
Downloaded from: http://researchonline.lshtm.ac.uk/2312507/

DOI: 10.5588/pha.14.0045

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: https://creativecommons.org/licenses/by/3.0/igo/
A four-year nationwide molecular epidemiological study in Estonia: risk factors for tuberculosis transmission

K. Toit,1,2 A. Altraja,2,3 C. D. Acosta,4 P. Viiklepp,5 K. Kremer,4,6 T. Kummik,1 M. Danilovits,3 R. Van den Bergh,7 A. D. Harries,8,9 P. Supply10,11,12,13

http://dx.doi.org/10.5588/pha.14.0045

Setting: Estonia has a high proportion of multidrug-resistant tuberculosis (MDR-TB). It is important to link molecular and epidemiological data to understand TB transmission patterns.

Objective: To use 24-locus variable numbers of tandem repeat (VNTR) typing and national TB registry data in Estonia from 2009 to 2012 to identify the distribution of drug resistance patterns, Mycobacterium tuberculosis isolate clustering as an index for recent transmission, socio-demographic and clinical characteristics associated with recent transmission, and the distribution of transmission between index and secondary cases.

Design: A retrospective nationwide cross-sectional study.

Results: Of 912 cases with isolate and patient information, 39.1% of isolates were from the Beijing lineage. Cluster analysis identified 87 clusters encompassing 69.1% of isolates. The largest cluster comprised 178 isolates from the Beijing lineage, of which 92.1% were MDR- or extensively drug-resistant TB (XDR-TB). Factors associated with recent transmission were polyresistant drug-resistant TB, human immunodeficiency virus positivity, Russian ethnicity, non-permanent living situation, alcohol abuse and detention. XDR-TB cases had the highest risk of recent transmission. The majority of transmission cases involved individuals aged 30–39 years.

Conclusion: Recent TB transmission in Estonia is high and is particularly associated with MDR- and XDR-TB and the Beijing lineage.

Molecular epidemiology has contributed significantly to our understanding of TB transmission. Studies using this approach have helped to determine what proportion of active TB is due to reactivation or re-infection and to identify risk factors for TB transmission within communities. For such studies, the most commonly used methods for Mycobacterium tuberculosis DNA fingerprinting are insertion sequence (IS) 6110 restriction fragment length polymorphism (RFLP) and 24-locus variable numbers of tandem repeat (VNTR) typing, which were internationally standardised in 1993 and 2006, respectively. VNTR typing has various advantages over RFLP typing, including its ease of use, short turnaround time and digital output format. In addition, several population-based studies have shown that the predictive value of VNTR typing to study TB transmission is similar to that of RFLP typing in different Western European settings. The current gold standard in molecular epidemiology of TB is therefore VNTR typing, which produces a numeric pattern enabling the identification of M. tuberculosis strains. It is assumed that patients infected with M. tuberculosis isolates with identical DNA fingerprints are 1) infected with the same M. tuberculosis strain and 2) have infected each other, have a common source of infection or were independently infected by a highly prevalent strain circulating in the community. Conversely, it is assumed that patients who are infected with a strain with a unique DNA fingerprint in a population are either suffering from a reactivation of a previous infection or from infection with a strain that was newly introduced into the population by the patient. Investigators have thus used molecular clustering, defined as matching of identical DNA fingerprints, as an index of TB transmission.

The first study to use RFLP DNA fingerprinting results conducted in Estonia showed high clustering rates among MDR-TB isolates, and suggested an association between the Beijing genotype of M. tuberculosis and drug resistance. A later study that compared DNA fingerprints from MDR-TB cases reported in Europe during the years 2003–2007 showed that these Beijing strains persisted in Estonia and were part of a large cluster of MDR-TB strains (designated as cluster E0051) detected in 12 different countries. In 2009, Estonia started using VNTR typing within the framework of the TB PAN-NET project; one of the project’s aims was to study TB transmission in European countries.
The current study used VNTR patterns generated within the framework of the TB PAN-NET project to construct a database that was linked to the Estonian National TB Registry (NTR) to assist TB control activities. In particular, we performed cluster analysis of the DNA fingerprints with the aim of identifying risk groups that can be targeted by the National TB Programme (NTP) to improve prevention of TB transmission.

METHODS

Study design

This was a retrospective nationwide cross-sectional study.

Setting

Estonia is a small European country neighbouring Latvia, Finland and the Russian Federation, with a population of approximately 1.3 million. About 30% of the population lives in the capital, Tallinn. About 70% of the population are of Estonian ethnicity, 25% are Russians and the remaining 5% include various ethnic groups from the former Soviet Union and Eastern Europe.

Since 1998, the institutions managing anti-tuberculosis treatment in Estonia have followed NTP guidelines, which are in line with the World Health Organization TB guidelines. TB case finding is mainly passive, and diagnosis is established through sputum smear microscopy, culture and chest radiography for pulmonary TB and other investigations for extra-pulmonary TB. All TB patients are registered with a National TB Programme (NTP) to improve prevention of TB transmission.

Data analysis and statistics

Cluster analysis of VNTR patterns and lineage assignment was performed using the MIRU-VNTRplus database. Cluster analysis was conducted using the unweighted pair group method with arithmetic mean (UPGMA) and the categorical coefficient. A cluster was defined as at least two isolates with 100% identical VNTR typing patterns. An index case was defined as chronologically the first case in a cluster. Clustering of VNTR patterns was used as a measure of TB transmission. Lineages were assigned using the similarity search provided in the MIRU-VNTRplus database using a distance maximal genotypic distance of 0.17 and tree-based identification using the neighbour-joining algorithm.

The number and sizes of clusters and the genetic background of these clusters were tabulated. Associations between different patient characteristics and isolate clustering were assessed, and risk ratios (RRs) and corresponding 95% confidence intervals (CIs) were calculated. Differences at the 5% level (P < 0.05), calculated using Pearson’s χ² test, were considered statistically significant. All data were analysed using EpiData version 2.2.2.182 (EpiData Association, Odense, Denmark).

Ethics approval

Ethics approval was granted both by the Research Ethics Committee of the University of Tartu, Tartu, Estonia, and by the International Union Against Tuberculosis and Lung Disease Ethics Advisory Group, Paris, France. Permission for collecting, handling and analysing patient data was obtained from the Estonian Data Protection Inspectorate and the Ministry of Social Affairs, Tallinn, Estonia.

RESULTS

Of the 1371 TB cases identified in Estonia during the 4-year study period, 1286 (93.8%) had pulmonary TB, 1080 (78.8%) were new cases with no previous anti-tuberculosis treatment and 1066 (77.8% of total) were culture-positive TB cases. Of these, 917 (86.0%) had VNTR patterns available for their isolates in the National TB Reference Laboratory database. For 912 cases, including nine patients registered twice as a result of recurrent TB, a link between the patient and isolate information could be established.

Lineages could be assigned to 86.2% of the 912 iso-
First, the most frequent isolates were from the Beijing lineage, which were particularly associated with drug-resistant TB. Over 90% of patients with MDR-TB, MDR-TB with additional resistance to second-line drugs and XDR-TB, were infected with isolates from the Beijing lineage. The association between severe drug resistance and the Beijing lineage is well established worldwide;\(^{24,25}\) in Estonia, this association was already demonstrated in 2001 with isolates that originated from 1994.\(^{10}\) Our data thus demonstrate a continuous, longitudinal persistence of this association in Estonia. Another interesting but unexpected finding was that the small number of isolates with RMP monoresistance largely came from the LAM lineage (94.0% and 96.3%, respectively). In addition, five of seven RMP-mono-resistant isolates (71.4%) were from the LAM lineage.

In total, there were 87 clusters comprising 630 (69.1%) isolates (Figure 1). Ten clusters had more than 10 isolates, with four clusters having over 20 isolates. The largest cluster, containing 178 isolates, consisted of the Beijing lineage strain MtbC 15-9 type 94-32, according to the standard VNTR typing nomenclature;\(^{21,23}\) 90% of patients with MDR-TB, MDR-TB with additional resistance to second-line drugs and XDR-TB, were infected with isolates from the Beijing lineage. In contrast, most MDR- and XDR-TB isolates were from the Beijing lineage (94.0% and 96.3%, respectively). In addition, five of seven RMP-mono-resistant isolates (71.4%) were from the LAM lineage.

Socio-demographic factors associated with an increased risk of clustering were Russian ethnicity, non-permanent living conditions, alcohol abuse and history of incarceration, while factors associated with a reduced risk of clustering were older age, being born in Ukraine, being of Belarusian ethnicity, living in Tartu and having a lower education level (Table 2). The clinical factors associated with an increased risk of clustering were polyresistant, MDR- and XDR-TB, and being HIV-positive (Table 3). XDR-TB cases had the highest risk of clustering (RR 1.63, \(P < 0.001\)). Extra-pulmonary TB was associated with a reduced risk of clustering.

The distribution of transmission between index cases and secondary cases in relation to different age groups is shown in Figure 2. Transmission occurred most frequently from the 30–39 year age group. The majority of secondary cases were distributed among those aged 30–59 years.

DISCUSSION

This is the first molecular epidemiological study in Estonia using the VNTR methodology to examine associations between patients, their characteristics, *M. tuberculosis* strains and clustering to determine where recent TB transmission has occurred. There were several important findings.
Table 2: Socio-demographic characteristics of patients with culture-positive tuberculosis in relation to clusters, Estonia, 2009–2012

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Total n</th>
<th>Clustered n (%)</th>
<th>RR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>638</td>
<td>449 (70.4)</td>
<td>1.07 (0.97–1.18)</td>
<td>0.20</td>
</tr>
<tr>
<td>Female</td>
<td>274</td>
<td>181 (66.0)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><20</td>
<td>16</td>
<td>12 (75.0)</td>
<td>1.01 (0.75–1.35)</td>
<td>1.0</td>
</tr>
<tr>
<td>20–29</td>
<td>110</td>
<td>91 (82.7)</td>
<td>1.11 (0.99–1.25)</td>
<td>0.10</td>
</tr>
<tr>
<td>30–39</td>
<td>178</td>
<td>144 (80.9)</td>
<td>1.09 (0.97–1.21)</td>
<td>0.14</td>
</tr>
<tr>
<td>40–49</td>
<td>200</td>
<td>149 (74.5)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>50–59</td>
<td>198</td>
<td>142 (71.7)</td>
<td>0.96 (0.85–1.08)</td>
<td>0.53</td>
</tr>
<tr>
<td>60–69</td>
<td>101</td>
<td>59 (58.4)</td>
<td>0.78 (0.65–0.94)</td>
<td><0.01</td>
</tr>
<tr>
<td>≥70</td>
<td>109</td>
<td>33 (30.3)</td>
<td>0.41 (0.30–0.55)</td>
<td><0.001</td>
</tr>
<tr>
<td>Country of birth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>772</td>
<td>550 (71.2)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td>96</td>
<td>62 (64.6)</td>
<td>0.91 (0.78–1.06)</td>
<td>0.18</td>
</tr>
<tr>
<td>Ukraine</td>
<td>15</td>
<td>4 (26.7)</td>
<td>0.37 (0.16–0.87)</td>
<td><0.001</td>
</tr>
<tr>
<td>Belarus</td>
<td>11</td>
<td>6 (54.5)</td>
<td>0.77 (0.45–1.32)</td>
<td>0.23</td>
</tr>
<tr>
<td>Ethnicity of the patient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonian</td>
<td>515</td>
<td>348 (67.6)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Russian</td>
<td>320</td>
<td>242 (75.6)</td>
<td>1.12 (1.03–1.22)</td>
<td>0.01</td>
</tr>
<tr>
<td>Belarusian</td>
<td>19</td>
<td>8 (42.1)</td>
<td>0.62 (0.37–1.06)</td>
<td>0.02</td>
</tr>
<tr>
<td>Other</td>
<td>43</td>
<td>24 (55.8)</td>
<td>0.83 (0.63–1.08)</td>
<td>0.12</td>
</tr>
<tr>
<td>Living area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>428</td>
<td>307 (71.7)</td>
<td>1.09 (1.00–1.19)</td>
<td>0.05</td>
</tr>
<tr>
<td>Rural</td>
<td>452</td>
<td>297 (65.7)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>City of residence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tallinn</td>
<td>269</td>
<td>198 (73.6)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Tartu</td>
<td>46</td>
<td>27 (58.7)</td>
<td>0.80 (0.62–1.03)</td>
<td>0.04</td>
</tr>
<tr>
<td>Kohila-Järve</td>
<td>43</td>
<td>33 (76.7)</td>
<td>1.04 (0.87–1.25)</td>
<td>0.66</td>
</tr>
<tr>
<td>Narva</td>
<td>45</td>
<td>30 (66.7)</td>
<td>0.91 (0.73–1.13)</td>
<td>0.33</td>
</tr>
<tr>
<td>Pärnu</td>
<td>25</td>
<td>19 (76.0)</td>
<td>1.03 (0.82–1.30)</td>
<td>0.79</td>
</tr>
<tr>
<td>Living situation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanent home</td>
<td>804</td>
<td>541 (67.3)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Non-permanent home*</td>
<td>64</td>
<td>54 (84.4)</td>
<td>1.25 (1.12–1.41)</td>
<td><0.01</td>
</tr>
<tr>
<td>Homeless†</td>
<td>42</td>
<td>34 (81.0)</td>
<td>1.20 (1.03–1.40)</td>
<td>0.06</td>
</tr>
<tr>
<td>Level of education‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary (4 years)</td>
<td>61</td>
<td>33 (54.1)</td>
<td>0.76 (0.60–0.97)</td>
<td><0.01</td>
</tr>
<tr>
<td>Basic (9 years)</td>
<td>303</td>
<td>215 (71.0)</td>
<td>1.00 (0.91–1.10)</td>
<td>0.99</td>
</tr>
<tr>
<td>Secondary (12 years)</td>
<td>476</td>
<td>338 (71.0)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Higher (>12 years)</td>
<td>62</td>
<td>23 (37.1)</td>
<td>0.89 (0.73–1.08)</td>
<td>0.19</td>
</tr>
<tr>
<td>Alcohol abuse§</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>421</td>
<td>325 (77.2)</td>
<td>1.24 (1.13–1.35)</td>
<td><0.001</td>
</tr>
<tr>
<td>No</td>
<td>464</td>
<td>290 (62.5)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Drug abuse¶</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>65</td>
<td>47 (72.3)</td>
<td>1.05 (0.89–1.23)</td>
<td>0.57</td>
</tr>
<tr>
<td>No</td>
<td>526</td>
<td>362 (68.8)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>History of incarceration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>171</td>
<td>137 (80.1)</td>
<td>1.19 (1.09–1.30)</td>
<td>0.001</td>
</tr>
<tr>
<td>No</td>
<td>688</td>
<td>463 (67.3)</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

*Defined as a person staying in random dwellings, with no permanent residence.

†Defined as a person living on the street and/or in shelters.

‡Described as years of school attendance.

§Regular consumption of alcohol.

¶Regular use of drugs.

RR = risk ratio; CI = confidence interval.
In this largest cluster, the prevalence of MDR-/XDR-TB exceeded 90%. This evidence for active, extensive spread of MDR-/XDR-TB clones of *M. tuberculosis* Beijing isolates in Estonia is of particular concern, and calls for the need for new measures to better prevent transmission in the populations involved. However, the prominence of this Beijing 100-32 cluster, and of Beijing isolates overall in this setting, means that we must interpret the molecular clus-

TABLE 3 Clinical characteristics of patients with culture-positive tuberculosis in relation to clusters, Estonia, 2009–2012

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Total n</th>
<th>Clustered n (%)</th>
<th>RR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of TB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary</td>
<td>725</td>
<td>513 (70.8)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Extra-pulmonary</td>
<td>32</td>
<td>8 (25.0)</td>
<td>0.35 (0.19–0.65)</td>
<td><0.001</td>
</tr>
<tr>
<td>Both</td>
<td>148</td>
<td>105 (70.9)</td>
<td>1.00 (0.90–1.12)</td>
<td>0.96</td>
</tr>
<tr>
<td>Category of TB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New</td>
<td>752</td>
<td>507 (67.4)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Relapse</td>
<td>100</td>
<td>76 (76.0)</td>
<td>1.13 (1.00–1.27)</td>
<td>0.08</td>
</tr>
<tr>
<td>Treatment after failure</td>
<td>28</td>
<td>22 (78.6)</td>
<td>1.17 (0.95–1.42)</td>
<td>0.22</td>
</tr>
<tr>
<td>Treatment after LFU</td>
<td>32</td>
<td>25 (78.1)</td>
<td>1.16 (0.96–1.40)</td>
<td>0.20</td>
</tr>
<tr>
<td>Drug resistance pattern</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>602</td>
<td>355 (59.0)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>INH-mono resistant</td>
<td>15</td>
<td>11 (73.3)</td>
<td>1.24 (0.91–1.70)</td>
<td>0.30</td>
</tr>
<tr>
<td>RMP-mono resistant</td>
<td>7</td>
<td>4 (57.1)</td>
<td>0.97 (0.51–1.85)</td>
<td>1.00</td>
</tr>
<tr>
<td>Polyresistant*</td>
<td>47</td>
<td>38 (80.9)</td>
<td>1.37 (1.18–1.60)</td>
<td><0.01</td>
</tr>
<tr>
<td>MDR-TB</td>
<td>144</td>
<td>122 (91.0)</td>
<td>1.54 (1.42–1.68)</td>
<td><0.001</td>
</tr>
<tr>
<td>MDR-TB + AG/CP</td>
<td>54</td>
<td>50 (92.6)</td>
<td>1.57 (1.42–1.74)</td>
<td><0.001</td>
</tr>
<tr>
<td>MDR-TB + FQ</td>
<td>26</td>
<td>24 (92.3)</td>
<td>1.57 (1.38–1.78)</td>
<td><0.001</td>
</tr>
<tr>
<td>XDR-TB</td>
<td>27</td>
<td>26 (96.3)</td>
<td>1.63 (1.48–1.80)</td>
<td><0.001</td>
</tr>
<tr>
<td>HIV testing done</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>107</td>
<td>90 (84.1)</td>
<td>1.23 (1.12–1.36)</td>
<td><0.001</td>
</tr>
<tr>
<td>Negative</td>
<td>757</td>
<td>517 (68.3)</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

*Resistant to at least two of the first-line drugs, but not MDR-TB.

TB = tuberculosis; RR = risk ratio; CI = confidence interval; LFU = lost to follow-up; INH = isoniazid; RMP = rifampicin; MDR-TB = multidrug-resistant TB; AG/CP = any of the injectable second-line aminoglycosides or capreomycin; FQ = fluoroquinolone; XDR-TB = extensively drug-resistant TB; HIV = human immunodeficiency virus.

FIGURE 2 Distribution of tuberculosis transmission between age groups of index cases and secondary cases, Estonia, 2009–2012.
tering results in terms of recent transmission with some caution. Although highly discriminatory, 24-locus VNTR typing lacks resolution power for accurately discriminating closely related clones composing Beijing strain populations in comparison with IS6110-RFLP or with the use of additional hypervariable VNTR loci.8,28 There may thus be some minimal overestimation in our assessment of recent transmission.

Third, we found certain socio-demographic and clinical factors that were significantly associated with clustering, indicating that the clustering detected reflects recent transmission to a good extent. These factors included an absence of a permanent home, alcohol abuse, previous incarceration and having polyresistant TB, MDR- or XDR-TB, or HIV infection. While the associations of clustering with incarceration, alcohol abuse, MDR-/XDR-TB and HIV are well established,29,30 the other socio-demographic associations are novel. However, it makes intuitive sense that those without a permanent home are at increased risk of TB,31 and are likely to congregate and spread the infection. We are unaware of previous reports that polyresistant TB is significantly associated with recent transmission. Most of the polyresistant isolates were clustered and were also from the Beijing lineage. This is important because polyresistant Beijing strains are associated with a risk of developing amplified resistance leading to MDR-TB.2 Transmission patterns of polyresistant isolates therefore also need to be carefully monitored.

Fourth, we found that certain factors were associated with a reduced risk of recent transmission. Patients with extra-pulmonary TB had a 65% reduced risk of recent transmission compared with pulmonary TB patients, and this reflects the predominantly non-infectious nature of extra-pulmonary disease. In patients born in Ukraine, there was a significantly lower risk of clustering, possibly because they acquired latent tuberculosis infection in their home country which reactivated after coming to Estonia. Old age was significantly associated with a reduced risk of recent transmission, which may reflect the increasing isolation of elderly people from today’s modern society.

The strengths of this study were the large number of patients studied, the countrywide research and the integration of molecular epidemiological data into the TB programme risk factor analysis. The conduct and reporting of the research also followed internationally agreed recommendations for reporting on observational studies.33,34 There were two limitations. First, a detailed epidemiological contact investigation was not performed; it therefore remains unclear how person-to-person transmission occurred within each cluster. Second, we used only VNTR typing data for clustering analysis and lineage assignment. Spoligotyping, which is available but not currently in use in Estonia, and additional use of VNTR hypervariable loci on Beijing isolates would have allowed a degree of independent confirmation of lineages and more precise discrimination of cases within clusters, respectively.28,35 However, as indicated above, our results from the analysis of risk factors for clustering allows a good degree of confidence in the epidemiological relevance of the clusters identified.

The most important implication of this study is to show the value of molecular epidemiology in understanding the transmission of the TB epidemic in Estonia and, in particular, of the most dangerous MDR-/XDR-TB forms. It will be important to continue to support this field, invest in new molecular epidemiology technology and improve the already good linkages with the NTP.

In conclusion, we have shown that in Estonia, there is a high and perhaps increasing degree of recent TB transmission, especially in certain high-risk groups, and this is particularly associated with MDR- and XDR-TB and the Beijing lineage.

\textbf{References}

МЕСТО ПРОВЕДЕНИЯ: В Эстонии отмечается большое число случаев туберкулеза с множественной лекарственной устойчивостью (МЛУ-ТБ). Для того чтобы понять пути трансмиссии ТБ важно сопоставить молекулярные и эпидемиологические данные.

Цель: Использовать результаты анализа числа тандемных повторов в 24-х локусах генома (VNTR-типирование) и данные национального ТБ регистра Эстонии за период с 2009 г. по 2012 г. с целью определения распределения спектров лекарственной устойчивости, кластеров изолято...
После проведенного исследования, сравнивавшее ДНК-отпечатки пальцев случайных МЛУ-ТБ, зарегистрированных в Эстонии в период 2003–2007 гг., показало, что штаммы Beijing преобладали в Эстонии и являлись частью более крупного кластера штаммов МЛУ-ТБ (кластера E0051), обнаруженного в 12 разных странах.11 В 2009 г. в Эстонии было начато использование VNTR-типирования в рамках проекта «TB PAN-NET»:12 одной из целей которого было изучение трансмиссии ТБ в странах Европы.

В рамках данного исследования использовался результаты VNTR-типирования, полученные в ходе проекта «TB PAN-NET», для построения баз данных, которая была подключена к Эстонскому национальному ТБ регистру (НТР) для содействия мероприятиям по борьбе с ТБ. В частности, мы провели кластерный анализ ДНК-отпечатков пальцев с целью выявления групп риска, в отношении которых НТП могут быть приняты меры для улучшения профилактики трансмиссии ТБ.

МЕТОДЫ

Дизайн исследования

Это было ретроспективное общенациональное перекрестное исследование.

Место проведения

Эстония – небольшая страна в Европе, соседствующая с Латвией, Финляндией и Российской Федерацией, с населением около 1,3 миллионов человек. Около 30% населения проживает в столице – Таллине.13 Около 70% населения – эстонцы, 25% - русские, оставшиеся 5% включают различные этнические группы из бывшего СССР и Восточной Европы.

С 1998 г. учреждения, занимающиеся лечением туберкулеза в Эстонии, следуют рекомендациям Всемирной организации здравоохранения.14 Преобладает пассивное выявление случаев ТБ; постановка диагноза ТБ легких основана на микроскопии мазка мокроты, посеве и рентгенографии грудной клетки, для диагностики внелегочного туберкулеза используются и другие методы исследований. Все больные ТБ регистрируются в НПТ с присвоением им уникального регистрационного номера, проходящего около 1,3 миллиона человек. Около 30% населения носит этикетку ТБ (ПНТ).

Источники и сбор данных

В Эстонии действуют две лаборатории, выполняющие культуральные исследования ТБ: одна в Таллине и ТБ референс-лаборатория в Тарту. С целью диагностики ТБ все образцы в стране отправляются в одну из двух этих лабораторий. Все положительные культуры исследуются на бактериологический и геномический уровни (M. bovis bacille Calmette-Guérin) и отрицательный контроль и внутренних процедур. При проведении независимой оценки качества VNTR-типирования данные лаборатории всегда получали 100% баллов за внутри- и межлабораторную воспроизводимость результатов.9,18 База данных VNTR-паттернов всех случаев с положительной культурой хранится в Референс-лаборатории в Тарту.

Все характеристики больных и демографические данные брались из Эстонского НТР; VNTR- паттерны запрашивались в ТБ референс-лаборатории, а результаты ТЛЧ в НТР. Данные из разных источников увязывались с помощью уникальных параметров: ФИО и даты рождения больных. Данные из связанных баз данных поступали в базу данных EpiData (EpiData Association, Одесса, Дания).

Анализ данных и статистический анализ

Кластерный анализ VNTR-паттернов и определение генетического семейства проводится с помощью базы данных MIRU-VNTRplus.19 Кластерный анализ проводился мето- дом попарного невзвешенного кластерирования с арифметическим усреднением (UPGMA) с использованием категорического коэффициента.20 Кластером считались минимум два изолата со 100% идентичными паттернами VNTR-типирования. Индексным случаем считался хронологически первый случай в кластере. Кластеризация VNTR-паттернов использовалась в качестве меры трансмиссии ТБ. Определение генетического семейства проводилось поиском сходства, предусмотренного в базе данных MIRU-VNTRplus, с использованием максимального генетического расстояния 0,17 и древовидной модели идентификации на основе алгоритма объединения ближайших соседей.21,22 Число и размер кластеров, а также их генетические характеристики были представлены в виде таблицы. Была изучена связь между различными характеристиками больных и кластеризацией изолятов, были рассчитаны отно- шения рисков (ОР) и соответствующие 95% доверительные интервалы (ДИ). Различия на уровне 5% (P < 0,05), полученные с помощью критерия Пирсона χ², считались статистически значимыми. Все данные анализировались с помощью пакета EpiData версия 2.2.2.182 (EpiData Association). Окончание

Одобрение комитетом по этике

Было получено одобрение Исследовательского комитета по этике Университета Тарту, Тарту, Эстонии и Контролирующей группой по вопросам этики Международного союза по борьбе с туберкулезом и заболеваниями легких, Париж, Франция. Разрешение на сбор, обработку и ана-лиз данных больных было получено от Эстонской инспекции по защите данных и от Министерства социального развития, Таллин, Эстония.

Выражение благодарности

Таблица 1 Спектры лекарственной устойчивости изолятов, выделенных у больных ТБ с положительным посевом, и их распределение по генетическим семействам, Эстония, 2009–2012гг.

<table>
<thead>
<tr>
<th>Спектр устойчивости</th>
<th>Всего n</th>
<th>Beijing n (%)</th>
<th>Haarlem n (%)</th>
<th>LAM n (%)</th>
<th>Ural n (%)</th>
<th>Неизвестно n (%)</th>
<th>Прочее n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Чувствительный</td>
<td>602</td>
<td>101 (16.8)</td>
<td>168 (27.9)</td>
<td>131 (21.8)</td>
<td>72 (12.0)</td>
<td>122 (20.3)</td>
<td>8 (1.4)</td>
</tr>
<tr>
<td>INH-монорезистентный</td>
<td>15</td>
<td>2 (13.3)</td>
<td>4 (26.7)</td>
<td>6 (40.0)</td>
<td>—</td>
<td>3 (20.0)</td>
<td>—</td>
</tr>
<tr>
<td>РMP-монорезистентный</td>
<td>7</td>
<td>1 (14.3)</td>
<td>—</td>
<td>5 (71.4)</td>
<td>—</td>
<td>1 (14.3)</td>
<td>—</td>
</tr>
<tr>
<td>Полирезистентный*</td>
<td>47</td>
<td>30 (63.8)</td>
<td>2 (4.3)</td>
<td>7 (14.9)</td>
<td>8 (17.0)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>МЛУ-ТБ</td>
<td>134</td>
<td>126 (94.0)</td>
<td>2 (1.5)</td>
<td>3 (2.2)</td>
<td>3 (2.2)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>МЛУ-ТБ+АГ/СР</td>
<td>54</td>
<td>45 (83.3)</td>
<td>—</td>
<td>9 (16.7)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>МЛУ-ТБ+FQ</td>
<td>26</td>
<td>26 (100.0)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ШЛУ-ТБ</td>
<td>27</td>
<td>26 (96.3)</td>
<td>—</td>
<td>1 (3.7)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Итого</td>
<td>912</td>
<td>357 (39.2)</td>
<td>176 (19.3)</td>
<td>162 (17.8)</td>
<td>83 (9.1)</td>
<td>126 (13.8)</td>
<td>8 (0.8)</td>
</tr>
</tbody>
</table>

* Устойчивость минимум к двум препаратам первого ряда, но не МЛУ-ТБ.

ТБ = туберкулез; LAM = Latin-American Mediterranean; INH = изониазид; RMP = рифампицин; МЛУ-ТБ = ТБ с множественной лекарственной устойчивостью; AG/СР = любой инъекционный аминогликозид второго ряда или капреомицин; FQ = фторхинолон; ШЛУ-ТБ = ТБ с широкой лекарственной устойчивостью.

Результаты

Из 1371 больного ТБ, выявленного в Эстонии в течение 4-х летнего периода проведения исследования, 1286 (93,8%) имели ТБ легких, 1080 (78.8%) были выявлены впервые и ранее не получали лечение противотуберкулезными препаратами, 1066 (77,8% от общего числа) имели МЛУ-ТБ или ШЛУ-ТБ.

Социально-демографические факторы, связанные с повышенным риском кластеризации, были: русская национальность, проживание в Тарту и низкий уровень образования (таблица 2). Клиническими факторами, связанными с повышенным риском кластеризации, были полирезистентность, МЛУ- и ШЛУ-ТБ, а также наличие ВИЧ инфекции (таблица 3). Случаи ШЛУ-ТБ были подвержены наибольшему риску образования кластера (ОР 1,63, Р < 0,001). Внелегочный ТБ был связан с меньшим риском образования кластера.

Распределение трансмиссии между индексными случаями и вторичными случаями по разным возрастным группам представлено на рис. 2. Чаще всего трансмиссия отмечалась в возрастной группе 30–39 лет. Большинство вторичных случаев приходилось на лиц в возрасте 30–59 лет.

Обсуждение

Это первое молекулярно-эпидемиологическое исследование, использовавшее метод VNTR-типирования для изучения связи между больными, их характеристиками, штаммами M. tuberculosis и образованием кластеров с целью определения имела ли место недавняя трансмиссия ТБ. В ходе исследования были сделан ряд важных выводов.

Во-первых, преобладали штаммы, относящиеся к семейству Beijing, которое было особенно связаны с лекарственной устойчивостью ТБ. Более 90% больных МЛУ-ТБ, МЛУ-ТБ с дополнительной устойчивостью к препаратам второго ряда имели инфицированы штаммами, относящимися к семейству Beijing. Связь между тяжелой лекарственной устойчивостью и принадлежностью к семейству Beijing хорошо известна во всем мире:24,25 в Эстонии эта связь также была доказана в 2001г. на примере изолятов от 1994г. Таким образом, наши данные демонстрируют непрерывную, многолетнюю стойкость ТБ.
<table>
<thead>
<tr>
<th>Фактор риска</th>
<th>Всего</th>
<th>Составляют кластер</th>
<th>OR (95%ДИ)</th>
<th>P значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пол</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мужской</td>
<td>638</td>
<td>449 (70.4)</td>
<td>1.07 (0.97–1.18)</td>
<td>0.20</td>
</tr>
<tr>
<td>Женский</td>
<td>274</td>
<td>181 (66.0)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Возраст, лет</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20–29</td>
<td>110</td>
<td>91 (82.7)</td>
<td>1.11 (0.99–1.25)</td>
<td>0.10</td>
</tr>
<tr>
<td>30–39</td>
<td>178</td>
<td>144 (80.9)</td>
<td>1.09 (0.97–1.21)</td>
<td>0.14</td>
</tr>
<tr>
<td>40–49</td>
<td>200</td>
<td>149 (74.5)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>50–59</td>
<td>198</td>
<td>142 (71.7)</td>
<td>0.96 (0.85–1.08)</td>
<td>0.53</td>
</tr>
<tr>
<td>60–69</td>
<td>101</td>
<td>59 (58.4)</td>
<td>0.78 (0.65–0.94)</td>
<td>+0.01</td>
</tr>
<tr>
<td>≥ 70</td>
<td>109</td>
<td>33 (30.3)</td>
<td>0.41 (0.30–0.55)</td>
<td>+0.001</td>
</tr>
<tr>
<td>Страна рождения</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Эстония</td>
<td>772</td>
<td>550 (71.2)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Россия</td>
<td>96</td>
<td>62 (64.6)</td>
<td>0.91 (0.78–1.06)</td>
<td>0.18</td>
</tr>
<tr>
<td>Украина</td>
<td>15</td>
<td>4 (26.7)</td>
<td>0.37 (0.16–0.87)</td>
<td>+0.001</td>
</tr>
<tr>
<td>Беларусь</td>
<td>11</td>
<td>6 (54.5)</td>
<td>0.77 (0.45–1.32)</td>
<td>0.23</td>
</tr>
<tr>
<td>Этническая принадлежность</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Эстонец</td>
<td>515</td>
<td>348 (67.6)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Русский</td>
<td>320</td>
<td>242 (75.6)</td>
<td>1.12 (1.03–1.22)</td>
<td>0.01</td>
</tr>
<tr>
<td>Беларусь</td>
<td>19</td>
<td>6 (42.1)</td>
<td>0.62 (0.37–1.06)</td>
<td>0.02</td>
</tr>
<tr>
<td>Прочее</td>
<td>43</td>
<td>24 (55.8)</td>
<td>0.83 (0.63–1.08)</td>
<td>0.12</td>
</tr>
<tr>
<td>Место жительства</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Город</td>
<td>428</td>
<td>307 (71.7)</td>
<td>1.09 (1.00–1.19)</td>
<td>0.05</td>
</tr>
<tr>
<td>Село</td>
<td>452</td>
<td>297 (65.7)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Город проживания</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Таллин</td>
<td>269</td>
<td>198 (73.6)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Тарту</td>
<td>46</td>
<td>27 (58.7)</td>
<td>0.80 (0.62–1.03)</td>
<td>0.04</td>
</tr>
<tr>
<td>Кохтла-Ярве</td>
<td>43</td>
<td>33 (76.7)</td>
<td>1.04 (0.87–1.25)</td>
<td>0.66</td>
</tr>
<tr>
<td>Нарва</td>
<td>45</td>
<td>30 (66.7)</td>
<td>0.91 (0.73–1.13)</td>
<td>0.33</td>
</tr>
<tr>
<td>Пярну</td>
<td>25</td>
<td>19 (76.0)</td>
<td>1.03 (0.82–1.30)</td>
<td>0.79</td>
</tr>
<tr>
<td>Условия проживания</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Постоянное место жительства</td>
<td>804</td>
<td>541 (67.3)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Непостоянное место жительства*</td>
<td>64</td>
<td>54 (84.4)</td>
<td>1.25 (1.12–1.41)</td>
<td>+0.01</td>
</tr>
<tr>
<td>БОМЖ†</td>
<td>42</td>
<td>34 (81.0)</td>
<td>1.20 (1.03–1.40)</td>
<td>0.06</td>
</tr>
<tr>
<td>Уровень образования‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Начальное (4 года)</td>
<td>61</td>
<td>33 (54.1)</td>
<td>0.76 (0.60–0.97)</td>
<td>+0.01</td>
</tr>
<tr>
<td>Основное (9 лет)</td>
<td>303</td>
<td>215 (71.0)</td>
<td>1.00 (0.91–1.10)</td>
<td>0.99</td>
</tr>
<tr>
<td>Среднее (12 лет)</td>
<td>476</td>
<td>338 (71.0)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Высшее (>12 лет)</td>
<td>62</td>
<td>23 (37.1)</td>
<td>0.89 (0.73–1.08)</td>
<td>0.19</td>
</tr>
<tr>
<td>Алкогольная зависимость§</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Да</td>
<td>421</td>
<td>325 (77.2)</td>
<td>1.24 (1.13–1.35)</td>
<td>+0.001</td>
</tr>
<tr>
<td>нет</td>
<td>464</td>
<td>290 (62.5)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Наркотическая зависимость¶</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Да</td>
<td>65</td>
<td>47 (72.3)</td>
<td>1.05 (0.89–1.23)</td>
<td>0.57</td>
</tr>
<tr>
<td>Нет</td>
<td>526</td>
<td>362 (68.8)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Пребывание в местах лишения свободы</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Да</td>
<td>171</td>
<td>137 (80.1)</td>
<td>1.19 (1.09–1.30)</td>
<td>0.001</td>
</tr>
<tr>
<td>Нет</td>
<td>688</td>
<td>463 (67.3)</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

* Лицо, проживающее по разным адресам, без постоянного места жительства.
† Лицо, проживающее на улице и/или приюте.
‡ Количество лет посещения учебных заведений.
§ Регулярное потребление алкоголя.
¶ Регулярное употребление наркотиков.
OP = отношение рисков; ДИ = доверительный интервал.
Другим интересным, но неожиданным выводом стало то, что небольшое число изолятов с RMP-монорезистентностью относились в основном к семейству LAM (5/7). Стоит отметить, что 4/5 изолятов были распределены по двум Рисунок 2 Распределение трансмиссии туберкулеза по возрастным группам индексных случаев и вторичных случаев, Эстония, 2009–2012.

Таблица 3 Клинические характеристики больных туберкулезом с положительной культурой в зависимости от кластеров, Эстония, 2009–2012гг.

<table>
<thead>
<tr>
<th>Фактор риска</th>
<th>Всего n</th>
<th>Входят в кластеры n (%)</th>
<th>ОР (95%ДИ)</th>
<th>P значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тип ТБ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Легочный</td>
<td>725</td>
<td>513 (70.8)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Внелегочный</td>
<td>32</td>
<td>8 (25.0)</td>
<td>0.35 (0.19–0.65)</td>
<td>+0.001</td>
</tr>
<tr>
<td>Оба</td>
<td>148</td>
<td>105 (70.9)</td>
<td>1.00 (0.90–1.12)</td>
<td>0.96</td>
</tr>
<tr>
<td>Категория ТБ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Впервые выявленный</td>
<td>752</td>
<td>507 (67.4)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Решив</td>
<td>100</td>
<td>76 (76.0)</td>
<td>1.13 (1.00–1.27)</td>
<td>0.08</td>
</tr>
<tr>
<td>Лечение после неэффективного лечения</td>
<td>28</td>
<td>22 (78.6)</td>
<td>1.17 (0.95–1.42)</td>
<td>0.22</td>
</tr>
<tr>
<td>Лечение после ПДН</td>
<td>32</td>
<td>25 (78.1)</td>
<td>1.16 (0.96–1.40)</td>
<td>0.20</td>
</tr>
<tr>
<td>Спектр лекарственной устойчивости</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Чувствительный</td>
<td>602</td>
<td>355 (59.0)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>INH-монорезистентность</td>
<td>15</td>
<td>11 (73.3)</td>
<td>1.24 (0.91–1.70)</td>
<td>0.30</td>
</tr>
<tr>
<td>RMP-монорезистентность</td>
<td>7</td>
<td>4 (57.1)</td>
<td>0.97 (0.51–1.85)</td>
<td>1.00</td>
</tr>
<tr>
<td>Полирезистентность*</td>
<td>47</td>
<td>38 (80.9)</td>
<td>1.37 (1.18–1.60)</td>
<td>+0.01</td>
</tr>
<tr>
<td>МЛУ-ТБ</td>
<td>144</td>
<td>122 (91.0)</td>
<td>1.54 (1.42–1.68)</td>
<td>+0.001</td>
</tr>
<tr>
<td>МЛУ-ТБ+AG/CP</td>
<td>54</td>
<td>50 (92.6)</td>
<td>1.57 (1.42–1.74)</td>
<td>+0.001</td>
</tr>
<tr>
<td>МЛУ-ТБ+FQ</td>
<td>26</td>
<td>24 (92.3)</td>
<td>1.57 (1.38–1.78)</td>
<td>+0.001</td>
</tr>
<tr>
<td>ШЛУ-ТБ</td>
<td>27</td>
<td>26 (96.3)</td>
<td>1.63 (1.48–1.80)</td>
<td>+0.001</td>
</tr>
<tr>
<td>Тестирование на ВИЧ проводилось</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Положительный</td>
<td>107</td>
<td>90 (84.1)</td>
<td>1.23 (1.12–1.36)</td>
<td>+0.001</td>
</tr>
<tr>
<td>Отрицательный</td>
<td>757</td>
<td>517 (68.3)</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

* Устойчивость минимум к двум препаратам первого ряда, но не МЛУ-ТБ.

ТБ = туберкулез; ОР = отношение рисков; ДИ = доверительный интервал; ПДН = потеря для дальнейшего наблюдения; INH = изониазид; RMP = рифампицин; МЛУ-ТБ = ТБ с множественной лекарственной устойчивостью; AG/CP = любой инъекционный аминогликозид второго ряда или капреомицин; FQ = фторхинолон; ШЛУ-ТБ = ТБ с широкой лекарственной устойчивостью; ВИЧ = вирус иммунодефицита человека.
кластерам, а один имел уникальный VNTR-паттерн. Это указывает на недавнюю трансмиссию RMP-монорезистентного ТБ и на независимое развитие данного спектра устойчивости. Тем не менее, больные с RMP-монорезистентностью нуждаются в лечении МЛУ-ТБ, а не в препаратах первого ряда,26 что указывает на необходимость более при-}

сталного мониторинга данного типа лекарственной устойчивости в будущем.

Во-вторых, более 70% изолятов входили в кластеры, что говорит о высоком уровне недавней трансмиссии ТБ в сообществе. Это существенно выше показателей основанных на анализе случаев 20- и ниже- давности (49%).10 Важно то, что были выделены кластеры, позволяю-}

щие предположить наличие цепочек трансмиссии, состоящих из больше- гих групп ≥10 человек. Самый большой кластер -178 изолятов был представлен штаммом семейства Beijing, который по последним отчетам является основным источником М/ШЛУ-ТБ в странах Евро-}

пейского Союза.27 В этом самом крупном кластере распространен-}

ность М/ШЛУ-ТБ превысила 90%. Это говорит об активном, широком распространении М/ШЛУ-ТБ клонов изолятов M. tuberculosis семей-}

ства Beijing в Эстонии, что вызывает серьезную озабоченность и гово-}

рит о необходимости новых мер профилактики распространения ин-}

фекции в исследуемых популяциях. Однако преобладание данного кластера Beijing 100-32 и вообще изолятов семейства Beijing означает, что мы должны с осторожностью трактовать результаты кластериза-}

ции с точки зрения возможности недавней трансмиссии. Несмотря на высокую дискриминирующую способность, 24-х локусное VNTR-типи-}

рование не обладает достаточным разрешением для точного разли-}

чения близко связанных клонов, составляющих популяцию штамма}

Beijing, по сравнению с IS6110-RFLP или с использованием дополни-}

тельных гипервариабельных VNTR локусов.8,28 Таким образом наша оценка недавней трансмиссии может быть слегка завышенной.

В-третьих, мы установили, что определенные социально-демогра-}

фические и клинические факторы имели сильную связь с формирова-}

нием кластеров, что указывает на то, что выделенные кластеры до-}

вольно точно отражают недавнюю трансмиссию. К таким факторам относилось отсутствие постоянного места жительства, злоупотре-}

бление алкоголем, пребывание в прошлом в местах лишения свободы и наличие полирезистентного ТБ, МЛУ или М/ШЛУ-ТБ или ВИЧ-инфекции. Тогда как связь между формированием кластеров и пребыванием в местах лишения свободы, алкогольной зависимостью, М/ШЛУ-ТБ и ВИЧ инфекцией хорошо известна,29,30 связь с другими факторами еще не изучена. Однако, кажется логичным, что лица, не имеющие посто-}

янного места жительства, подвержены большему риску развития ТБ,31 могут формировать резервуар инфекции и способствовать ее даль-}

нейшей трансмиссии. Нам не известно о предыдущих отчетах о силь-}

ной связи между полирезистентным ТБ и недавней трансмиссией. Большинство полирезистентных изолятов входили в кластеры и также принадлежали семейству Beijing. Это важно, т.к. полирезистен-}

тные штаммы Beijing были ассоциированы с риском нарастания ле-}

карственной устойчивости вплоть до развития МЛУ-ТБ.32 Поэтому пути трансмиссии полирезистентных штаммов также необходимо тщательно контролировать.

В-четвертых, мы обнаружили, что определенные факторы были связаны с меньшим риском недавней трансмиссии. У больных веле-}

гочным ТБ риск недавней трансмиссии был на 65% меньше, по срав-}

нению с больными ТБ легких, что отражает преобладающую неинфек-}

ционную природу внелегочного ТБ. У больных, рожденных в Украине, риск формирования кластеров был существенно ниже, возможно из-}

за того, что еще на родине они приобреяли латентную ТБ инфекцию, которая активируется после переезда в Эстонию. Пожилой возраст был также фактором, связанным с существенно меньшим риском не-}

давней трансмиссии, что может быть отражением усиливающейся изоляции пожилых людей в современном обществе.

Сильной стороной исследования было большое число включен-}

ных в исследование больных, общенациональный охват исследова-}

ния и интеграция молекулярно-эпидемиологических данных в анализ факторов риска программы борьбы с ТБ. Проведение исследования и отчетность по нему соответствовали международным рекоменда-}

циям по отчетности о наблюдательных исследованиях.32,34 Имело место два ограничения. Во-первых, не проводилось под-}

робное эпидемиологического изучения контактов; поэтому меха-}

низм трансмиссии от человека к человеку внутри кластера остается неясным. Во-вторых, для кластерного анализа и определения принад-}

лежности к генетическому семейству мы использовали только данные VNTR-типирования. Спонтатипирование, которое имеется, но в на-}

стоящее время не используется в Эстонии, и дополнительное использо-}

вание VNTR-типирования гипервариабельных локусов изолятов Beijing позволило бы с большей точностью определить принадлеж-}

ность к семейству и обеспечило бы точную дискриминацию случаев внутрен кластера.29,33 Однако, как уже говорилось выше, проведенный нами анализ факторов риска формирования кластеров позволяет с большой долей уверенности судить о эпидемиологической значимо-}

сти выделенных кластеров.

Наиболее важным значением данного исследования является то, что оно показало значимость молекулярной эпидемиологии для по-}

нимания механизмов распространения эпидемии ТБ в Эстонии и, в}

частности, трансмиссии представляющих наибольшую угрозу форм МЛУ и М/ШЛУ-ТБ. Важно продолжать поддержку данной области, осу-

ществлять инвестиции в технологию молекулярной эпидемиологии и}

далее укреплять связь с НПТ.

В заключение отметим, мы показали, что в Эстонии имеет место высо-}

кая и, пожалуй, набирающая темпы трансмиссия ТБ особенно в определенных группах высокого риска, что обусловлено М/ШЛУ-ТБ и принадлежностью выделяемых изолятов к семейству Beijing.

Список литературы
rial interspersed repetitive unit-variable-number tandem-repeat typing of Mycobacter-
10 Kruusner A, Hoffner S E, Sillastu H, et al. Spread of drug-resistant pulmonary tuberculo-
11 Devaux I, Kremer K, Heersma H, Van Soolingen D. Clusters of multidrug-resistant My-
13 Tiit Eesti Maatematika Selts. The census of people and housing. Overview of the popula-