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Abstract

Background

Trachoma programs rely on guidelines made in large part using expert opinion of what will

happen with and without intervention. Large community-randomized trials offer an opportu-

nity to actually compare forecasting methods in a masked fashion.

Methods

The Program for the Rapid Elimination of Trachoma trials estimated longitudinal prevalence

of ocular chlamydial infection from 24 communities treated annually with mass azithromy-

cin. Given antibiotic coverage and biannual assessments from baseline through 30 months,

forecasts of the prevalence of infection in each of the 24 communities at 36 months were

made by three methods: the sum of 15 experts’ opinion, statistical regression of the square-

root-transformed prevalence, and a stochastic hidden Markov model of infection transmis-

sion (Susceptible-Infectious-Susceptible, or SIS model). All forecasters were masked to the

36-month results and to the other forecasts. Forecasts of the 24 communities were scored

by the likelihood of the observed results and compared using Wilcoxon’s signed-rank

statistic.

Findings

Regression and SIS hidden Markov models had significantly better likelihood than commu-

nity expert opinion (p = 0.004 and p = 0.01, respectively). All forecasts scored better when
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perturbed to decrease Fisher’s information. Each individual expert’s forecast was poorer

than the sum of experts.

Interpretation

Regression and SIS models performed significantly better than expert opinion, although all

forecasts were overly confident. Further model refinements may score better, although

would need to be tested and compared in new masked studies. Construction of guidelines

that rely on forecasting future prevalence could consider use of mathematical and statistical

models.

Trial Registration

Clinicaltrials.gov NCT00792922

Author Summary

Forecasts of infectious diseases are rarely made in a falsifiable manner. Trachoma trials
offer an opportunity to actually compare forecasting methods in a masked fashion. The
World Health Organization recommends at least three annual antibiotic mass drug
administrations where the prevalence of trachoma is greater than 10% in children aged
1–9 years, with coverage at least at 80%. The Program for the Rapid Elimination of Tra-
choma trials estimated longitudinal prevalence of ocular chlamydial infection from 24
communities treated annually with mass azithromycin. Here, we compared forecasts of
the prevalence of infection in each of the 24 communities at 36 months (given antibiotic
coverage and biannual assessments from baseline through 30 months, and masked to the
36-month assessments) made by experts, statistical regression, and a transmission model.
The transmission model was better than regression, with both far better than experts’
opinion. Construction of guidelines that rely on forecasting future prevalence could con-
sider use of mathematical and statistical models.

Introduction
TheWorld Health Organization (WHO), the International Trachoma Initiative, Ministries of
Health, and their partners aim to control blinding trachoma by 2020, implementing surgical
campaigns, antibiotic distributions, hygiene initiatives, and environmental improvements [1].
Trachoma control is a massive undertaking: 50 million doses of antibiotics are now distributed
annually, in 30 countries [2]. The Global Trachoma Mapping Project alone will complete pop-
ulation-based surveys in more than 1400 districts worldwide by the end of 2015 [3, 4]. Surveys
and treatment histories are now available for the vast majority of trachoma-endemic districts
worldwide [5]. However, we do not know where WHO goals will likely be and not be achieved.
Decisions on when to start and stop treatments are still based on guidelines dependent in large
part on expert opinion [6].

Mathematical models have provided insight into the transmission of infectious diseases
including trachoma [7–15]. However, they have rarely been used to make falsifiable predic-
tions. As a candidate for prediction, trachoma may have some advantages over other infectious
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diseases. Trachoma has no nonhuman reservoirs, no long-lasting latent stage, and as yet no
clinically important drug resistance, simplifying modeling greatly compared to diseases such as
cholera, onchocerciasis, and tuberculosis [1]. With many infectious diseases such as SARS and
Ebola [16, 17], epidemics occur sporadically in time and place; forecasting can be made in a
predictable time frame with post-treatment trachoma. Community-randomized trials have
provided longitudinal assessment of multiple communities after mass antibiotic distributions.
In a sense, after each mass treatment has brought infection to a low level, infection returns in a
synchronized manner in a number of communities, offering results somewhat analogous to a
repeated experiment.

Accurate forecasts could inform stakeholders of realistic goals, define trouble spots to focus
resources, and suggest areas headed towards control even in the absence of intervention. Pre-
diction has scientific value as well. The ability to predict the prevalence of an infectious disease
is a test of our understanding of the epidemiology. Here, we use recent clinical trial data to fore-
cast the prevalence of ocular chlamydial infection in children in 24 endemic communities in
Niger. We compare model forecasts to expert opinions, and to a statistical regression that uses
no special knowledge of the infectious process.

Methods

Data collection
Forty-eight communities were followed as part of the Niger arm of the Partnership for the
Rapid Elimination of Trachoma (PRET) study. Communities were randomized to either mass
antibiotics of the entire community, or antibiotics targeted just to children 12 years and youn-
ger. The 24 communities included in this study received annual antibiotic treatment of all ages.
Communities were assessed at baseline and then biannually for 3 years. All individuals were
offered antibiotic treatment annually, within two weeks of the assessment: children under 6
months, those allergic to macrolides, and pregnant women were offered topical tetracycline,
and all others were offered a single dose of oral azithromycin (20 mg/kg for children and 1
gram for adults).

A random sample of 100 children 0–5 years old were selected from each community. If a
community had less than 100 0–5 year-old children, then all were offered assessment. Each
participating child had their upper right tarsal conjunctiva swabbed, and processed for PCR as
previously described [18].

Ethics statement
This study of de-identified data received ethical approval from the Committee on Human
Research of the University of California San Francisco and was carried out in accordance with
the Declaration of Helsinki. All adult subjects provided informed consent, and a parent or
guardian of any child participant provided informed consent on their behalf. The informed
consent given was oral: (a) we chose verbal consent because of the low literacy rates in the
study area, (b) the IRB (10.00812) approved the use of oral consent, and (c) oral consent was
documented on the registration form for each study participant prior to examination in the
field.

Survey methods
TheWHO NTD-STAGMonitoring and Evaluation Working Group had a sub-group meeting
to discuss trachoma surveillance on September 11–12, 2014 in Atlanta, GA, USA at the Task
Force for Global Health, co-sponsored by WHO and the NTD Support Center. Fifteen
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trachoma experts were asked to forecast the 36 month prevalence of infection in the 24 com-
munities of the PRET-Niger study described above, and were provided, for each community,
the biannual prevalence estimates from 0–30 months, the antibiotic coverage at 0, 12, and 24
months, the estimated population of 0–5 years olds at baseline, and the number of children
sampled at baseline (Table 1). For each of the 24 communities, the experts were asked to pro-
vide their median estimate at 36 months, as well as the lower and upper bounds of their cen-
tralized 95% credible interval (the 2.5th, 50th, and 97.5th percentile of their belief). The
community expert opinion was constructed by estimating each of the 15 individual’s distribu-
tion for each village (see Scoring below) and then taking the arithmetic average assuming equal
weights, and was used as the primary survey forecast, although each individual’s forecast was
also scored separately. The number of trachoma publications by each of the 15 experts was

Table 1. Format of forecast.

PRET-Niger forecasting exercise

Village Children 0–5
years

Antibiotic
coverage*

Prevalence of infection in children 0–5
years by PCR

Your 36 month forecast Observed

Total Tested 0 12 24 0* 6 12* 18 24* 30 Lower** Median Upper** 36

1 580 101 81% 81% 86% 30% 3% 3% 5% 6% 3% 12%

2 53 49 83% 89% 92% 8% 2% 2% 0% 0% 0% 0%

3 129 97 91% 79% 89% 8% 0% 0% 1% 4% 2% 2%

4 44 43 89% 91% 90% 51% 20% 14% 0% 0% 5% 23%

5 84 72 87% 86% 80% 25% 3% 3% 1% 3% 0% 0%

6 137 109 91% 90% 92% 13% 4% 2% 0% 0% 0% 0%

7 72 64 92% 88% 89% 2% 0% 0% 0% 0% 0% 0%

8 51 50 88% 84% 83% 20% 0% 3% 3% 3% 0% 0%

9 170 100 89% 81% 85% 3% 1% 1% 1% 1% 0% 0%

10 218 196 96% 84% 85% 28% 4% 6% 3% 2% 0% 2%

11 63 54 87% 88% 85% 7% 4% 6% 4% 2% 0% 0%

12 89 81 92% 87% 91% 48% 0% 0% 9% 25% 8% 16%

13 149 97 95% 82% 90% 3% 1% 3% 0% 1% 3% 5%

14 140 102 96% 92% 90% 39% 11% 13% 3% 5% 5% 8%

15 174 102 99% 92% 91% 31% 2% 6% 28% 28% 19% 11%

16 208 107 97% 96% 94% 35% 9% 20% 14% 15% 18% 22%

17 78 75 100% 95% 80% 9% 5% 4% 7% 13% 6% 13%

18 173 100 98% 94% 95% 58% 9% 11% 1% 2% 0% 0%

19 132 124 96% 97% 97% 27% 10% 7% 1% 5% 0% 0%

20 147 114 90% 97% 95% 24% 6% 16% 10% 18% 8% 5%

21 122 101 95% 94% 93% 11% 2% 2% 0% 0% 0% 0%

22 169 106 97% 95% 92% 17% 3% 1% 1% 5% 10% 13%

23 242 103 91% 94% 97% 5% 2% 1% 1% 0% 1% 0%

24 80 65 96% 82% 94% 6% 14% 4% 7% 2% 2% 7%

j Nj Mj cð1Þ
j cð2Þ

j cð3Þ
j Sð0Þ

j Sð1Þ
j Sð2Þ

j Sð3Þ
j Sð4Þ

j Sð5Þ
j

*mass antibiotic distribution to all ages after sample collection at that time point

**lower and upper bounds of your 95% credible interval for the village

Forecasts by experts, regression, and SIS hidden Markov model were made using the data in this table, not including the observed 36 month results

(right-hand column).

doi:10.1371/journal.pntd.0004000.t001
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assessed by a PubMED (National Library of Medicine) search on December 1, 2014 (expert
name as author AND “trachoma” as keyword).

Statistical methods
Linear mixed effects regression was used to model the prevalence at 12 months and 24 months
based on observations at 6 months and at 18 months, respectively. A random intercept was
used for each village. To improve normality and homoskedasticity, the square root transform
was applied to the prevalence fractions. The fitted model was then used to predict the preva-
lence at time 36 based on observations at 30 months. Standard errors were obtained using clus-
tered bootstrap. All calculations were conducted using R (R Foundation for Statistical
Computing, Vienna, Austria, v.3.1 for Macintosh, package lme4). While the primary regression
was of square-root transformed regression with a community-level random effect, we also
included a linear regression model without a community-level random effect.

Modeling methods
We constructed a stochastic transmission model of transmission of Chlamydia trachomatis
infection over time. For village j (j = 1, . . . 24), we assumed a population of size Nj, taken from
the number of children aged 0–5 years found in the census at the time of treatment k (k = 1, 2,
3 corresponding to baseline, 12 and 24 months). We assumed a classical SIS (susceptible-infec-
tious-susceptible) model structure, assuming that the force of infection is proportional to the
prevalence of infection in the population of children aged 0–5 years with proportionality con-
stant β, and a constant per-capita recovery rate γ [19]. Between periods of treatment, we

assumed that the probability pðkÞi;j ðtÞ that there are i infectives in village j at time t after treat-

ment time point k obeys the following equations [20, 21]:

dpðkÞ0;j

dt
¼ gpðkÞ1;j

dpðkÞi;j

dt
¼ b

ði� 1ÞðNj � iþ 1Þ
Nj

pðkÞi�1;j þ gðiþ 1ÞpðkÞiþ1;j � b
iðNj � iÞ

Nj

pðkÞi;j � gipðkÞi;j ; for 1 � i

� Nj � 1ð1Þ

dpðkÞNj ;j

dt
¼ b

Nj � 1

Nj

pðkÞNj�1;j � gNjp
ðkÞ
Nj;j

To model treatment, we assumed that each child aged 0–5 years in village j has probability

cðkÞj of receiving treatment with the antibiotic efficacy ek for treatment period k. We modeled

each treatment according to pðkÞi;j ðt ¼ 0Þ ¼
XNj

i0¼i

pðk;preÞi0;j ð i0
i
Þ ð1� cðkÞj ÞiðcðkÞj ekÞi0�i, where i0 is the

number of infected individuals of children aged 0–5 years eligible for treatment, pðk;preÞi0;j is the

probability of i0 infected individuals of children aged 0–5 years before treatment time point k,

and i is the number of infected individuals of children aged 0–5 years after treatment. Let SðlÞj

andMðlÞ
j be the observed number of PCR-positive individuals of children aged 0–5 years and

the sample size at each observation time point l (l = 0, 1, 2, 3, 4, and 5 corresponding to base-
line, 6, 12, 18, 24 and 30 months, respectively) for village j, and Sj be the possible number (rang-

ing from 0 toMðlÞ
j ) of positive individuals of children aged 0–5 years detected in the sample at
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observation time point l. From village j with population (children aged 0–5 years) size Nj of
which the number Yj of infectives equals i, the probability P(Sj = s|Yj = i) that s positives are
observed from a sample of sizeMj is given by the hypergeometric distribution:

i

s

 !
Nj � i

MðlÞ
j � s

0
@

1
A� Nj

MðlÞ
j

0
@

1
A. We assumed a standard beta-binomial prior (the binomial dis-

tribution in which the probability of success at each trial follows the beta distribution)

P Yj ¼ y
� � ¼ Nj

y

 !
Bðyþm;Nj�yþrÞ

Bðm;rÞ (where the shape parameters μ and ρ for each treatment were

computed from the observed distribution of infection of 24 villages at baseline, 12 and 24
months, B(z1, z2) is the beta function) [22]. The pre-treatment prevalence distribution was
then computed for each village by applying Bayes’ theorem:

pðk;preÞi;j ¼ PðYj ¼ ijSj ¼ sÞ ¼ PðSj ¼ sjYj ¼ iÞPðYj ¼ iÞPNj
i¼0 PðSj ¼ sjYj ¼ iÞPðYj ¼ iÞ

: ð2Þ

For each village j, the initial condition is determined from Eq (2), and the system numeri-
cally integrated for six or twelve months according to Eq (1). Specifically, for each village j, the

pre-treatment distributions of kth treatment is pðk;preÞi;j ¼ PðYj ¼ ijSj ¼ Sð2k�2Þ
j Þ. Given the num-

ber i of infected individuals of children aged 0–5 years, we computed the probability of the

observed data of treatment k in village j according to PðSj ¼ sÞ ¼PNj
i¼s p

kð Þ
i;j tð Þ

i

s

 !
�

Nj � i

Mj � s

 !� Nj

Mj

 !
(whereMj here denotes the sample size at one of the observation time

points in the period k, and τ (6 or 12 months) is the interval between treatment time point and
observation time point). We assumed independent villages, so that the total loglikelihood at
time τmonths after each treatment kmay be computed by summing over all 24 villages

P24

j¼1 logð
PNj

i¼0 p
ðkÞ
i;j ðtÞ

i

s

 !
Nj � i

Mj � s

 !� Nj

Mj

 !
Þ.

The transmission coefficient and antibiotic efficacy in the model were optimized by using
the Metropolis algorithm with the total likelihood of three treatment periods to fit the model to
the observed numbers of PCR-positive individuals of children aged 0–5 years in each village at
6, 12, 18, 24 and 30 months [23]. Forecasting the distribution of the observed number of PCR-
positive individuals of children aged 0–5 years in a village at 36 months, conditionally on the
observed numbers of PCR-positive individuals of children aged 0–5 years at baseline, 6, 12, 18,
24 and 30 months from the same village, was done by using a hidden Markov model according
to the equation of forecast distribution [24].

The primary modeling forecast was pre-specified as the SIS process model with a random
effect, although the SIS model without a random effect was included as a sensitivity analysis. In
addition, the forecast of each model as a distribution over 101 discrete units was included as a
comparison to the distribution estimated by minimizing the Fisher’s information (which allows
a symmetric credible interval to approach a normal distribution, as well as the flexibility of
asymmetric credible intervals to represent skewed distributions). Sensitivity analyses included
changing the fixed mean infection duration assumed in the model to be 6 months, to 3 months
or to 12 months.

Short-term Forecasting of the Prevalence of Trachoma
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Scoring
To ensure a fair comparison, all forecasts were scored from the proposed median and 95% CrI.
Given the denominator of the sample for each village at 36 months, the discrete distribution
which minimized the Fisher’s information while constrained to that expert’s median and 95%
CrI was estimated (Mathematica 10.0). As a sensitivity analysis, the SIS model forecasts were
also presented as a distribution from 0 to 100%, with the score compared to the score derived
from the median and 95% CrI. The modeler, statistician, and each of the 15 experts surveyed
were all masked to the 36-month results, as well as to the forecasts made by others. Different
forecasts were pairwise compared using Wilcoxon’s signed-rank test (Mathematica 10.0), using
the Holm–Bonferroni multiple comparison correction, assuming 3 tests.

As a sensitivity analyses, we assessed whether the likelihood of the observed data would be
greater (or lesser) had each forecast been more (or less) certain. Specifically, we perturbed each
forecast by taking the density at each possible prevalence to the 1+� power, normalizing, and
determining the likelihood of the observed data. Note that this maintains the support of a fore-
cast, maintains the ordering of the outcomes, and increases the Fisher’s information propor-
tionally by � (or decreases information proportionally for �<0).

Results
At the baseline census, communities had a mean of 146 children (95% CI 137 to 155) aged 0 to
5 years. The mean antibiotic coverage of children was 92.3% at baseline, 89.0% at 12 months,
and 89.8% at 24 months. At baseline, the estimated prevalence of infection in the 24 communi-
ties ranged from 2% to 58% with a mean prevalence of 21.1% (95% CI 19.8% to 22.5%) [18].
The community prevalence of infection at each biannual visit is displayed in Table 1. The
observed prevalence of infection at 36 month which was to be forecasted ranged from ranged
from 0% to 22.5% with a mean prevalence of 5.8% (95% CI 5.2% to 6.4%).

The 15 experts provided forecasts for each of the 24 communities, with the mean taken as
the community forecast (Fig 1). Fig 2 shows the forecast distributions for the community of
experts, regression, and the SIS model, and Table 2 ranks the likelihood of the observed
36-month prevalence for each (S1 Fig and S1 Table in Supporting Information show the differ-
ence between observed and forecast prevalence). The estimated parameters of the SIS model
with random effect are shown in Table 3. The SIS model and the square root-transformed
regression had significantly better likelihood than the experts (p = 0.004 and p = 0.01, respec-
tively), and than the linear regression (p = 0.01 and p = 0.02, respectively). All forecasts were
positively biased, on average estimating a greater prevalence than was observed. All forecasts
had a lower (worse) likelihood if their Fisher’s information was marginally increased. No indi-
vidual expert forecast was better than the community forecast (the mean of the 15 experts).

A priori, the SIS model assumed a mean duration of infection of 6 months, obtaining a logli-
kelihood of the observed 36 month data of -41.03. Had we assumed the mean duration of infec-
tion was 3 months or 12 months, the loglikelihood would have been -41.47 or -39.91,
respectively. If we had assumed the 6 month duration of infection, but did not use a commu-
nity-level random effect, the likelihood score would have been -41.57. To fairly compare the
different methods, the distribution of each forecast was estimated by minimizing the Fisher’s
information given the estimated median and 95% CrI. For the SIS model, we also expressed
each full distribution, obtaining a loglikelihood score of -40.90, or nearly the same as the -41.03
obtained from minimizing the Fisher’s information.

The mean number of trachoma citations on PubMED by the experts was 42 (range 0 to
133). The likelihood score and number of publications was actually inversely correlated

Short-term Forecasting of the Prevalence of Trachoma
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Fig 1. Survey results. 15 experts’ forecasts of the 36 month prevalence in each of 24 communities. Expert’s forecast distributions (grey curves) were
estimated from their expected median and 95%CrI bounds for each community. Experts’ distributions could overlap when identical medians and bounds
were submitted. The mean (black curve) is used to represent the community forecast.

doi:10.1371/journal.pntd.0004000.g001
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Fig 2. Different forecast methods versus observed result.Regressions (linear regression as green curve, square root-transformed blue), SIS hidden
Markov Model (red), community of experts (black), and observed 36-month prevalence (dotted bar). Forecasts could overlap.

doi:10.1371/journal.pntd.0004000.g002
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(Spearman’s correlation -0.33, p = 0.24), thus we were unable to demonstrate that this measure
of expertise was associated with better forecasting.

We performed logistic regression, assuming the individual PCR results most likely to have
obtained the observed pooled results, but this performed no better than linear regression of the
square-root transformed regression.

Discussion
An SIS hidden Markov model and a regression model both produced forecasts with signifi-
cantly higher likelihood of the observed data than a community of experts. The SIS model,
which attempted to utilize an understanding of the infectious process and mass treatment, per-
formed significantly better than linear regression, but only slightly (and not significantly) better
than regression of the square root-transformed prevalence.

In general, more uncertainty resulted in better scoring forecasts. For every forecast a mathe-
matical perturbation which reduced the Fisher’s information resulted in a higher likelihood of
the observed data. The inclusion of a community-level random effect in the SIS hidden Markov
model improved forecasting, perhaps by increasing uncertainty. The composite survey con-
tained less information than any individual survey, and did better than any single individual
forecast. The benefit of adding uncertainty could suggest that forecasts are inherently over-con-
fident, or that additional variance components of the data were not considered by any of the
methods.

Even though the SIS hidden Markov model and regression model had significantly higher
likelihood than the community experts, the forecasted distributions of prevalence (as shown in
Fig 2) by all models were very similar and did not show which model was significantly better

Table 2. Forecast scores and bias.

Model loge likelihood Bias

SIS hidden Markov model with random effect -41.03 +0.69

SIS hidden Markov model without random effect -41.57 +0.64

square root-transformed regression -42.90 +0.61

community of experts -48.65 +1.75

linear regression -51.88 +1.44

individual experts, median result (range of n = 15) -61.07 (-53.84 to -104.95) +0.90

Forecast were scored as the loglikelihood of observing the 24 community-level prevalence of ocular

chlamydial infection at 36 months, with a higher (less negative) loglikelihood indicating a better forecast.

Positive bias indicates that the expectations for the 24 communities were on average higher than the

observed prevalence.

doi:10.1371/journal.pntd.0004000.t002

Table 3. Estimated parameters of the SISmodel with random effect.

Duration of infection Efficacy ê̂ (95% CI) Mean of logeβ̂
^ (95% CI) SD of logeβ̂

^ (95% CI)

6-month 0.836 (0.773, 0.886) -1.403 (-1.529, -1.289) 0.035 (0.002, 0.098)

3-month 0.678 (0.561, 0.787) -0.989(-1.373, -0.605) 0.033 (0.001, 0.092)

12-month 0.897 (0.853, 0.936) -1.651 (-1.805, -1.519) 0.045 (0.002, 0.133)

Given a 6, 3, or 12months of infection duration, we estimated the overall efficacy, the mean and standard

deviation of loge b̂
^ (assuming that the logarithm of transmission coefficient β is from a normal distribution)

based on the observed data of 24 communities. Estimation was done by using MCMC.

Short-term Forecasting of the Prevalence of Trachoma
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than other models. With more available data, models could improve forecasting. The SIS hid-
den Markov model did not include infection from outside the population of children aged 0–5
years in each community. Our previous model [13] used a simple constant exogenous infection
rate to represent infection from older children or adults to children aged 0–5 years within the
same community, and did not find significant differences between the estimated transmission
coefficients with and without the exogenous infection rate for different durations of infection.
Of course, such models could be further refined to reflect age structured transmission dynam-
ics. In this setting, the other age groups (older children and adults) were being treated as well,
and other studies have shown consistently higher prevalence in small children than in other
age groups (e.g. [25]).

The prevalence of infection in different communities is clearly correlated visit-to-visit, with
visits 6-months apart having a higher correlation than visits further apart. However, there may
be a fundamental limit to the predictability at the community level, simply due to the vagaries
of who infects whom and when they do so. Mathematical models and cross-sectional empirical
studies have suggested that as disease is disappearing, the prevalence of infection should form
an exponential distribution (or its discrete analog, a geometric distribution), whether the disap-
pearance is due to mass antibiotics, environmental improvements, or a secular trend [26, 27].
This exponential distribution has a much heavier tail than, for example, the normal distribu-
tion, so outliers are to be expected even when all communities are assumed to have identical
transmission characteristics. Six-months is a relatively short period in trachoma control—pro-
grams typically reassess endemicity every 1–5 years. If predictability decreases as time increases
between visits, than we would expect that apparent hotspots at one visit may not be the most
affected areas at a subsequent visit. This has been termed chasing ghosts by trachoma programs
(personal communication, PME).

Forecasts, whether made by experts, statistics, or mathematical transmission models, are
rarely done in a falsifiable manner. Here, all participants were presented with identical infor-
mation and masked to the results and to the other forecasters. Forecasts described the distribu-
tion of all possible outcomes, not a prediction of the single most favorable, and were scored in
a pre-specified manner. The availability of results from 24 communities allowed a statistical
comparison between forecasts, reducing the chance that the overall score would be dependent
on a single fortunate guess.

Current WHO guidelines for starting mass drug administration are based on the district
prevalence of the clinical signs of disease rather than infection, and future studies could assess
forecasting at that level. In this study, we forecasted the community-level prevalence of ocular
chlamydial infection. WHO guidelines currently include sub-district level intervention, at least
for hypo-endemic districts with 5–10% prevalence of clinical activity in children. Individual
community-level forecasting may become important for surveillance after mass antibiotic
administrations have been discontinued.

Programs currently make decisions based on recommendations offered by the WHO [1].
Guidelines have relied heavily on extrapolation of existing evidence and expert opinion, since
not all scenarios have been, or likely will ever be, tested in community-randomized trials. Fore-
casting at the individual community level has not been particularly successful. While forecast-
ing at the district level may be more feasible than forecasting at the individual community
level, statistical and transmission model forecasts should be evaluated. If proven more effective,
as they were in this setting, then it may be reasonable for programmatic decisions to be based
on statistical or modeling forecasts rather than just expert opinion.

Short-term Forecasting of the Prevalence of Trachoma

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004000 August 24, 2015 11 / 13



Supporting Information
S1 Fig. Different forecast methods versus observed result. Regressions (linear regression,
green; square root-transformed, blue), SIS hidden Markov Model (red), and community of
experts (black), with mean (solid circle) and 95% CI (circle).
(TIFF)

S1 Table. Difference between observed result and forecast by SIS, linear regression, square
root transformed regression, and community opinion.
(DOCX)

Acknowledgments
In addition to the PRET and MIDAS study sponsors, the authors thank the data and safety
monitoring committee, including Douglas Jabs, MD, MBA (chair), Antoinette Darville, MD,
Maureen Maguire, PhD, and Grace Saguti, MD, who were generous with their time and advice
and met before and during the study. The authors thank all of our colleagues in Niger at Pro-
gramme National de Santé Oculaire who collected samples and data. We also thank the NTD
support center, the Task Force for Global Health, and the 15 experts surveyed at the WHO
NTD-STAGMonitoring and Evaluation Working Group meeting.

Author Contributions
Conceived and designed the experiments: TML TCP FL. Performed the experiments: FL TCP
AA BK BN SKW RLB JDK AWS PMEMG TML. Analyzed the data: TML TCP FL. Wrote the
paper: TML TCP FL.

References
1. Taylor HR, Burton MJ, Haddad D, West S, Wright H. Trachoma. Lancet. 2014. doi: 10.1016/S0140-

6736(13)62182-0 PMID: 25043452.

2. Haddad D. Ten years left to eliminate blinding trachoma. Community eye health / International Centre
for Eye Health. 2010; 23(73):38. Epub 2010/12/02. PMID: 21119924; PubMed Central PMCID:
PMC2975121.

3. Smith JL, Flueckiger RM, Hooper PJ, Polack S, Cromwell EA, Palmer SL, et al. The geographical distri-
bution and burden of trachoma in Africa. PLoS neglected tropical diseases. 2013; 7(8):e2359. doi: 10.
1371/journal.pntd.0002359 PMID: 23951378; PubMed Central PMCID: PMC3738464.

4. Solomon AW, Kurylo E. The global trachomamapping project. Community eye health / International
Centre for Eye Health. 2014; 27(85):18. PMID: 24966461; PubMed Central PMCID: PMC4069783.

5. Smith JL, Haddad D, Polack S, Harding-Esch EM, Hooper PJ, Mabey DC, et al. Mapping the global dis-
tribution of trachoma: why an updated atlas is needed. PLoS neglected tropical diseases. 2011; 5(6):
e973. Epub 2011/07/09. doi: 10.1371/journal.pntd.0000973 PMID: 21738814; PubMed Central
PMCID: PMC3125147.

6. Mabey DC, Solomon AW, Foster A. Trachoma. Lancet. 2003; 362(9379):223–9. PMID: 12885486.

7. Lietman T, Porco T, Dawson C, Blower S. Global elimination of trachoma: how frequently should we
administer mass chemotherapy? Nature medicine. 1999; 5(5):572–6. PMID: 10229236

8. Gambhir M, Basanez MG, Turner F, Kumaresan J, Grassly NC. Trachoma: transmission, infection, and
control. The Lancet infectious diseases. 2007; 7(6):420–7. PMID: 17521595.

9. Grassly NC, Ward ME, Ferris S, Mabey DC, Bailey RL. The natural history of trachoma infection and
disease in a gambian cohort with frequent follow-up. PLoS neglected tropical diseases. 2008; 2(12):
e341. PMID: 19048024. doi: 10.1371/journal.pntd.0000341

10. Blake IM, Burton MJ, Bailey RL, Solomon AW,West S, Munoz B, et al. Estimating household and com-
munity transmission of ocular Chlamydia trachomatis. PLoS neglected tropical diseases. 2009; 3(3):
e401. doi: 10.1371/journal.pntd.0000401 PMID: 19333364; PubMed Central PMCID: PMC2655714.

Short-term Forecasting of the Prevalence of Trachoma

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004000 August 24, 2015 12 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0004000.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0004000.s002
http://dx.doi.org/10.1016/S0140-6736(13)62182-0
http://dx.doi.org/10.1016/S0140-6736(13)62182-0
http://www.ncbi.nlm.nih.gov/pubmed/25043452
http://www.ncbi.nlm.nih.gov/pubmed/21119924
http://dx.doi.org/10.1371/journal.pntd.0002359
http://dx.doi.org/10.1371/journal.pntd.0002359
http://www.ncbi.nlm.nih.gov/pubmed/23951378
http://www.ncbi.nlm.nih.gov/pubmed/24966461
http://dx.doi.org/10.1371/journal.pntd.0000973
http://www.ncbi.nlm.nih.gov/pubmed/21738814
http://www.ncbi.nlm.nih.gov/pubmed/12885486
http://www.ncbi.nlm.nih.gov/pubmed/10229236
http://www.ncbi.nlm.nih.gov/pubmed/17521595
http://www.ncbi.nlm.nih.gov/pubmed/19048024
http://dx.doi.org/10.1371/journal.pntd.0000341
http://dx.doi.org/10.1371/journal.pntd.0000401
http://www.ncbi.nlm.nih.gov/pubmed/19333364


11. Blake IM, Burton MJ, Solomon AW,West SK, Basanez MG, Gambhir M, et al. Targeting antibiotics to
households for trachoma control. PLoS neglected tropical diseases. 2010; 4(11):e862. doi: 10.1371/
journal.pntd.0000862 PMID: 21072225; PubMed Central PMCID: PMC2970531.

12. Liu F, Porco TC, Ray KJ, Bailey RL, Mkocha H, Munoz B, et al. Assessment of transmission in tra-
choma programs over time suggests no short-term loss of immunity. PLoS neglected tropical diseases.
2013; 7(7):e2303. doi: 10.1371/journal.pntd.0002303 PMID: 23875038; PubMed Central PMCID:
PMC3708821.

13. Liu F, Porco TC, Mkocha HA, Munoz B, Ray KJ, Bailey RL, et al. The efficacy of oral azithromycin in
clearing ocular chlamydia: mathematical modeling from a community-randomized trachoma trial. Epi-
demics. 2014; 6:10–7. doi: 10.1016/j.epidem.2013.12.001 PMID: 24593917.

14. Koukounari A, Moustaki I, Grassly NC, Blake IM, Basanez MG, Gambhir M, et al. Using a Nonparamet-
ric Multilevel Latent Markov Model to Evaluate Diagnostics for Trachoma. American journal of epidemi-
ology. 2013; 177(9):913–22. doi: 10.1093/aje/kws345 PMID: 23548755; PubMed Central PMCID:
PMC3639724.

15. See CW, AlemayehuW, Melese M, Zhou Z, Porco TC, Shiboski S, et al. How reliable are tests for tra-
choma?—a latent class approach. Investigative ophthalmology & visual science. 2011; 52(9):6133–7.
doi: 10.1167/iovs.11-7419 PMID: 21685340; PubMed Central PMCID: PMC3176003.

16. Halloran ME, Ferguson NM, Eubank S, Longini IM, Cummings DAT, Lewis B, et al. Modeling targeted
layered containment of an influenza pandemic in the United States. Proc Natl Acad Sci U S A. 2008;
105(12):4639–44. doi: 10.1073/pnas.0706849105 PMID: 18332436

17. Shaman J, YangW, Kandula S. Inference and forecast of the current West African Ebola outbreak in
Guinea, Sierra Leone and Liberia. PLoS currents. 2014; 6: ecurrents.outbreaks.3408774290-
b1a0f2dd7cae877c8b8ff6. doi: 10.1371/currents.outbreaks.3408774290b1a0f2dd7cae877c8b8ff6

18. Amza A, Kadri B, Nassirou B, Stoller NE, Yu SN, Zhou Z, et al. Community risk factors for ocular Chla-
mydia infection in Niger: pre-treatment results from a cluster-randomized trachoma trial. PLoS
neglected tropical diseases. 2012; 6(4):e1586. Epub 2012/05/01. doi: 10.1371/journal.pntd.0001586
PMID: 22545165; PubMed Central PMCID: PMC3335874.

19. Brauer F, van den Driessche P, Wu J. Mathematical Epidemiology. Maini PK, editor. Berlin: Springer-
Verlag; 2008.

20. Ray KJ, Lietman TM, Porco TC, Keenan JD, Bailey RL, Solomon AW, et al. When can antibiotic treat-
ments for trachoma be discontinued? Graduating communities in three African countries. PLoS
neglected tropical diseases. 2009; 3(6):e458. doi: 10.1371/journal.pntd.0000458 PMID: 19529761;
PubMed Central PMCID: PMC2690652.

21. Lietman TM, Gebre T, Ayele B, Ray KJ, Maher MC, See CW, et al. The epidemiological dynamics of
infectious trachomamay facilitate elimination. Epidemics. 2011; 3(2):119–24. doi: 10.1016/j.epidem.
2011.03.004 PMID: 21624783; PubMed Central PMCID: PMC3869790.

22. Johnson NL, Kotz S, Kepm AW. Univariate Discrete Distributions. Barnett V, Bradley RA, NI Fisher,
Hunter JS, JB Kadane, Kendall DG, et al., editors. New York: JohnWiley & Sons, Inc; 1993.

23. Brooks S. Handbook of Markov chain Monte Carlo. Boca Raton: CRC Press; 2011.

24. Zucchini W, MacDonald IL. Hidden Markov models for time series: an introduction using R. Boca
Raton: CRC Press; 2009. pp. 75–87.

25. Solomon AW, Holland MJ, Alexander ND, Massae PA, Aguirre A, Natividad-Sancho A, et al. Mass
treatment with single-dose azithromycin for trachoma. New England Journal of Medicine. 2004; 351
(19):1962–71. PMID: 15525721

26. Lietman TM, Gebre T, Abdou A, AlemayehuW, Emerson P, Blumberg S, et al. The distribution of the
prevalence of ocular chlamydial infection in communities where trachoma is disappearing. Epidemics.
2015; 11:85–91. doi: 10.1016/j.epidem.2015.03.003 PMID: 25979286

27. Nåsell I. The quasi-stationary distribution of the closed endemic SIS model. Advances in Applied Prob-
ability. 1996:895–932.

Short-term Forecasting of the Prevalence of Trachoma

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004000 August 24, 2015 13 / 13

http://dx.doi.org/10.1371/journal.pntd.0000862
http://dx.doi.org/10.1371/journal.pntd.0000862
http://www.ncbi.nlm.nih.gov/pubmed/21072225
http://dx.doi.org/10.1371/journal.pntd.0002303
http://www.ncbi.nlm.nih.gov/pubmed/23875038
http://dx.doi.org/10.1016/j.epidem.2013.12.001
http://www.ncbi.nlm.nih.gov/pubmed/24593917
http://dx.doi.org/10.1093/aje/kws345
http://www.ncbi.nlm.nih.gov/pubmed/23548755
http://dx.doi.org/10.1167/iovs.11-7419
http://www.ncbi.nlm.nih.gov/pubmed/21685340
http://dx.doi.org/10.1073/pnas.0706849105
http://www.ncbi.nlm.nih.gov/pubmed/18332436
http://dx.doi.org/10.1371/currents.outbreaks.3408774290b1a0f2dd7cae877c8b8ff6
http://dx.doi.org/10.1371/journal.pntd.0001586
http://www.ncbi.nlm.nih.gov/pubmed/22545165
http://dx.doi.org/10.1371/journal.pntd.0000458
http://www.ncbi.nlm.nih.gov/pubmed/19529761
http://dx.doi.org/10.1016/j.epidem.2011.03.004
http://dx.doi.org/10.1016/j.epidem.2011.03.004
http://www.ncbi.nlm.nih.gov/pubmed/21624783
http://www.ncbi.nlm.nih.gov/pubmed/15525721
http://dx.doi.org/10.1016/j.epidem.2015.03.003
http://www.ncbi.nlm.nih.gov/pubmed/25979286

