Investigations into Phosphodieterases as Targets for Antimalarial Drug Discovery


Drought, LG; (2015) Investigations into Phosphodieterases as Targets for Antimalarial Drug Discovery. PhD thesis, London School of Hygiene & Tropical Medicine. DOI: 10.17037/PUBS.02305376

[img]
Preview
Text - Accepted Version
License:

Download (6Mb) | Preview

Abstract

Phosphodiesterases are key enzymes in cyclic-nucleotide signalling pathways, regulating the levels of cAMP and cGMP in the cell. Cyclic nucleotides play an important role in regulating progression of the complex parasite life cycle. There are four Plasmodium PDEs, PDEα-δ. PDEβ has proved refractory to deletion and is predicted to be essential in asexual blood stages. PDEs α, γ and δ have been successfully disrupted in previous studies, which revealed stage-specific roles for PDEγ and PDEδ in the mosquito. PDEβ is a promising drug target due to the proven ability to create specific inhibitors for individual human PDEs (e.g. Viagra inhibits human PDE5), the established safety record of current inhibitors and the predicted essential nature of PDEβ in P. falciparum blood stages. The lack of useful reagents; knockout strains, tagged lines and recombinant proteins, has severely limited progress in this field. Conditional genetic disruption (required to study essential genes) is notoriously difficult in P. falciparum. This project has attempted to generate a conditional knock-out using the destabilisation domain system and the novel DiCre system, which involves recombinase-mediated genomic excision of the target DNA upon introduction of a drug. A PDEβ haemagglutanin (HA) tagged line has been successfully generated and used to investigate the cellular biology of PDEβ, including, the subcellular localisation and cyclic nucleotide specificity of PDEβ, which until now has remained speculative. A small library of PDE inhibitors generated by Pfizer has been evaluated using a parasite growth inhibition assay and a PDE assay, with compounds active at sub-micromolar concentrations against the parasite and the protein. These assays have used wild type parasites and also a PDEα KO line which has no obvious phenotype in blood stage parasites.

Item Type: Thesis
Thesis Type: Doctoral
Thesis Name: PhD
Contributors: Baker, D (Thesis advisor);
Faculty and Department: Faculty of Infectious and Tropical Diseases
Faculty of Infectious and Tropical Diseases > Dept of Pathogen Molecular Biology
Funders: Biotechnology and Biological Sciences Research Council, Pfizer
Copyright Holders: Laura Drought
URI: http://researchonline.lshtm.ac.uk/id/eprint/2305376

Statistics


Download activity - last 12 months
Downloads since deposit
56Downloads
253Hits
Accesses by country - last 12 months
Accesses by referrer - last 12 months
Impact and interest
Additional statistics for this record are available via IRStats2

Actions (login required)

Edit Item Edit Item