Alam, MM; Solyakov, L; Bottrill, AR; Flueck, C; Siddiqui, FA; Singh, S; Mistry, S; Viskaduraki, M; Lee, K; Hopp, CS; Chitnis, CE; Doerig, C; Moon, RW; Green, JL; Holder, AA; Baker, DA; Tobin, AB (2015) Phosphoproteomics reveals malaria parasite Protein Kinase G as a signalling hub regulating egress and invasion. Nature communications, 6. p. 7285. ISSN 2041-1723 DOI: https://doi.org/10.1038/ncomms8285

Downloaded from: http://researchonline.lshtm.ac.uk/2235980/

DOI: 10.1038/ncomms8285

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/
Figure 1

A
Parasite culture
Drug treatment
Protein extraction
Generation of tryptic peptides
Peptide labelling with isobaric tags
Combine experimental replicates
Phospho-peptide enrichment
Mass spectrometry

Synchronised late schizonts
Vehicle
Compound 2 (2μM:60mins)

Split into two equal schizont preps
Tryptically digest
Label with isobaric tag
Experiments 1-3 mixed
Phospho-peptide enrichment
LC-MS/MS conducted on an Orbitrap (Velos)

Experiment 1: Isobaric tag 126 = vehicle : 127 = Comp 2 treated
Experiment 2: Isobaric tag 128 = vehicle : 129 = Comp 2 treated
Experiment 3: Isobaric tag 130 = vehicle : 131 = Comp 2 treated

B
Example of a phospho-peptide DOWN-REGULATED by Compound 2

C
Example of a phospho-peptide NOT changed by Compound 2
Figure 2

PIPKG-Dependent Phosphorylation In Schizonts

Key:
- Membrane
- Microtubules
- Rho
- Endomembrane System
- Nuclear
- Mitochondria
- Parasitophorous Vacuolar Membrane
- Red Blood Cell Membrane
Figure 3
Figure 4

A. PMyOA Non-Phosphorylated (I1TQDDNER)

B. PMyOA Phosphorylated (R1VpSNVEAFDK)

C. Comp 2

D. Comp 2
Figure 5
Figure 6

A

<table>
<thead>
<tr>
<th>Hours post infection</th>
<th>8</th>
<th>16</th>
<th>24</th>
<th>32</th>
<th>40</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CDPK1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDPK1-pS64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBA-175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

Control

Compound 2 Treated

C

Merge

D

Merge

E

Schizont

F

Free Merozite
Figure 8

A

![High Mwt Complex and Monomer](image)

B

Wild Type

- Percentage of Total
- High Mwt Complex
- Monomer

- Control
- Compound 2

p<0.05

C

PfPKG^{T618Q}

- Percentage of Total
- High Mwt Complex
- Monomer

- Control
- Compound 2
Figure 9

A Wild type parasites

B PIPKGT618Q mutant parasites

Percentage Invasion

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Comp 2</th>
<th>Control</th>
<th>Comp 2 Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 10

Schizont

Key PIPK1
Target Proteins

Second
Mesenger

Protein Kinase

PI3P
PIPK1
PMK1

Ca2+

Egress

Key Merozoite

Apical localisation of CDPK1-pS64

Figure 10