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A basic quantitative understanding of malaria transmission requires measur-

ing the probability a mosquito becomes infected after feeding on a human.

Parasite prevalence in mosquitoes is highly age-dependent, and the

unknown age-structure of fluctuating mosquito populations impedes esti-

mation. Here, we simulate mosquito infection dynamics, where mosquito

recruitment is modelled seasonally with fractional Brownian noise, and we

develop methods for estimating mosquito infection rates. We find that

noise introduces bias, but the magnitude of the bias depends on the

‘colour’ of the noise. Some of these problems can be overcome by increasing

the sampling frequency, but estimates of transmission rates (and estimated

reductions in transmission) are most accurate and precise if they combine

parity, oocyst rates and sporozoite rates. These studies provide a basis for

evaluating the adequacy of various entomological sampling procedures for

measuring malaria parasite transmission from humans to mosquitoes and

for evaluating the direct transmission-blocking effects of a vaccine.
1. Background and introduction
Human malaria is caused by infection with a mosquito-transmitted parasite. Var-

ious vector control methods and anti-malarial drugs are now available to

decrease transmission and cure infections, but universal coverage with these

interventions may be insufficient to interrupt transmission in areas where poten-

tial transmission intensity is very high [1,2], where the mosquitoes are refractory

to vector control [3], or where operational constraints make it too difficult or

expensive to achieve very high intervention coverage levels [4,5]. An effective

malaria vaccine would complement existing technologies and could help to

bring about an end to malaria [6]. Several malaria vaccines are now in develop-

ment [7], but it is clear that evaluating the impact of such a vaccine is a complex

endeavour [8]. One type of promising vaccine affects the sexual stages of the

malaria parasites and reduces the probability that they will infect mosquitoes

[9]. There is active debate about the appropriate way to evaluate these sexual-

stage transmission-blocking vaccines. Though reductions in the incidence of

clinical malaria are arguably the most important endpoint of any vaccine trial,

intermediate entomological endpoints may be used to evaluate the direct popu-

lation-level effects of a vaccine on transmission [10]. Such information is highly
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useful in making decisions about how and where to deploy a

vaccine. Here, using mathematical models, we simulate parasite

transmission from humans to mosquitoes, and we develop

methods for accurately measuring transmission rates and the

entomological outcomes of sexual-stage transmission-blocking

vaccines in clinical trials.

Transmission of parasites from humans to mosquitoes

involves uptake of at least one mature male and one mature

female gametocyte in a bloodmeal, which form gametes and

which following fertilization develop into a zygote, the ooki-

nete. The motile ookinete penetrates the midgut where it

transforms into a sessile oocyst [11]. To become infectious,

an infected mosquito must survive long enough for the

oocyst to rupture releasing sporozoites which must migrate

through the mosquito haemocoel to reach the salivary

glands; this process takes several days [11]. Sexual-stage trans-

mission-blocking vaccines inhibit this development when

antibodies present in human blood act against targets on the

gametocyte, gamete, zygote or ookinete [12].

The efficacy of a sexual-stage transmission-blocking vac-

cine may be assessed by measuring changes in the rates

that humans infect mosquitoes. Though this quantity

describes a basic part of malaria transmission, methodologies

for measuring it remain poorly developed for evaluation in

field studies. Greater attention has been given to estimating

the rate that humans are exposed to malaria, called the ento-

mological inoculation rate (EIR), the number of infectious

bites received per person per unit time [10,13]. Measuring

transmission from human populations to mosquitoes in natu-

ral settings is an important complement to measuring EIR,

but there are a number of factors that must be considered

for proper evaluation of a transmission-blocking vaccine.

Transmission from a single human to mosquitoes can be

measured by allowing mosquitoes to feed on humans or on

human blood, and studies of this type are an indispensable

part of understanding transmission [14]. In measuring infec-

tion rates of mosquitoes, it becomes possible to infer the

probability a parasite is transmitted from a single infectious

human to a mosquito and the proportion of mosquitoes in

a population that become infected after biting a human. At

a population-level, the corresponding quantity is the pro-

portion of mosquitoes that would become infected after

blood feeding on any human, and it is called the net infec-

tiousness of humans, and often denoted by k [15,16]. It is

essentially impossible to measure this quantity directly in

mosquito populations. Instead, it must be inferred by catch-

ing mosquitoes and examining them for oocysts or

sporozoites [17]: the prevalences of infection with parasites

at these developmental stages are called, respectively, the

oocyst rate and the sporozoite rate. If the reservoir of malaria

parasites in humans remained unchanged, a transmission-

blocking vaccine would reduce the fraction of mosquitoes

that successfully established oocyst infections in mosquitoes

and, by extension, that reach the sporozoite stage.

An important problem is that the relationship between k

and either oocyst or sporozoite rates while simple in theory, is

far more complicated in reality with both mosquito and para-

site populations fluctuating over time. The prevalence of

malaria parasites in mosquitoes is affected by highly hetero-

geneous feeding rates among individuals and among

households, and the variable infectiousness of individual

humans as gametocyte densities fluctuate and natural levels

of human immunity wax and wane [18,19]. It is also affected
by heterogeneity in the susceptibility or refractoriness of

mosquitoes to infection [20–22].

Simple formulae have been developed to understand

these relationships in constant populations [23], but these

formulae rely heavily on the assumption that mosquito

populations are constant over time with a stable age distri-

bution. However, spatio-temporal fluctuations in mosquito

densities commonly alter the age-structure of mosquito popu-

lations [24]. Owing to the time the parasite needs to

develop, the older a mosquito, the more likely it is to be

infected or infectious. Therefore, emergence of a large

cohort of young adult mosquitoes, driven by seasonal rain-

fall for example, would instantly reduce the sporozoite rate

in a mosquito population. If recruitment of new mosquitoes

slowed down or stopped for a time, such as during a dry

season (e.g. malaria transmission in the Sahel), the sporo-

zoite rate would tend to increase as mosquitoes both aged

and became infected. It follows that the prevalence of para-

site infection in mosquitoes is as strongly affected by the

age distribution of mosquitoes as it is by k. To measure

the effects of a sexual-stage transmission-blocking vaccine,

it would be necessary to have accurate measures of k

before and after vaccination. To evaluate efficacy of a

sexual-stage transmission-blocking vaccine, it is tempting

to forgo measurement of k and simply compare mosquito

infection rates before and after mass vaccination. However,

the precision and accuracy of such methods have not

been rigorously evaluated under the conditions that prevail

in nature.

In many studies, variability in mosquito population den-

sities is either ignored or treated as a nuisance, or noise. In

fact, noise is an interesting phenomenon that can be an

important driver of long-term variation in populations

[25,26], but there are many types of noise distinguished by

their ‘colour’ [27–30]. While it is, perhaps, more common

to think about noise as it impacts stock market performance,

and the expected growth in the value of one’s retirement

portfolio, coloured noise is also a challenge for ecology and

epidemiology. White noise is a term used to describe a

time series that is approximately equally variable in any

sampling frame. Blue noise describes time series with more

variation at small sampling frames—the biggest differences

are close together. Red noise describes time series in which

the variation grows with the size of the sampling frame,

such that the larger the temporal window, the more vari-

ation. When a noisy process is driving a system with

strong intrinsic dynamics, the results can affect many differ-

ent properties of such systems. Numerous previous studies in

ecology have looked at the effects of ‘memory’ within

dynamic systems; a concept mostly described using

‘coloured’ noise [31,32]. Several of these studies show how

emergence rates with ‘blue noise’ [29]—i.e. noise that is

negatively auto-correlated at short timescales—can interact

with the intrinsic dynamics to give rise to different colours

of noise [25,33], specifically the more commonly observed

‘red noise’—i.e. noise that is positively auto-correlated at

long timescales [25,33–36]. Population dynamics that are

strongly seasonal often exhibit ‘red noise’, while those that

are strongly influenced by density dependence and are at

carrying capacity may display ‘blue noise’. Here, following

their lead, we consider the effects of coloured noise on the

ability to measure transmission in mosquito populations,

and we also consider the problem posed by measuring
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Figure 1. Mosquito emergence with coloured noise. A baseline seasonal mosquito emergence (a) is modulated by coloured noise. The left panels (b,d,f ) display a
realization of blue noise (Hurst parameter ¼ 0.01), white noise (Hurst parameter ¼ 0.5) and red noise (Hurst parameter ¼ 0.99), respectively. The resulting effect
incorporating these noises with mosquito emergence is displayed in the corresponding right panels (c,e,g).
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the effects of sexual-stage transmission-blocking vaccines in

natural populations.
2. Material and methods
2.1. Simulated mosquito population sampling
A set of algorithms was developed to simulate field studies to

estimate k and changes in k in variable mosquito populations

involving three elements: (i) recruitment of adult mosquitoes

(aka emergence from aquatic habitats) was simulated with a

simple seasonal signal modified by coloured noise (figure 1);

(ii) after emergence, adult blood feeding, infection and survival

were simulated using Ross–Macdonald assumptions (figure 2);

and (iii) a study involving mosquito population sampling was

simulated with properties that would mimic observed sampling

variance (figure 1). These are described in greater detail in the

following paragraphs.

Recruitment of adult female mosquitoes was simulated by

comparing constant and canonical sinusoidal seasonal recruit-

ment patterns to the same patterns combined with a fractional

Brownian noise [37]: the number of adult female mosquitoes

that were recruited into a population, per human, on a given

day was denoted lt. Formally, fractional Brownian noise can be

defined as the derivative of fractional Brownian motion, a
non-Markovian Gaussian process. If BH(t) denotes a fractional

Brownian process, BH(t) has mean zero and covariance function

E½BHðtÞBHðsÞ� ¼
1

2
jtj2H þ jsj2H � jt� sj2H
� �

, ð2:1Þ

where H, the Hurst parameter, is a real number between 0

and 1. Values of H between 0 and 0.5 produce ‘blue’ noise, while

values between 0.5 and 1 produce ‘red’ noise. If H ¼ 0.5, the process

reverts to standard Brownian motion (‘white’ noise). The population

density of mosquitoes tended to follow the canonical seasonal

pattern, but because of the added noise, any particular realization

tended to differ from the canonical seasonal signal (figure 1).

After emerging, adult population and infection dynamics

were simulated day by day assuming that a proportion of mos-

quitoes survived each day ( p), that a fraction of mosquitoes

took a blood meal each day ( f ), that a fraction of those blood-

meals were from humans (Q) and that a fraction of human

blood feeding mosquitoes became infected with parasites (k).

We assume here that infected mosquitoes are oocyst positive

after 1 day. This assumption could be relaxed (e.g. shifted to

day 2 of infection), which would correspondingly result in less

precise estimates due to fewer mosquitoes surviving the extra

day. After n days, infected mosquitoes became infectious (i.e. n
is the extrinsic incubation period (EIP)). A set of equations

tracked the population density of mosquitoes in each relevant
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Figure 2. Mosquito life/infection history. (a) Mosquitoes emerge at rate l (light blue) and are nulliparous (dark blue) until they take their first bloodmeal. They are
then classified as susceptible parous or exposed parous depending on the infection status of the individual they feed on and the success of the parasite (infection
rate from bloodmeals is k). Non-exposed parous mosquitoes (light green) continue taking bloodmeals until they either die or become exposed to the malaria
parasite. Exposed mosquitoes (yellow) progress sequentially through the states of infection from infected (orange, assumed to be observable on day 2 of exposure)
to infectious (red, on day n). (b) A realization of mosquito emergence, (c) a realization of the entire mosquito population’s parity and infection status over the course
of a single year (simulation was run for 2 days and the second year was taken to initialize each state). (d ) Variation in the composition of simulated mosquito
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state: including those that were nulliparous (Nt), having never

taken any bloodmeal; those that were parous but uninfected;

those that were infected with parasites i (up to n) days ago

ðYi,tÞ and those that were sporozoite positive ðZtÞ: The total

number of adult mosquitoes on day t was denoted Mt.

To have a measure of the accuracy and precision of estimates

of k, we simulated a study of transmission under three different

vector sampling regimes: monthly (which is a common sampling

interval in the field), bi-weekly (which would be considered

intense sampling in practice) and alternating days (which

would be almost impossible to achieve in the field due to limited

resources). It is also important to note that we assume that our

sampling effort does not affect the population size (i.e. sampled

mosquitoes are replaced into the population to potentially be

sampled again later). For each regime, we simulated sampling

by two different teams initiating their sampling at offset times

throughout the year. Teams were assumed to be equally capable

of sampling. For the monthly sampling regime, for example, one

team samples on the 15th of each month and the other samples

on the last day of each month. The distribution of mosquitoes

among houses tends to follow a negative binomial distribution,

so mosquito catch data from a single household on a single

night was simulated by drawing a random variate from a

negative binomial distribution [38]: the expected number of mos-

quitoes was given by fQMt, but the variance of this distribution

was given by the parameter a reflecting among household

variability in the number of mosquitoes present.

Other than lt, all of the parameters that govern the simulation

are set to constant values. For our initial simulations, we set f ¼ 0:3
(the fraction of mosquitoes that take a blood meal in a day),

p ¼ 11=12 (the probability a mosquito survives a day), n ¼ 12

(the EIP), Q ¼ 1 (the per cent of mosquitoes that feed on

humans) and k ¼ 0:02 (the per cent of human blood meals

that result in infected mosquitoes). Under the set of equations

governing our system, Q is inseparable from k, and can thus not

be individually estimated within our framework. For simplicity,

we assume Q ¼ 1, but could as easily remove that assumption

and reformulate our question as estimating Qk: It is also important

to note that in specific settings, Q could be estimated through,

for example, identifying the prevalence of human DNA within

bloodmeals [39,40].

2.2. Precision and accuracy of the estimates of k
We used the simulated values of three commonly used statistics

as a basis for estimating k and changes in it: parity in the mos-

quito population, the fraction that had ever laid an egg batch,

which by our model assumptions includes any mosquito that

has taken at least one blood meal; the oocyst rate, that is in our

model the fraction of mosquitoes that had ever been infected

and that had survived at least one full day—oocyst positive mos-

quitoes in our model would include all mosquitoes that were

sporozoite positive regardless of whether any oocysts remained;

and the sporozoite rate (figure 2). We evaluate statistical bias in

our estimators (the difference between the expected value of the

estimator and the true population parameter) using the mean k

of the simulations. At equilibrium, assuming a constant mos-

quito emergence rate, Macdonald’s model suggests that the



Table 1. Formulae for various estimates of k depending on the data collected and parameters assumed known. These equations hold under the assumption
Q ¼ 1. Alternatively, without this assumption, these equations represent six different estimates of Qk.

estimate
parameters
assumed data collected other parameters estimated k̂

1 f , p, n sporozoite rate: ẑ none k̂1 ¼
ẑð1� p̂Þ

f̂ p̂ð̂pn � ẑÞ

2 f , p, n oocyst rate: ŷ none
k̂2 ¼

ŷð1� p̂Þ
f̂ p̂ð̂p� ŷÞ

3 f , n sporozoite rate: ẑ;

oocyst rate: ŷ p̂ ¼ ẑ
ŷ

� �1=n�1

k̂3 ¼
ẑ

ẑ þ ŷ
ẑð1� p̂Þ

f̂ p̂ð̂pn � ẑÞ
þ ŷ

ẑ þ ŷ
ŷð1� p̂Þ

f̂ p̂ð̂p� ŷÞ

4 f , n sporozoite rate: ẑ;

parity: ĝ p̂ ¼ ĝ

aþ ĝ � aĝ
k̂4 ¼

ẑð1� p̂Þ
f̂ p̂ð̂pn � ẑÞ

5 f , n oocyst rate: ŷ;

parity: ĝ p̂ ¼ ĝ

aþ ĝ � aĝ
k̂5 ¼

ŷð1� p̂Þ
f̂ p̂ð̂p� ŷÞ

6 n sporozoite rate: ẑ;

oocyst rate: ŷ;

parity: ĝ

p̂ ¼ ẑ
ŷ

� �1=n�1

; f̂ ¼ ĝð1� p̂Þ
p̂ð1� ĝÞ k̂6 ¼

ẑ
ẑ þ ŷ

ẑð1� p̂Þ
f̂ p̂ð̂pn � ẑÞ

þ ŷ
ẑ þ ŷ

ŷð1� p̂Þ
f̂ p̂ð̂p� ŷÞ
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sporozoite rate, oocyst rate and parity would reach equilibrium

values that are functions of the parameters f, n, p and k (elec-

tronic supplementary material, table S1). Estimating k from

either empirical measures of sporozoite rates or oocyst rates

alone requires assuming the values of four of the five bionomic

parameters: here, we assume the known parameters were f, Q,

n and p. Empirical measures of any two of sporozoite rate,

oocyst rate or parity would require assuming three of the five

bionomic parameters: here, we assume the known parameters

were Q, n and p. Finally, estimating k given empirical measures

of all three rates only requires assuming the values of only two

mosquito bionomic parameters: here, we assume a known

value of Q and n (table 1).

To measure a change in k, we simulated changes following a

mass vaccination campaign with a sexual-stage transmission-

blocking vaccine by comparing the estimated value of k after a

25%, 50% or 80% drop from its baseline value. By comparison,

we also measured changes in k by taking the sporozoite rate

before and after the vaccination and the oocyst rate before and

after vaccination.

All simulations and calculations were performed using R

v. 3.1.1 [41]. Fractional Brownian noise was calculated using

fArma [42]. A maintained version of all code used is available

at http://github.com/bcreiner/measuring_kappa.
3. Results
3.1. Sporozoite and oocyst rates
Sporozoite and oocyst rates estimated over a simulated year

by two different in silico sampling teams with offset timing

schedules differed. We compared both the correlation

between oocyst and sporozoite rates and the relative accuracy

of these rates across the different sampling regimes. Using

the simulation parameter values and the equations from the

electronic supplementary material, table S1, at equilibrium,
the average estimated oocyst rate equalled 5.7% and the spor-

ozoite rate equalled 2.2%. When the mosquito emergence was

governed by red noise, differences in the paired teams’ esti-

mates decreased as sampling effort increased (electronic

supplementary material, figure S1). When the samples were

taken monthly, even though the two teams sampled only

15 days apart, the estimated rates were not strongly corre-

lated (r ¼ �0:04 and r ¼ 0:05 for oocyst and sporozoite

rates, respectively), but the estimates appeared unbiased

(mean oocyst rate ¼ 5.62% (s.d. ¼ 0.85%), mean sporozoite

rate ¼ 2.11% (s.d. ¼ 0.52%), electronic supplementary

material, figure S1). Results were similar (though more

precise) when sampling increased to every other week. Con-

versely, when samples were taken every other day (which

again is an extremely intense, relatively infeasible sampling

regime) the estimates appeared strongly correlated (r ¼ 0:68

and r ¼ 0:67 for oocyst and sporozoite rates, respectively).

For white and blue noise (electronic supplementary material,

figures S2 and S3, respectively), the estimates also increased

in correlation as sampling intervals decreased, are likewise

unbiased, and have relatively diminishing imprecision

compared with their red noise counterpart.
3.2. Estimating k
Here and throughout the remainder of the article, we simulated

and analysed sampling done by a single team (i.e. either

sampling on the 15th of every month for 1 year (N ¼ 12), the

1st and 15th of every month (N ¼ 24) or on odd-numbered

days (N ¼ 183). To assess the impact of sampling effort, we

plotted both the resulting estimates calculated from a single

collection per sampling effort and the estimates calculated

when each sampling effort assumed five collections at five

uncorrelated homes (i.e. N ¼ 60, 120, 915).

http://github.com/bcreiner/measuring_kappa
http://github.com/bcreiner/measuring_kappa
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To estimate k, it was necessary to have some knowledge of

at least one other parameter affecting oocyst or sporozoite

rates. When parity, oocyst and sporozoites rates were all

used, only one other parameter was required. When only

two of these statistics were used, independent knowledge of

two other parameters was required, and when only one of

these was used, independent knowledge of three parameters

was required. Assuming perfect knowledge of the EIP, or the

interval from infection to infectiousness within the mosquito

(n, here set to 12), and using estimates of parity and the

oocyst and sporozoite rates derived from the sampled data,

as well as the sixth method of estimation given in table 1

(i.e. the method that incorporates all available information), we

plotted the resulting estimates of the transmission intensity, k.

Consistent with the estimates of the oocyst and sporozoite

rates, estimates of k had larger variation when sampling

occurred every month when compared with bi-weekly or

alternating day sampling regimes (figure 3). Also similar

to the estimates of the oocyst and sporozoite rates, the vari-

ation in the estimates was largest for red noise and smallest

for blue noise. There appeared to be a small bias in the esti-

mated values for simulations where emergence was driven
by either white or red noise (estimates are lower than

expected), with the bias being larger for simulations with

red noise.

Estimation of k when less information was assumed to be

collected (and thus more parameters’ values must be assumed

to be known) resulted in some similar patterns across Hurst

parameters and sampling regimes in that variation in the esti-

mates was largest for red noise and when there were monthly

samples (electronic supplementary material, figures S4–S8).

It must be noted here that these alternative estimation

approaches were calculated using exact values of parameters

that in practice would need to be estimated, so over interpret-

ation of the relative accuracy and precision between estimates

plotted in figure 3 and electronic supplementary material,

figures S4–S8 is inapt. However, it is interesting to note that

estimates based on sporozoite rate, which naturally will be

harder to accurately estimate given its small value, but

which assume knowledge of at least one additional parameter,

are less accurate (electronic supplementary material, figures S4

and S5). This decrease in accuracy is most notable when data

are collected on both parity and sporozoite rate (electronic

supplementary material, figure S7) where the fact that parity
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Figure 4. Estimating reduction in k with k̂6: Reduction in transmission intensity using the sixth estimation method was simulated for three scenarios, 25%
reduction (left plots), 50% reduction (middle plots) and 80% reduction (right plots). For each scenario, estimates are plotted for simulations where emergence
incorporated blue, white, or red noise and collections were done every month (a), bi-weekly (b) or every other day (c). Sampling error is assessed by contrasting
estimates based on a single collection (left box plots) versus the average of five collections all done on the same night (right box plots). True value indicated by blue
dashed line, while ‘no difference’ (i.e. k̂1 ¼ k̂2) indicated with black dotted line. Out of 1000 simulations, the number of simulations where no decrease in
transmission intensity was detected is listed below the corresponding box plot.
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rate estimates are raised to the power of n þ 1 causes estimates

of k to be incredibly inaccurate (and in the case of red noise,

relatively useless).
3.3. Changes in k
Our relative ability to estimate a reduction in k from one year

to the next depended on both the size of the reduction in k as

well as the colour of the noise driving the emergence rate

(figure 4). In all cases, the estimated change in k appeared

to be unbiased (unlike actual estimates of k for some noise

regimes). However, in certain simulation scenarios, the vari-

ation in estimates of the change in k was so large that it

obscured the presence of an effect. In one extreme, when k

was reduced by 25%, monthly samples were taken and red

noise drove mosquito emergence, 21.6% of the simulations

failed to result in estimates that indicated any reduction in
transmission intensity at all (figure 4a). At the other extreme,

when there was an 80% reduction in transmission intensity,

samples were taken every other day and blue noise drove

mosquito emergence, not only were the estimates unbiased

(mean ratio is 0.1987 versus true ratio of 0.2), but also the

variance in the estimate was extremely small (s.d. ¼ 0.012).

There was a small reduction in variance when estimates

were calculated assuming samples were based on the average

of five collections, but the reduction was as large as when

samples were more spread. In particular, monthly samples

based on five collections once each month on the 15th

(i.e. 120 collections on 24 distinct days over 2 years; figure 4a)

had a higher variance than bi-weekly samples based on

single collections on the 1st and 15th of each month (i.e. 48

collections on 48 distinct days over 2 years; figure 4b).

As with estimates of k, estimates of the change in k

using less collected information but assuming the exact
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value of more of the parameters governing the simulations cre-

ates similar patterns (electronic supplementary material,

figure S9–S13). Estimates that did not use oocyst rates

were extremely inaccurate (electronic supplementary material,

figures S9 and S12), while other estimates appeared similar

in power to those based on k̂6: It is interesting to note that in

spite of the inaccuracy in sporozoite rates, estimates of the

change in k using oocyst and sporozoite rates (electronic

supplementary material, figure S11) performed better than

estimates using oocyst rates and parity (electronic supple-

mentary material, figure S13). Estimates of k itself followed

the opposite pattern (k̂3, electronic supplementary mate-

rial, figure S6; and k̂5, electronic supplementary material,

figure S8, respectively).

Estimates of the change in k made by calculating either

the change in the oocyst rate (electronic supplementary

material, figure S14) or the sporozoite rate (electronic sup-

plementary material, figure S15) were biased, consistent

with the above observation that when more information is

used, the estimates perform better. In all cases, the size of

the reduction was underestimated (as indicated by the

median ratio of estimated ks always being higher than the

corresponding dashed lines in electronic supplementary

material, figures S14 and S15). In addition to being biased,

the variation in the ratio of sporozoite rates was larger

than the variation in estimates of k in every scenario. Alterna-

tively, the variation in the ratio of oocyst rates was smaller in

every scenario than the corresponding ratios of estimates of k,

in part, because there was less time for the noise in recruit-

ment to change the age distribution of the mosquito

population. It is, however, important to note that our direct

estimates of k assumed knowledge of n, while the ratio of

oocyst or sporozoite rates required no assumptions of any

of the parameters of the model.
4. Discussion
Measuring transmission from mosquitoes to humans is

a challenge, but this study and the methods we have devel-

oped show it is possible to estimate net infectiousness of

human populations with accuracy and precision even when

mosquito populations fluctuate in some unknown way.

Proper evaluation of different methods requires modelling

fluctuating mosquito populations, but this has been proble-

matic because of the difficulty of simulating variability in

any systematic way. We have solved that problem using frac-

tional Brownian processes to generate noise with different

colours to represent fluctuations in mosquito populations.

The analysis also suggests that the colour of the noise in

mosquito population dynamics will affect both the precision

and accuracy of the estimates of k, but that these problems

can be overcome to some extent by sampling the population

sufficiently frequently throughout the season and using

multiple measures of infection. The most unbiased method

for measuring changes in k accurately requires simul-

taneously measuring parity, oocyst rates and sporozoite

rates. We have also shown that using crude oocyst rates or

sporozoite rates to estimate changes in k gives biased results.

Using estimators that capture different information about

the age of populations—parity, oocyst rates and sporozoite

rates, which convey some information about the age of
the population—removes much of the bias introduced by

environmental and sampling noise.

There are also several caveats that could limit the applica-

bility of this study to actual field conditions. First, some a priori
knowledge of the EIP (or perhaps of some other parameter) is

necessary, regardless, from other studies of the mosquito

populations. Second, these methods assume that most of the

mosquito bionomic parameters are constant, while focusing

only on variability in the rate of recruitment. In real popu-

lations, mosquito survival and blood feeding rates, parasite

development rates, and k almost certainly vary seasonally.

Adding variability in these other parameters could further

reduce the precision and accuracy of estimates, which is of

sufficient concern that we have not yet made any specific rec-

ommendations about the proper way to power a study.

Finally, inferring the colour of a the noise of a dynamic process

is a difficult task and is still an active filed of research. Simple

investigation of the power spectrum of a process may yield

some insight, and in recent years more complex estimation

approaches can incorporate more complex dynamics [43,44].

Previous modelling studies have looked at the role of

coloured noise in generating complicated population dyna-

mic time series [25,26]. Here, we have explored the ways

that coloured noise affects our ability to measure epidemio-

logically relevant processes occurring in malaria vector

mosquito populations. This result is consistent with previous

simulation modelling studies that illustrate the difficulties of

estimating mosquito survival in variable populations [45].

Our study also highlights the primitive state of metrology

for entomological aspects of malaria ecology and epidemiol-

ogy. Formal analysis of mosquito population variability is

rarely done, and few studies have simultaneously considered

sampling variance, local spatio-temporal heterogeneity, and

seasonal or environmental variance and its effects over time

on the ability to measure various quantities of interest

[45,46]. Similarly, though there is substantial evidence that

mosquito catch data follow a negative binomial distribution

[38,47,48], and though there is theory supporting the use of

negative binomial distributions for analysing mosquito

catch data [49], such methods are rarely used in practice.

There are also remarkably few examples of field data in

which parity and both sporozoite and oocyst infection rates

have been collected. Two landmark malaria controls studies

in Africa, Garki [50] and Pare-Taveta collected only sporo-

zoite rate and parity and a review by Killeen et al. [16]

identified only six studies that had collected these three

components. Our simulation studies suggest that it is poss-

ible to measure many quantities associated with mosquito

populations with precision and accuracy, but that much

greater care must be taken to develop methods for estimation,

and appropriate study designs and sample sizes. We have

shown that it is possible to measure transmission accurately

and precisely in randomized control trials with the proper

study design, the proper estimation tools and with sufficient

sampling intensity. Variability in mosquito populations is,

however, real and it can have a large effect on the outcome

and conclusions of any trial, especially if the assumed effect

sizes within the trial are moderate.

Mosquito population density and mosquito behaviours

are an uncontrolled variable that affect the outcomes of any

malaria study. In statistical terms, all studies of malaria are

quasi-experiments and the results of any trial must be inter-

preted with proper entomological measures as a covariate.
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Far from arguing against inclusion of entomological

measures, this study suggests that, although it is difficult to

measure transmission entomologically, it can be done prop-

erly given enough forethought and effort. At the present

time, parity and sporozoite rates are standard measures,

but given modern high throughput molecular methods,

oocyst rates could easily be added to the mix using the

same sampled mosquitoes providing a natural complement

to overcome some of the problems associated with fluctuat-

ing mosquito populations. The sensitivity of this approach

would be further improved by age grading techniques

for anophelines which could be integrated as molecular [51]

or stand-alone approaches [52]. Here, age can be inferred

from both parity but also the development of the malaria para-

site. Many of the techniques applied here to malaria would be

generally applicable to any vector-borne pathogen where age

can be inferred from some aspects of pathogen development.
This study suggests that it is time to devote more resources

and capacity to developing appropriate methods and appro-

priate sampling effort to getting the entomological measures

right, which requires a combination of expertise in entomol-

ogy, parasitology, statistics, mathematical models and

experimental design.
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