].

If a vector of observations 𝐲i follows a multivariate-t distribution

𝐲i ∼ tni

(
𝐗i𝜷, 𝐕i, v

)
,

then this can alternatively be represented as a hierarchical model in which 𝐲i follows a MVN distribution
conditional on a gamma-distributed variable 𝜏i (with parameters given for ‘shape’ and ‘rate’, respectively)
as follows [9]:

𝐲i|𝜏i ∼ MVN

(
𝐗i𝜷,

1
𝜏i
𝐕i

)
𝜏i ∼ gamma

( v
2
,

v
2

)
.

(3)

In the context of the models proposed, combining variance components related to random effects,
stochastic processes and measurement error (i.e. 𝐕i = 𝐙i𝚿𝐙T

i + 𝚺i + 𝜎2𝐈ni
), this is equivalent to

𝐲i = 𝐗i𝜷 + 𝐙i𝐛i + Wi[𝐭i] + 𝐞i

𝐛i|𝜏i ∼ MVN

(
0,

1
𝜏i
𝚿
)

Wi[𝐭i]|𝜏i ∼ MVN

(
0,

1
𝜏i
𝚺i

)
𝐞i|𝜏i ∼ MVN

(
0,

1
𝜏i
𝜎2𝐈ni

)
𝜏i ∼ gamma

( v
2
,

v
2

)
.
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As noted by Pinheiro et al. [9], it directly follows from the hierarchical form of the model that

𝜏i|𝐲i ∼ gamma

(
v + ni

2
,

v + 𝛿2
i (𝜽)

2

)
,

where 𝛿2
i (𝜽) =

(
𝐲i − 𝐗i𝜷

)T 𝐕−1
i

(
𝐲i − 𝐗i𝜷

)
.

(4)

Here, 𝜽 represents the parameter vector that includes 𝜷 and determines the construction of 𝐕i. From the
standard properties of a gamma distribution, it can be seen that

E
(
𝜏i|𝐲i

)
=

v + ni

v + 𝛿2
i (𝜽)

.

3.4. Maximum likelihood estimation and software

As the likelihood function for the multivariate-normal or multivariate-t linear mixed-effects model has
a closed form, whatever the structure of 𝐕i, it is possible to directly apply Newton–Raphson-type opti-
misation procedures. Although finite differencing can be employed, the use of analytically derived exact
gradients (with respect to the model parameters) in Newton–Raphson-type procedures typically greatly
improves stability and speed of convergence. However, in some situations, such as incorporating stochas-
tic process components into the multivariate-t linear mixed effects model, the analytic derivation of
the gradients is not trivial. In addition, once an analytic form for each of the gradient terms has been
derived, it is required that this be programmed into the computational procedure for the optimisation in an
efficient manner.

An alternative method is provided by automatic differentiation, whereby a computer program is
structured in such a way that it can automatically calculate the derivatives of a mathematical function
to the same degree of accuracy as analytical derivatives (to machine precision) [21]. In essence, this is
achieved through application of the chain rule to each of the elementary operations that comprise the
calculation of the objective function (i.e. the log-likelihood function). The open-source Automatic Differ-
entiation Model Builder (ADMB) software (ADMB Foundation, Honolulu, HI, USA) allows optimisation
for any statistical model that has a closed form differentiable log-likelihood function [22] (the software
also includes functionality for models without a closed form for the likelihood that is not employed in
this paper). For any given model, the user is required to write a ‘template’ file defining a program to cal-
culate the log-likelihood in terms of the data and the set of unknown parameters to be estimated based on
the C++ language; additional statistical and mathematical functions (including matrix and vector func-
tions and operations) are provided by the software to facilitate this. A zip file containing several example
template files and a simulated dataset is provided online (Supplementary Data File S1).

For all models presented in Section 5, maximum likelihood estimates of the parameters were obtained
using the ADMB software (Version 10.1). The ‘R2admb’ package [23] was used to run analyses and
manage results through the R statistical computing environment. Starting values are required for all
parameters when using ADMB. These were obtained by using approximate values from a model fit for
the initial ‘random slopes’ linear mixed model (including random intercepts) from the nlme package for
R, and subsequent models were fitted using parameter estimates from the previous simpler model as the
initial value. When fitting models with a Brownian motion component, an initial value of 1 was used for
the scale parameter, and for models with fractional Brownian motion, an initial value of 0.5 was used for
the H index. For models based on the multivariate-t distribution, an initial value of 10 was used for the
degrees of freedom parameter. An R package (covBM) that will allow the implementation of all MVN
models described in this paper is under development by the authors.

The ‘fixed effects’ for each model are the intercept (𝛽0) and a slope (𝛽1) parameter. For the ‘random
effects’ covariance/scale matrix (𝚿) for each model, U00 and U11 represent the variance of the ran-
dom intercepts and random slopes, respectively, for each individual, with 𝜌 representing the correlation
between them. For the multivariate-t models, this interpretation holds conditional on scaling by the vector
of unobserved latent variables 𝝉 . Models were parameterised using log-transformations of U00 and U11
and a generalised logistic transformation of 𝜌. For all models, the residual error term was parameterised
using log(𝜎) (i.e. the log of the residual standard deviation). The exponential decay correlation structure
was parameterised using the log of the range parameter (𝛾), and Brownian motion models (including
fractional) used the log of the scale parameter (𝜅). Fractional Brownian motion was parameterised using
the logistic transformation of H. A log transformation was used for the degrees of freedom parameter
in multivariate-t models. For all model parameters, confidence intervals are reported derived from the
estimated asymptotic MVN distribution based on the observed information on the transformed scales.
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4. Residual diagnostics for multivariate-t models

The evaluation of diagnostic plots of the residuals resulting from fitted statistical models forms an impor-
tant part of model criticism and development. Such plots can be used to check the adequacy of fitted
models to describe the data under investigation and, when problems are observed, to suggest how further
improvements might be made. This is particularly important in the present context in which there is inter-
est in understanding patterns of variability within and between individuals as well as ensuring correct
inference for fixed effects parameters.

4.1. Subject-level residuals

Much of the focus regarding the use of multivariate-t linear mixed effects models has been on providing
robust inference for the fixed effects; this follows from the fact that individuals with observations that
are further from the mean are down-weighted in the estimation of the fixed effects parameters. Lange
et al. were concerned with achieving robust multivariate regression and suggested the use of diagnostic
residual plots that indicated whether the fitted model adequately reflected the presence of outlying sets
of measurements (i.e. corresponding to the various measurements conducted on a single individual) [7].
They point out that for a normal linear mixed model, the statistic

𝛿2
i (𝜽) =

(
𝐲i − 𝐗i�̂�

)T �̂�−1
i

(
𝐲i − 𝐗i�̂�

)
for each individual would asymptotically follow a χ2 distribution with ni degrees of freedom. However,

under a multivariate-t model, the statistic
𝛿2

i (𝜽)
ni

would asymptotically follow an F-distribution with ni

and v̂ degrees of freedom. Lange et al. transform these statistics to standard normal deviates and then
use quantile–quantile (Q–Q) plots to assess model fit. A similar approach was used by Wang and Fan
[10]. Such plots can demonstrate the inadequacy of the normal linear mixed-effects model to describe
the observed data. However, the plots do not directly show whether the multivariate-t model correctly
describes variability between individual measurements.

4.2. Measurement-level residuals

We propose that the gamma–normal formulation of the multivariate-t model, as given in (3), can be also
used to assess whether the multivariate-t distribution fully describes the patterns of variability observed
for all individual measurements in a dataset. As the observations for the ith individual are assumed to
follow a MVN distribution conditional on 𝜏i, one option is to use empirical Bayes estimates (i.e. the mean
of the predicted posterior distribution) of the 𝜏i as follows:

𝜏i =
v̂ + ni

v̂ + 𝛿2
i (𝜽)

to estimate the normal covariance matrix (�̂�′
i) for each individual

�̂�′
i =

1
𝜏i
�̂�i.

This could then be used to transform the marginal residuals for the ith individual (i.e. 𝐲i −𝐗i𝜷) as for
a normal linear mixed model using the inverse of a Cholesky decomposition of the covariance matrix
(as suggested by Fitzmaurice, Laird and Ware [24]), with the transformed residuals for all individuals
displayed in a Q–Q plot. However, assuming the empirical Bayes estimates of the 𝜏i to be correct for
all individuals might result in misleading conclusions in a similar manner to that which can be observed
when evaluating the empirical Bayes estimates of random effects in a normal linear mixed model (e.g. as
reported by Verbeke and Lesaffre [25]). An alternative would be to draw a number of repeated samples
from the predicted posterior distribution of the full vector of 𝝉 , using each sample to generate a full
set of �̂�′

i matrices and corresponding Cholesky-transformed marginal residuals. The sets of transformed
marginal residuals could then be used individually to generate multiple Q–Q plots or used together to
derive a single Q–Q plot showing the distribution of ‘observed quantiles’ over multiple realisations of
the 𝝉 .
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The gamma–normal formulation of the multivariate-t model provides another route to model checking
through the separate evaluation of each individual in the dataset. Assuming that the model parameters
are known, then the transformed marginal residuals using the inverse of the Cholesky decomposition of
the scale matrix for each individual, 𝐕i, are normally and independently distributed with mean 𝟎 and
variance 1

𝜏i
(conditioned on 𝜏i) as follows:

𝐕i = 𝐋i𝐋T
i

𝐋−1
i

(
𝐲i − 𝐗i𝜷

) |𝜏i ∼ MVN

(
0,

1
𝜏i
𝐈ni

)
.

Hence, for a model that correctly describes the data, separate Q–Q plots (with respect to the standard
normal distribution) of these transformed residuals for each individual should each indicate a normal
distribution (with differing variance). For small datasets, it may be possible to create multipanel graphics
that simultaneously display the Q–Q plots for all individuals, but for larger datasets, it would be necessary
to select a random sample of individuals for inspection. This approach will be more effective when there
are a greater number of observations per individual, as it is difficult to assess the assumption of normality
for very small samples. This reflects the fact that the presence of a greater number of observations per
individual in a dataset will provide more information as to whether there truly is a difference in underlying
variability between individuals, as represented by the values of 𝜏i. This technique could also be used
for fitted MVN models, using a Cholesky decomposition of the marginal covariance matrix for each
individual, in order to assess whether the multivariate-t distribution might be appropriate for the data.

The assessment of measurement-level residuals is particularly important when the motivation for an
analysis is to be able to make predictions regarding future individual measurements or to simulate datasets
in which the exact pattern of values within each individual is critical. The use of subject-level residuals
may be sufficient for multivariate regression analysis (for example, a defined set of different patient
characteristics at a single time point in each individual), but for the analysis of longitudinal data we believe
that measurement-level residuals should also be investigated. Examples of the residual plots proposed are
presented in Section 5. For these plots, calculations were carried out in R, and graphics were generated
using the ggplot2 package for R (Version 0.9.3.1) [26].

5. Application and implications of modelling strategy

5.1. Set of models fitted

The initial model fitted was a standard linear mixed-effects model including correlated random intercept
and slope terms and independent measurement error terms of constant variance. An exponential delay
correlation structure was considered for the error terms of this model, and the initial model was then
extended to also include either a scaled Brownian motion process or a scaled fractional Brownian motion
process. The equivalent set of four models was then fitted using a marginal multivariate-t distribution, that
is, with the scale matrix 𝐕i structured in the same manner but assuming an unobserved scaling variable
for each individual as described in Section 3.3.

5.2. Results and diagnostic checks

Table I shows the results of linear mixed models (including stochastic process extensions), with marginal
MVN distribution, fitted to the pre-ART CASCADE data. Nested models are compared using the like-
lihood ratio test; as only a single parameter is being added to the model in each of the comparisons
presented, the critical value for change in 2×log-likelihood (2Δ𝓁) at the 5 % significance level is only
3.84. Non-nested models are compared using the Bayesian information criterion (BIC) statistic, using
the total number of observations in the dataset for the calculation of the penalty term; this is supported
by the derivation of Cavanaugh and Neath [27].

The addition to the initial random slopes model of an exponential decay correlation structure for the
residual variance resulted in a significant improvement in model fit (2Δ𝓁 460 for 1 degree of freedom
(df), P<0.001). However, the addition of a Brownian motion component to the random slopes model led
to a greater increase in log-likelihood (2Δ𝓁 4940 for 1 df, P<0.001), with a subsequently lower value
of BIC for this model. A further improvement in model fit was observed when the Brownian motion
component was generalised to a fractional Brownian motion process (2Δ𝓁 160 for 1 df, P<0.001). As
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Table I. Summaries of extended linear mixed models (with marginal multivariate-normal distribution) fit-
ted to square-root transformed pre-antiretroviral therapy CD4 measurements from the Concerted Action on
SeroConversion to AIDS and Death in Europe dataset.

Random slopes + Random slopes + Random slopes +
Random slopes + exp. cor. + Brownian motion+ fBM +

measurement error measurement error measurement error measurement error

𝛽0 24.13 (24.02 to 24.24) 24.12 (24.01 to 24.23) 23.81 (23.7 to 23.92) 23.82 (23.71 to 23.92)
𝛽1 −1.36 (−1.4 to −1.33) −1.35 (−1.38 to −1.31) −1.15 (−1.18 to −1.11) −1.15 (−1.19 to −1.12)
U00 33.68 (32.65 to 34.73) 33.22 (32.2 to 34.27) 28.69 (27.72 to 29.7) 27.46 (26.46 to 28.51)
𝜌 −0.39 (−0.41 to −0.36) −0.38 (−0.41 to −0.35) −1 (−1 to 1) −0.59 (−0.63 to −0.54)
U11 1.62 (1.54 to 1.71) 1.54 (1.46 to 1.62) 0.20 (0.16 to 0.24) 0.58 (0.49 to 0.68)
𝜎 2.76 (2.74 to 2.77) 2.79 (2.77 to 2.81) 2.28 (2.26 to 2.29) 2.01 (1.94 to 2.07)
𝛾 — 0.03 (0.03 to 0.03) — —
𝜅 — — 7.00 (6.78 to 7.22) 9.32 (8.78 to 9.91)
H — — — 0.30 (0.27 to 0.33)
𝓁 −232 579 −232 349 −230 109 −230 029
BIC 465 226 464 777 460 297 460 149

Parameter estimates are given with 95 % confidence intervals in parentheses. BIC, Bayesian information criterion;
exp. cor., exponential decay correlation structure for residual error term; fBM, fractional Brownian motion; 𝓁,
log-likelihood.

such, the fractional Brownian motion model was found to have the lowest BIC of the fitted linear mixed
models. A ‘random slopes + integrated Ornstein–Uhlenbeck process + measurement error’ model was
also considered but was found to return the special case of a Brownian motion process (i.e. with a very
large estimate for the 𝛼 parameter [2]).

It is of particular interest that the estimate of the H parameter for the model incorporating a fractional
Brownian motion process is below 0.5, indicating that successive increments of the process are nega-
tively correlated and hence that the process will tend to revert towards its mean. The mean in this case
would include the subject-specific random effects for the intercept and slope. The correlation between
the random intercept and random slope for each individual for the model incorporating a scaled standard
Brownian motion process is estimated to be −1.00, which seems rather unnatural. However, when the
process is generalised to a fractional Brownian motion, an estimate of -0.59 (95 % CI, -0.63 to -0.54) is
obtained for this correlation. The Cholesky-transformed residuals of the commonly used random slopes
model and of the best-fitting linear mixed model, incorporating a fractional Brownian motion compo-
nent, were analysed to assess the goodness of fit. For both of these models, the Q–Q plot of the Cholesky
residuals indicates that their distribution is markedly heavy-tailed in comparison to the expected standard
normal under a correctly specified model (Figure 2).

Summaries of the multivariate-t distribution models fitted to the pre-ART CASCADE data are provided
in Table II. As for the MVN models, the fractional Brownian motion model was found to have the lowest
BIC of the fitted multivariate-t distribution models. Furthermore, all of the multivariate-t models were
found to have lower BIC values than all of the normal linear mixed models. The difference in 2𝓁 between
the normal and the multivariate-t ‘random slopes + fractional Brownian motion + measurement error’
models is 8298, indicating a significant and substantial improvement in model fit (1 df, P<0.001). Note
that these models can be considered nested as the multivariate-t model is equivalent to the MVN model
as the degrees of freedom parameter tends to (positive) infinity.

The estimated degrees of freedom parameter was between 5 and 6 for all of the fitted multivariate-t
models, as expected given the heavy tails observed in the Q–Q plots for the normal linear mixed models.
However, the heavy tails could be due to distributional structures other than the multivariate-t distribution
employed, for example the random effects and any Gaussian processes included could follow MVN dis-
tributions whilst the residual error terms followed independent t-distributions. As such, there is a need for
further investigation to assess the goodness of fit of the chosen multivariate-t model with respect to the
data. As described in Section 4.2, for the ‘random slopes + fractional Brownian motion + measurement
error’ multivariate-t model, 1000 simulations of the vector of latent variables 𝝉 were generated, based on
the predicted posterior distribution in each individual and used to calculate sets of Cholesky-transformed
residuals for the model. The Q–Q plot of the Cholesky residuals derived using the empirical Bayes

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1514–1532
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Figure 2. Quantile–quantile plots of Cholesky-transformed residuals from (a) the ‘random slopes + measure-
ment error’ and (b) the ‘random slopes + fractional Brownian motion + measurement error’ linear mixed model
fitted to the pre-antiretroviral therapy CD4 counts from the Concerted Action on SeroConversion to AIDS and
Death in Europe dataset. Plots are generated with respect to a standard normal distribution, and the line of

equality is shown.

Table II. Summaries of multivariate-t distribution models fitted to square-root transformed pre-antiretroviral
therapy CD4 measurements from the Concerted Action on SeroConversion to AIDS and Death in
Europe dataset.

Random slopes + Random slopes + Random slopes +
Random slopes + exp. cor. + Brownian motion+ fBM +

measurement error measurement error measurement error measurement error

𝛽0 23.77 (23.67 to 23.87) 23.76 (23.66 to 23.86) 23.57 (23.47 to 23.67) 23.59 (23.49 to 23.69)
𝛽1 −1.27 (−1.31 to −1.24) −1.23 (−1.27 to −1.2) −1.10 (−1.13 to −1.07) −1.11 (−1.14 to −1.07)
U00 23.82 (22.99 to 24.69) 22.83 (22 to 23.68) 20.3 (19.5 to 21.14) 18.82 (17.98 to 19.7)
𝜌 −0.37 (−0.4 to −0.34) −0.36 (−0.39 to −0.33) −1 (−1 to 1) −0.51 (−0.55 to −0.47)
U11 1.17 (1.1 to 1.23) 1.01 (0.95 to 1.08) 0.12 (0.1 to 0.15) 0.49 (0.43 to 0.55)
𝜎 2.25 (2.23 to 2.27) 2.32 (2.3 to 2.35) 1.88 (1.86 to 1.9) 1.45 (1.35 to 1.55)
𝛾 — 0.07 (0.06 to 0.07) — —
𝜅 — — 5.17 (4.98 to 5.36) 8.02 (7.44 to 8.64)
H — — — 0.23 (0.21 to 0.26)
df 5.64 (5.4 to 5.88) 5.34 (5.12 to 5.57) 5.83 (5.58 to 6.09) 5.76 (5.52 to 6.02)
𝓁 −228 221 −227 705 −226 015 −225 880
BIC 456 521 455 501 452 121 451 862

Parameter estimates are given with 95 % confidence intervals in parentheses. BIC, Bayesian information criterion;
df, degrees of freedom parameter; exp. cor., exponential decay correlation structure for residual error term; fBM,
fractional Brownian motion; 𝓁, log-likelihood.

estimate (𝜏i) for each individual shows a near perfect fit to the standard normal distribution (Figure 3).
However, taking quantiles over multiple simulations of 𝝉 indicates the presence of slightly heavier tails
than expected.

The goodness of fit of the ‘random slopes + fractional Brownian motion + measurement error’
multivariate-t model was further investigated by inspection of Q–Q plots of residuals for individual
patients transformed by the inverse of the Cholesky decomposition of their estimated scale matrix (V̂i)
without any correction for 𝜏i. As little would be gained by evaluating patients with very few observa-
tions, only those with greater than 15 measurements in the dataset were considered; one thousand and
forty-four (6.9%) individuals in the dataset met this criterion. Q–Q plots for 25 randomly selected indi-
viduals are shown in Figure 4. Under a correctly specified model, each of the plots should approximately
show a straight line of points, with differing slopes between individuals; for the ith individual, the
expected slope is a function of their unobserved scale variable: 𝜏−1∕2

i , where 𝜏i ∼ gamma
(

v
2
,

v
2

)
, with

v being the degrees of freedom parameter in the multivariate-t model. These plots suggest that there are
indeed differences in overall variability between individuals as implied by the multivariate-t model; for
example, Plot 9 shows a clearly steeper slope than Plot 11. To further illustrate this, the raw data from
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Figure 3. Composite quantile–quantile plot of the distribution of Cholesky-transformed residuals (for all measure-
ments) from the ‘random slopes + fractional Brownian motion + measurement error’ multivariate-t distribution
model fitted to the pre-antiretroviral therapy CD4 counts from the Concerted Action on SeroConversion to AIDS
and Death in Europe dataset, based on 1000 simulations of the vector of latent variables 𝝉 . The dotted lines show
the 2.5th, 50th and 97.5th percentiles of the sample quantiles for each theoretical quantile corresponding to the
total number of observations; the solid black line shows the sample quantiles derived using the empirical Bayes

estimate (𝜏i) for each individual, with the line of equality also displayed in grey.

the 25 sampled patients are shown in Figure 5, with the observations for the patients corresponding to
Plots 9 and 11 in Figure 4 made prominent. The ‘Plot 9’ patient has the lowest predicted latent scaling
variable (𝜏 = 0.29) amongst this subset, corresponding to high variability over time, whilst the ‘Plot 11’
patient has the highest predicted latent scaling variable (𝜏 = 2.33) in this group, corresponding to low
variability over time.

5.3. Simulation study: impact of model choice on treatment initiation predictions

The initiation of ART in HIV-positive patients is commonly based on the observations of a CD4 count
below a given threshold, with the most appropriate cut-off (or whether treatment should be given imme-
diately upon diagnosis) for any given setting still under debate. As such, there is interest in determining
the proportion of patients that will cross any given threshold and initiate ART as a function of time from
seroconversion, as this will impact on clinical practice and on the cost of different healthcare strate-
gies. Lodi et al. [28] used random slopes linear mixed models fitted to over 175 000 CD4 measurements
from the CASCADE cohort (including the data analysed in the present study) to predict the proportion
of untreated patients reaching thresholds of <500, <350 and <200 cells/μL with respect to time from
seroconversion, reflecting the cut-offs used in various versions of official guidelines. In this analysis, the
distribution of subject-specific slopes was used to estimate the proportion of patients with ‘true’ CD4
count below each threshold value.

Using their fitted linear mixed model including a Brownian motion component, Babiker et al. [3]
investigated the proportion of patients reaching a threshold of <350 cells/μL through simulation of sets
of longitudinal measurements for tens of thousands of individuals. This approach has the advantage of
allowing realistic assessment of the characteristics of a cohort in practice, and several regimes for the
scheduling of measurements and initiation of ART were considered in their simulations. However, the
predictions made from the simulations were not directly compared to those that would have been obtained
using a normal random slopes model. We have therefore performed a similar analysis based on several
of the fitted models in order to investigate this.

Simulated cohorts of individuals were generated based on three MVN models as follows: the random
slopes model, the Brownian motion model and the fractional Brownian motion model (with the latter two
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Figure 4. Quantile–quantile plots for the residuals under the ‘random slopes + fractional Brownian motion +
measurement error’ multivariate-t model of 25 randomly selected individuals with greater than 15 observations.
The residuals for individual patients have been transformed by the inverse of the Cholesky decomposition of their
estimated scale matrix (V̂i) without any correction for the unobserved scale variable 𝜏i. Theoretical quantiles in

each case are those from the standard normal distribution.

also including a random slopes structure and all including measurement error). In addition, a cohort was
generated using the fitted multivariate-t fractional Brownian motion model (again, including a random
slopes structure and measurement error). For each of these models, data for five million individual patients
were simulated based on scheduled measurements being obtained every 4 months for up to 10 years.
Data were also generated for measurements 1 month after the scheduled observation in each case for use
in the analysis, corresponding to a confirmatory test. CD4 thresholds of <500, <350 and <200 cells/μL
for ART initiation were investigated. If a scheduled measurement was observed below a given threshold,
then the value 1 month later was assessed to mimic the conduct of an additional confirmatory test as
commonly performed in clinical practice. The patient was considered to initiate ART if this second value
was also below the threshold.

The results of the analysis of the simulated cohorts are presented in Figure 6. The differences in pre-
dictions made by each of the fitted models are large enough to have practical implications particularly
within a public health or health economics context; for example, using the <500 cells/μL threshold, the
proportion of patients on ART 2 years after seroconversion is predicted to be 57% by the normal random
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Figure 5. Line plot of the square-root transformed CD4 counts observed in the random sample of 25 patients
with greater than 15 observations (as in Figure 4). The observations for the patients corresponding to Plot 9 (solid
black line, filled circles for individual data points) and Plot 11 (dashed black line, open triangles for individual

data points) in Figure 4 are made prominent.

Figure 6. The proportion of HIV-positive patients predicted to have initiated antiretroviral therapy (ART) as a
function of time since seroconversion, based on simulation from the fitted normal random slopes model (black
line), Brownian motion model (blue line) and fractional Brownian motion model (red line) and the multivariate-t
fractional Brownian motion model (green line). Results are presented using CD4 thresholds for ART initiation of
<500,<350 and<200 cells/μL, as indicated at top right of the graph. Simulations are based on CD4 measurements
being obtained every 4 months, with initiation of ART conditional on an additional observation below the cut-off

concerned 1 month after the ‘scheduled’ measurement.

slopes model and to be 62% by the multivariate-t model with fractional Brownian motion. The planning
of the Strategic Timing of AntiRetroviral Treatment trial described by Babiker et al. [3] made use of pre-
dictions of the proportion of patients initiating ART at the 350 cells/μL threshold for which we found
only small differences between each of the models that included a stochastic process component (i.e.
excluding the standard random slopes model). It is interesting to note that for the 500 and 350 cells/μL
cut-offs, the predictions for the models incorporating stochastic process components converge as time
increases towards 10 years, separate to the lower predictions made by the standard random slopes model.

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1514–1532
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5.4. Simulation study: parameter bias in slope estimates

One interesting feature of the various models fitted to the CASCADE pre-ART CD4 data is that the mean
slope (𝛽1) of CD4 decline is substantially less negative for the linear mixed models that include standard
or fractional Brownian motion components (both –1.15) than for the random slopes model (–1.36). The
estimated slopes for the equivalent multivariate-t models were also less steep in each case (Tables I and
II). We performed a simulation study to assess the impact of model choice and missing data patterns on
this difference, which may indicate apparent bias from the use of simpler models.

It follows from Liang and Zeger [29] that a linear mixed model analysis of longitudinal data will
give consistent estimates of the fixed effects given that either there is no missing data or that data is
‘missing completely at random’ (MCAR) (following the terminology of Rubin [15]). This also requires
the structure of the fixed effects to be correctly specified in the model, but not the exact distribution
of observations or covariance between them. Hence, it seems that the substantial differences in slope
estimates between different models fitted to pre-ART CD4 data are due to the presence of missing data
for which the missingness is not MCAR, although the framework for missing data terminology is less
clear for highly unbalanced datasets without a consistent observation schedule.

It is often postulated that the missingness of observations in pre-ART datasets can be treated as MAR,
that is, that it is independent of the unobserved outcome variable conditional on the observed values of
the outcome variable and other covariates included in the model, and that as such the missingness can be
ignored under maximum likelihood estimation such as the use of linear mixed models. The MAR assump-
tion is plausible if patients are thought to mainly drop out of the dataset upon initiation of ART, and if
this is entirely dependent on their observed CD4 counts. However, the beneficial properties of maximum
likelihood-based inference (i.e. consistency and asymptotic normality and efficiency of estimates) with
respect to MAR data are dependent on a correctly specified model for the likelihood. The fact that adding
stochastic process components and/or generalising to a multivariate-t distribution leads to a very substan-
tial improvement in BIC indicates that the standard random slopes model does not correctly describe the
covariance structure or probability model for pre-ART CD4 data.

To further investigate bias in parameter estimates resulting from overly simplistic models, the best-
fitting model (i.e. multivariate-t with fractional Brownian motion) was assumed to be ‘correct’ and cohorts
of patient data simulated from it. CD4 cell count observations were generated from 0 to 5 years, for
groups of either 100 or 200 patients and with an annual observation frequency of 1 or 3; five hundred
cohorts were generated for each combination. For each simulated cohort, models were first fitted to the
complete uncensored data (although this would include impossible negative values), and subsequently
to the data following censoring corresponding to ART initiation at CD4 cut-off values of 200, 350 and
500 cells/μL. The ‘correct’ multivariate-t model and three normal linear mixed models (the random slopes
model, the Brownian motion model and the fractional Brownian motion model) were applied to each
simulated cohort under each condition. For the analyses involving censoring, additional confirmatory
measurements were generated 1 month after the ‘scheduled’ observations; these were only considered
to be observed when the scheduled measurement was below the cut-off value, and the patient was only
censored when the confirmatory value was also below the cut-off. The censored datasets could therefore
be considered to correspond to observations being MAR but not MCAR. As the MAR condition holds
for any possible realisation, this scenario meets the ‘everywhere MAR’ definition provided by Seaman
et al. [30], allowing valid frequentist likelihood inference. Model fitting was considered to have failed
when parameter estimates were not returned or when the covariance matrix of parameter estimates was
not positive-definite.

Limited bias was observed in the estimation of the intercept term when using simplified models and
so the results of this analysis are only presented for estimation of the slope parameter 𝛽1. Bias in the esti-
mation of 𝛽1 and the coverage of 95% confidence intervals for this parameter are presented in Table III.
As expected, a lack of bias (or only very minimal bias) and appropriate coverage intervals were observed
when the correctly specified model was fitted, even in the presence of censoring. Interestingly, no or
only minimal bias was observed when the equivalent normal linear mixed model (including a fractional
Brownian motion component) was used. Linear mixed models including a Brownian motion component
showed some downward bias in the presence of censoring, with this most marked when censoring was
applied using the CD4 cut-off of 500 cells/μL. Substantial downward biases and poor coverage of con-
fidence intervals were observed when a standard random slopes linear mixed model was applied in the
presence of censoring, with the degree of bias clearly linked to the extent of censoring.
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A summary of the standard deviations of point estimates for the mean slope and the average estimated
standard error for this parameter in the simulations is also provided as supplementary material (Table S1).
There were not large discrepancies between these two measures of the standard error. The mean slope
estimates from the correctly defined model showed slightly lower variance than the estimates from the
incorrectly defined models in any given situation, but the scale of these differences seems relatively small
compared with the large biases observed.

The differences in slope estimates observed between models under the censoring conditions in this
simulation study correspond to the differences observed between the models when applied to the real
dataset. This provides supporting evidence that special attention should be given to the probability model
used, and in particular the covariance structure, when analysing a dataset for which there are substantial
missing data that are not MCAR. These simulations imply that an analysis using a wrongly specified
model might incorrectly indicate differences between two groups in their average rate of decline if they
have been subject to different censoring mechanisms. We carried out an additional investigation in which
two groups of either 100 or 200 patients each were simulated with three observations per year, with the
first group subject to censoring at the ‘200 cut-off’ whilst the ‘500 cut-off’ was applied for the second
group. Other details of the simulation and model fitting were as previously described, but two additional
‘fixed effects’ parameters were added to the models to allow the mean intercept (𝛿0) and slope (𝛿1) of the
second group to differ from the first group (with the true value of these parameters being zero). These
simulations confirmed that bias could occur in the estimation of between-group differences in slope within
a single model (estimated bias for random slopes model with 200 patients per group: –0.163, Table S2).

6. Discussion

In this study, we have further developed the statistical modelling of longitudinal biomarker data, through
application to pre-treatment CD4 counts in patients with HIV, in which we have shown that the combi-
nation of a fractional Brownian motion component and generalisation of the normal linear mixed model
to a multivariate-t distribution leads to substantial improvements in model fit. This novel combination
of model features provides additional information regarding the between-patient and within-patient vari-
ability in observations over time. Evidence is provided for the appropriateness of using a multivariate-t
distribution in the studied dataset through evaluation of novel diagnostic plots. Furthermore, simulation
studies are presented to demonstrate the impact of model choice on cohort-level predictions and on bias
in mean slope estimates when data are MAR.

The presence of non-stationary stochastic process components in models for longitudinal data implies
that the progress of the state of the underlying biological system for each individual does not follow a
deterministic relationship with time, but rather follows an unpredictable path. This finding seems intu-
itive in the context of the extremely complex interactions between viral replication and immune system
response that influence the CD4 count series that are observed in HIV-positive patients. When using a frac-
tional Brownian motion component, the H values obtained were less than 0.5, indicating that the process
is erratic but displays some reversion towards an underlying mean. The estimates of the degrees of free-
dom parameter for the multivariate-t models of between five and six indicate substantial between-patient
differences in variability over time.

Through simulations based on generating data from the more complex fitted model, it is demonstrated
that the use of a normal random slopes model is associated with substantial bias in the estimation of the
mean slope parameter in the presence of censoring, with the degree of bias strongly dependent on the
choice of censoring regime. This is important, as estimates of this parameter are often used as a proxy
for rate of decline in health and compared between groups. As initiation of ART is usually dependent
on observed CD4 values, the MAR condition is often invoked to argue that likelihood-based model esti-
mation will lead to valid inferences, but this only holds conditional on the correct specification of the
likelihood model. It can therefore be argued that in this context, greater effort should be made to make
use of statistical models that adequately describe the distributional and covariance patterns present in
the data.

Diagnostic Q–Q plots of Cholesky-transformed marginal residuals from MVN models fitted to square-
root CD4 counts show very heavy tails, indicating clear violation of the modelling assumptions. We have
demonstrated that the use of a multivariate-t distribution in combination with a non-stationary stochastic
process component leads to a very substantial improvement in BIC with diagnostic Q–Q plots that only
indicate relatively mild violation of the model’s assumptions. Such models can be fit efficiently and to
large datasets using the open-source ADMB software [22], with this task made easier by the fact that the
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log-likelihood of the multivariate-t distribution is available in closed form. It would be of inter-
est to investigate whether models comprised of different combinations of multivariate-t and normal
distributions could provide a better fit to the data; such models have been previously discussed by Song
et al. [31]. For example, it may be considered more biologically plausible to fit a statistical model in
which the variability of the stochastic process component differs between individuals (i.e. follows a
multivariate-t distribution) but the random effects and measurement error terms do not (i.e. they follow
normal distributions). For such models, the likelihood function is not available in closed form, making
the computations required for parameter estimation substantially more complex. The implementation and
evaluation of such models will be the topic of further research.

Normal linear mixed models including simple or fractional Brownian motion processes cannot be fitted
using standard routines in existing statistical software packages, and this is probably responsible for the
fact that they have not been widely adopted in practice (at least in the setting of HIV-research). However,
an R package (covBM) that will allow the implementation of such models is under development by
the authors. Most software does not offer any standard function for fitting mixed models based on the
multivariate-t distribution, although an R package ‘tlmec’ does exist for fitting models generalised from
a normal model with independent error terms of constant variance [12].

Our research has been focused on CD4 cell counts in HIV-positive patients, but the modelling frame-
work developed may be of use for the analysis of longitudinal data in other biomedical applications.
For example, Diggle et al. recently described the use of an extended linear mixed model including
another non-stationary stochastic process, integrated Brownian motion, for the analysis of estimated
glomerular filtration rates in patients at risk for renal failure [32]. The authors provide plots of ‘Cholesky-
standardised’ residuals produced from the application of the model, which show very heavy tails. The
multivariate t-distribution implies differences in the volatility of observations between patients, which
may by useful in planning and interpreting the monitoring of biomarkers in HIV and other disease areas.

Whilst it is arguably impossible to claim that any statistical model exactly represents the data-
generating mechanism under investigation, it seems that both the addition of stochastic process compo-
nents to the standard linear mixed model and the use of a multivariate-t distribution can be used to gain a
greater understanding of longitudinal biomedical data. Such models provide greater flexibility, but require
only a small number of additional parameters and follow a model specification that can be interpreted in
terms of the underlying biological process; as such, the potential gains in inference and understanding
through their use are likely to greatly outweigh any drawbacks of increased model complexity. There is
therefore a motivation to develop more efficient methods of fitting such models and to make these more
widely available.
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