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Abstract

Background: In Nigeria, despite the change in National malaria drug policy to artemisinin combination therapy
(ACT) in 2005 due to widespread chloroquine resistance, chloroquine (CQ) is still widely used in the treatment of
malaria because it is cheap, affordable and accessible. The use of ACT for the management of uncomplicated
malaria is currently being promoted. The employment of genetic markers to track circulating chloroquine-resistant
parasites are useful in elucidating likely poor efficacy of chloroquine, especially in settings where it is not
recommended for the treatment of uncomplicated falciparum malaria. This study determined the prevalence of
pfcrt haplotypes and point mutations in pfmdr1 genes four years after the change in antimalarial treatment policy
from CQ to the ACTs in Lagos, a commercial city in South-West, Nigeria.

Methods: This was a cross sectional study on uncomplicated malaria in children less than 12 years that presented
with fever and other symptoms suggestive of malaria. Parasite DNA was extracted from 119 patients out of 251
children who were positive for Plasmodium falciparum by microscopy and amplified. The occurrence of haplotypes
was investigated in pfcrt gene using probe-based qPCR and single nucleotide polymorphisms in pfmdr1 gene using
nested PCR.

Results: One hundred and nine (109) of the 119 children with P falciparum infection (91.6%) harbourd parasites
with the mutant pfcrt haplotype (CVIET). Out of this, 4.2% comprised a mixture of genotypes encoding CVMNK and
CVIET, while 4.2% had the wild type (CVMNK). Furthermore, the frequency of point mutations in pfmdr1 was 62.2%
and 69.0% for codons Y86 and F184 respectively. There were no mutations at codons 1034, 1042 and 1246 of the
Pfmdr1 genes.

Conclusion: The high frequency of the CQ-resistant haplotypes (CVIET) and mutations in Pfmdr1 associated with CQ
resistance in P. falciparum among these children suggest that CQ-resistant parasites are still in circulation. Continuous use
of chloroquine may continue to increase the level of mutations in pfcrt and pfmdr1genes. There is need to strengthen
current case management efforts at promoting ACT use as well as urgently restricting access to chloroquine by the
National drug regulatory agency, National Agency for Food Drug Administration and Control (NAFDAC).
(Continued on next page)
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Background
The malaria parasite Plasmodium falciparum is one of
the major causes of morbidity and mortality in sub-
Saharan African countries, especially in children and
pregnant women. Many factors have contributed to the
development and spread of drug resistance, including
gene mutations and drug pressure [1]. Resistance to
chloroquine (CQ), the most widely used and affordable
antimalarial drug, has contributed to the increased in
mortality and morbidity caused by P. falciparum infec-
tions in endemic areas [2]. Resistance to chloroquine,
the cheapest and most widely available anti-malarial, has
reached significantly high levels leading to replacement
with artemisinin-based combination therapy (ACT) in
many malaria-endemic countries [3].
Molecular genotyping and characterization of muta-

tions for single nucleotide polymorphism (SNPs) have
been used for drug resistance monitoring and could
predict emerging or existing drug resistance patterns.
Genetically, chloroquine and amodiaquine resistance has
been linked to P. falciparum chloroquine resistance
transporter (Pfcrt) gene from different parts of the world
[4-7], as well as mutations in P. falciparum multidrug
resistance 1 (Pfmdr1) [8,9].
Polymorphisms in the Pfmdr1 gene have been shown by

transfection to modulate higher levels of chloroquine re-
sistance and to affect mefloquine, halofantrine, and quinine
resistance [10-12]. The role played by Pfmdr1 mutations
(N86Y, Y184F, S1034C and D1246Y) in mediating in vivo
and in vitro chloroquine resistance has received a lot of re-
search interest [13-15]. It has been reported that mutations
in the region of Pfcrt encompassing codons 72 – 76 is a
key marker of P. falciparum chloroquine resistance [16].
Substitutions in the wild type allele, encoding CVMNK,
give rise to several resistant variants, of which the most
common are CVIET in South-East Asia and Africa and
SVMNT, which has been reported in South America [4]
and Asia [17], but rarely in Africa [18]. The change in sin-
gle codon of Pfcrt gene from Lys (K) to Thr (T) at position
76 (K76T) thus is reported to play a decisive role in confer-
ring resistance to chloroquine [4]. Prolonged use of chloro-
quine monotherapy has imposed high selection pressure,
leading to a substantial increase in the prevalence of this
marker in parasite populations worldwide.
In Nigeria, despite the change in National malaria

drug policy to ACT because of the widespread and high-

level clinical failure rate of chloroquine, CQ is still
widely used in the treatment of malaria in the country
[19], because it is accessible and affordable. Previous
studies have reported resistance to chloroquine by a
change at position 76 (K76T) in children treated with
chloroquine in Lagos, just before the change in policy
[20], in Ibadan [21] and in Osogbo [22]. However, in the
above studies, CQ was still the first-line antimalarial
medicine before a change in policy to ACTs and the
children were treated with chloroquine. The studies did
not also provide expanded haplotype information on
single nucleotide polymorphisms (SNPs). Therefore,
this study was carried out to elucidate single nucleotide
polymorphisms in Pfcrt and the point mutations in
Pfmdr1 genes with the aim of determining the status of
CQ-resistant Plasmodium falciparum genes in a diverse
and highly populated setting in Lagos, Nigeria, in the
light of reports on return of CQ sensitive (wild type)
parasites in Malawi and Kenya [23,24] after the total re-
moval of CQ from the population.

Methods
Study area/sites
This study was conducted at the St. Kizito Primary Health
Centre, Lekki, and Massey Street Children’s Hospital
Lagos Island, Lagos State, Southwestern Nigeria – a
holoendemic area for malaria. Massey children’s clinic
attends to outpatients and serves as a referral paediatric
centre in Lagos Metropolis. Lagos State is a commercial
area with a diverse population of over 20 million people
drawn from other states of Nigeria and West Africa.
Lagos is located between latitude and longitude; 6°35′N
3°20′E with an altitude of 40 m (131 ft). The average
temperature is 26.4°C (80°F) while the range of average
monthly temperatures is 29°C to 35°C. Mean relative hu-
midity for an average year is recorded as 84.7% and on a
monthly basis it ranges from 80% in March to 88% in
June, July, September and October [25].

Study population
This research was part of a larger cross-sectional study
on uncomplicated malaria in febrile children that was
conducted between July 2007 and April 2008. Blood
samples were collected through finger pricks from 1,211
febrile children (0–12 years) attending the outpatient
clinics in both facilities. Thin and thick blood films were
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prepared and blood drops were spotted on Whatman
filter papers. Parasite DNAs were extracted from a
cohort of those that were positive by microscopy.

Malaria microscopy
This was the first step needed to select the dry blood
spots in filter paper for the genetic analysis. Consent was
obtained from the Parents/Guardian of the children be-
fore they were enrolled. Briefly, thick and thin smears
were made on the same slide for each child from finger
prick using a sterile lancet. Two slides were made for
each child. The first slide was the read “(R)” slide (that is
the slide that was read), while the other slide was
archived “(A)” slide. This is in line with the quality
assurance process of the ANDI Centre of Excellence for
Malaria Diagnosis, College of Medicine, University of
Lagos to ascertain the children who were positive with
Plasmodium falciparum. Standard malaria microscopy
protocol was used in staining the prepared slides. Para-
sitaemia levels were obtained from thick smears by
counting the number of asexual parasites against 500
leucocytes and expressed per micro liter of blood using
an assumed leukocyte count of 8000 wbc/ul. All patients
studied received appropriate standard of care after their
blood was examined.

Extraction of DNA from samples collected on filter paper
Parasite genomic DNA was extracted from dried filter-
papers using the Chelex®100 method according to
methods described elsewhere [26]. Briefly, the discs
were lysed in 5% saponin in 1 × PBS and incubated at
37°C overnight. The samples were centrifuged, saponin
and debris were removed using a vacuum pump, and
the pellets washed twice in buffered saline. The samples
were then suspended in 6% Chelex®100 resin and
heat-sealed in deep 96-well plates. The samples were
incubated in boiling water for 20–25 minutes and
then centrifuged to remove resin. Approximately 100 μl
of supernatant containing DNA was removed and
stored at −20°C.

Genotyping of the Pfcrt locus using qPCR
Double-labelled probes were designed to detecthaplo-
types at codons 72 to 76 of the Pfcrt gene. Each probe
was dual-labelled with a reporter dye at the 5′ end and a
quencher moiety at the 3′ end. This method have been
previously described using this assay for Pfcrt genotyping
in the UK [17,27,28]. Briefly, Pfcrt DNA was amplified
from each sample using previously described conditions
and the amplification primers Pfcrt F (TGG TAA ATG
TGC TCA TGT GTT T) and Pfcrt R (AGT TTC GGA
TGT TAC AAA ACT ATA GT) [27]. Amplification was
performed in a Corbett Rotorgene 3000 (Corbett,
Sydney, Australia) in the presence of each of the three

double-labelled probes, representing the wild-type and
the two most common resistance-associated haplotypes at
codons 72–76 of Pfcrt. The probes were crt76CVMNK
wild-type, 5′FAM-TGT GTA ATG AAT AAA ATT TTT
GCT AA-BHQ1 (3D7 DNA from MR4 used as a positive
control); crt76CVIET resistant, 5′JOE-TGT GTA ATT
GAA ACA ATT TTT GCT AA-BHQ1 (Dd2 DNA from
MR4 used as a positive control); and crt76SVMNT resist-
ant, 5′ROX-AGT GTA ATG AAT ACA ATT TTT GCT
AA-BHQ2 (7G8 DNA from MR4 used as a positive con-
trol). The control parasite DNA was obtained directly
from The Malaria Research and Reference Reagent Re-
source (MR4, Manassas, Vermont, USA). Samples were
considered positive for a particular genotype if a CT
(threshold cycle) value of 35 cycles or fewer was ob-
tained in at least two independent PCR experiments.
Nuclease-free water was included as a negative control.

Pfmdr1 genotyping
Amplification of the Pfmdr1 gene was performed in
three fragments (FR1, FR3 and FR4). Primers and cycling
conditions used for the three fragments are listed in
Table 1. These samples were amplified using Nested
PCR reactions. In each reaction, appropriate known
positive (Dd2, 7GB and FCR3) and negative samples
(DNA negative wells on each row) were used.
The Pfmdr1 PCR products of nested reactions were

separated by gel electrophoresis on a 1.2% agarose gel
stained with ethidium bromide to identify amplified
bands of DNA under ultra-violet illumination. Ampli-
cons from nested PCR products were purified using
ExoSap IT reaction [29] and were sent for sequencing.
Sequencing was performed using the BigDye 3.1, Cycle
Sequencing Kit (Applied Biosystems, UK) using condi-
tions and sequencing primer pairs described elsewhere
[26,30]. The sequence of amplified DNA products was
determined using ABI PRISM 3730 Genetic Analyser
(Applied Biosystems, UK). Chromas software (Technely-
sium, Australia) and was used to analyse the sequence
results. The DNA sequence was compared with refer-
ence sequence of the Pfmdr1, portions of the P. falcip-
arum 3D7 clone using BLAST similarity alignment
(Washington University, USA). In each reaction, ap-
propriate control DNA samples with known Pfmdr1
sequences were used in parallel with field-collected
parasite isolates in every step of the protocol.

Results
A total of 1,211 children were screened in this study.
The children tested included 658 (54.4%) males and 553
(45.6%) females; mean age ± SD was 2.65 ± 2.83; while
their mean body temperature was 37.8°C (range, 35.5–
42°C). Out of the total children (<12 years) tested,
251 (20.7%) were positive for malaria parasites by
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microscopy. Parasite DNAs were successfully obtained
from a cohort of 251 microscopy positive malaria para-
sites samples during extraction.

Pfcrt polymorphisms
A total of 119 DNA samples were successfully tested
for Pfcrt genotype at codons 72–76. Most of the iso-
lates (91.6%) harboured parasites with the CVIET hap-
lotypes. The proportion of the wild type (CVMNK)
among the isolates was 4.2%, while mixed haplotype
infections (CVMNK/CVIET) were found in 5 isolates
(4.2%) (Table 2). The Southeast Asian/South American
chloroquine-resistant haplotype (SVMNT) was not seen
in any of the isolates.

Pfmdr1 polymorphisms
The isolates were genotyped for Pfmdr1 at codons 86,
184, 1034, 1042 and 1246. The majority of isolates had
the mutant Pfmdr1 Y86 and F184 alleles. Of the isolates,
62.2% (46/74) carried the mutant allele Y86 and 69%
(49/71) and had the mutant allele F184 (Table 2). There
was no mutation in codons 1034, 1042 and 1246 in any
isolates.

Discussion
Self-treatment with chloroquine and other monother-
apies are still high in the population because of their
affordability, accessibility, and low implementation of
the malaria treatment guidelines that recommends the
use of ACTs. The access to, and high usage of CQ and
other monotherapies in the treatment of malaria makes

the determination of chloroquine resistant Plasmodium
falciparum in Lagos imperative several years after the
change in malaria treatment policy. CQ is still sold espe-
cially in the informal private sector among the Private
Propriety Medicine Vendors (PPMVs), otherwise known
as medicine retailers, a group that provide malaria treat-
ment to over 60% of fever patients in the country.

Table 1 Pfmdr1 PCR primer sequences and reaction conditions used in Fragments 1, 3 and 4 amplification reactions

Gene fragment Primer name Primer sequence Codons PCR cycling conditions

Fragment 1

Primary FR1 FN1/1 F 5′- AGGTTGAAAAAGAGTTGAAC-3′ 86, 184 94°C 3 min/[94°C 30 s-45°C 60 s 72°C 60 s]

REV/C1 R 5′- ATGACACCACAAACATAAAT-3′ ×30 cycles

Nested FR1 MDR2/1 F 5′- ACAAAAAGAGTACCGCTGAAT -3′ 72°C for 5 minutes/15°C 5 min

NEWREV1 R 5′-AAACGCAAGTAATACATAAAGTC-3′

Fragment 3

Primary FR3 MDRFR3N1 F 5′-GCATTTTATAATATGCATACTG-3′ 1034, 1042 94°C 3 min/[94°C 30 s-55°C 60 s 65°C 40 s]

MDRFR3R1 R 5′-GGATTTCATAAAGTCATCAAC-3′ ×30 cycles

Nested FR3 MDRFR3N2 F 5′-GGTTTAGAAGATTATTTCTGTA-3′ 72°C 5 min/15°C 5 min

MDRFR3R1 R 5′-GGATTTCATAAAGTCATCAAC-3′

Fragment 4

Primary FR4 MDRFR4N1 F 5′- CAAACCAATCTGGATCTGCAGAAG -3′ 1246 94°C 3 min/[94°C 30 s-55°C 60 s-65°C 40 s]

MDRFR4R1 R 5′-CAATGTTGCATCTTCTCTTCC -3′ ×30 cycles

Nested FR4 MDRFR4N2 F 5′- GATCTGCAGAAGATTATACTG -3′ 72°C 5 min/15°C 5 min

MDRFR4R1 R 5′- CAATGTTGCATCTTCTCTTCC -3′

FR - Fragment F - forward R - Reverse.
NB: Cycling conditions are the same for primary and nested PCRs.

Table 2 Pfcrt haplotypes and frequency of Pfmdr1 codons
in Nigerian children

Gene n Genotype/haplotype Prevalence (%)

Pfcrt 119 CVIET (mutant type) 109 (91.6)

Amino acids (72–76) CVMNK (wild type) 5 (4.2)

CVMNK/CVIET (mixed) 5 (4.2)

Pfmdr1

Amino acids 86, 184,
1034, 1042 and 1246

74 86Y (mutant type) 46 (62.2)

86 N (wild type) 14 (18.9)

86 N + 86Y (mixed) 14 (18.9)

71 184 F (mutant type) 49 (69)

184Y (wild type) 11 (15.5)

184 F + 184Y (mixed) 11 (15.5)

81 1034C (mutant type) 0(0)

1034S (wild type) 81(100)

81 1042D (mutant type) 0(0)

1042 N (wild type) 81(100)

29 1246S (mutant type) 0(0)

1246D (wild type) 29(100)
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Further, the PPMVs sell antimalarial medicines on the
basis of their clients’ complaints and are not permitted
to do a blood based test due to policy restrictions.
Mutations in the region of Pfcrt codons 72 – 76 is said

to be a key marker of P. falciparum chloroquine resist-
ance [16]. This study showed high prevalence of Pfcrt
CVIET haplotype (72–76). This result is consistent with
previous study where majority (98%) of the isolates
genotyped carried the chloroquine resistant CVIET
haplotype in Uganda [31] and in Swaziland [32]. Persist-
ence of high prevalence of CVIET was also reported
in Ethiopia due the continuous use of chloroquine for
the treatment of P. vivax [33]. This study showed that
the SVMNT haplotype does not occur in Lagos, Nigeria.
The absence of the SVMNT haplotype which is known
to occur majorly in South America is consistent with
many other reports in Africa [16,32] except studies in
part of East Africa (Tanzania and Angola)that reported
SVMNT [18,34]. This was presumed to be as a result of
P. falciparum resistance to amodiaquine or its metabol-
ite desethyl-amodiaquine following the use of amodia-
quine as monotherapy.
The present study showed prevalence of 62.2% and

69.0% for Pfmdr1 Y86 and F184 (mutant-type) respect-
ively. The role of Pfmdr1 gene mutations in anti-
malarial drugs resistance is still controversial. An in vivo
study where a chloroquine-resistant infection was re-
ported showed absence of mutations at codons Pfmdr1
86 and 1246 in the [35,36]. Similarly, a study in South-
Eastern Iran reported a strong association between pfcrt
K76T, but not pfmdr1 N86Y mutation and in vivo
chloroquine resistance [37]. A study in Haiti reported
mutation in F184 only in the Pfmdr1 gene and no muta-
tion was seen in Pfcrt gene codon 72–76 [38]. In con-
trast, Y86 have been reported to be responsible for
chloroquine resistance in combination with Pfcrt 76 T
[13,21,39] and another study from Madagascar reported
an association between Pfmdr1 Y86 mutant alleles and
chloroquine clinical resistance with no such association
with Pfcrtgene [40]. Polymorphisms in the Pfmdr1 gene
have been said to be under artemether-lumenfantrine
selection pressure [41]. Selection of Pfmdr1 Y86by amo-
diaquine and chloroquine were reported previously in
the Gambia [42], and in Kenya [43]. Thus, the success of
treatment with ACTs may largely depend on the para-
site’s existing level of tolerance to the partner drugs.
Some earlier studies in the pre-ACT days in South-

West Nigeria reported high chloroquine-resistant para-
sites in children treated with CQ when CQ was the drug
of choice for the treatment of malaria and they only
determined mutation at position 76 (K76T). Mutation at
76 (K76T) had been reported to play a decisive role in
conferring resistance to CQ [4]. In a semi-urban area
of Lagos, South-West Nigeria, the prevalence of T76

mutation was 74.6% [20], while another study In Ibadan;
South-West Nigeria reported 62% and 29% for T76 and Y86
mutations respectively [21]. Prevalence of 74%, 29% and
64% were reported for mutations at T76, Y86 and F184 re-
spectively in children with P. falciparum even before they
were treated in Osogbo, South-West Nigeria while in an-
other study in Ibadan (south-West Nigeria), a prevalence of
60%, 33% and 14% mutations at T76, Y86 and F184 respect-
ively was reported in children whose age ranged from
6 month - 12 years [44]. Also another study in Ogun State,
still in the South-West zone of Nigeria, reported a preva-
lence of 96.9% at K76T among children under the age of five
years [45].
Our study in Lagos, South-West Nigeria, has showed

the persistence of chloroquine-resistant parasites circulat-
ing in children four years after the change in policy for the
treatment of uncomplicated malaria from CQ to ACTs. It
is therefore important that apart from the change in policy
to ACTs, there is an urgent need to restrict the use of
chloroquine in the general population by the regulatory
agency for drugs. Since resistant phenotypes often have
fitness costs [46], their prevalence is likely to decline after
removal of the selective pressure. In countries where the
change in policy from chloroquine to ACT was strictly
enforced, marked decrease in chloroquine-resistant para-
sites in the population was recorded. In a recent surveil-
lance study in Honduras, Central America, where CQ is
still used for the management of uncomplicated malaria,
all the samples tested showed CQ susceptibility in the
Pfcrt “CVMNK” genotype in codons 72–76 [47].
There was a decrease in the frequency of Pfcrt76T mu-

tation when CQ was abolished in the treatment of P. fal-
ciparum malaria in the People’s Republic of China [48];
prevalence of mutant alleles of Pfcrt76T decreased from
64.5% in 2002 to 16% in 2004 and that of the mutant
Pfmdr1 86Y alleles decreased from 46.6% to 2.7% two and
half years after successful withdrawal of CQ in coastal
Tanzania [49]. It was also reported that the prevalence of
the CQ-resistant Pfcrt76T genotype decreased from 85%
in 1992 to 13% in 2000 in Malawi [49]. In 2001, CQ
cleared 100% of 63 asymptomatic P. falciparum infections
as no isolates were resistant to CQ in vitro, and no infec-
tions with the CQ resistant Pfcrt76T genotype were de-
tected [50]. Similarly, it was shown that CQ was again an
efficacious treatment for malaria, 12 years after it was suc-
cessfully withdrawn from use in Malawi [23]. Similar re-
sult was also reported in Kenya where the frequency of
the Pfcrt-76 mutant significantly decreased from around
95% to 60%, though, the frequency of Pfmdr1-86 did not
decline substantially [24]. In Tanzania, where chloroquine
is no longer in use, the frequency of the wild type
CVMNK haplotype increased from 6% in 2003 to 30% in
2007. These findings may reflect decreasing drug pressure
of chloroquine on the parasite populations in these areas.

Oladipo et al. Diagnostic Pathology  (2015) 10:41 Page 5 of 8



Surveillance for antimalarial drug resistance, using
the platform provided by the National Malaria control
Programme in Nigeria should be supported to undertake
regular and robust monitoring of malaria parasite resist-
ance genes for trends. The use of amodiaquine has been
associated to a certain extent with Pfcrt76T and Pfmdr1
86Y mutations [21,43]. Furthermore, the partner drugs to
ACT are also threatened by the development of resistance
if treatment of malaria with antimalarial monotherapy is
not abolished [51,52]. Importantly, the implementation of
the current malaria treatment policy using the ACTs
should be strengthened, vigorously promoted, through
regular training, supervision among health workers; and
the institution of best procurement practices for malaria
medicines at all levels based on National Policy recom-
mendations. The regulatory agency, National Agency
for Food Drug Administration and Control (NAFDAC)
should regulate access to chloroquine in Nigeria while
the general public should be enlightened on the high
levels of circulating resistant-malaria parasite genes to
chloroquine, its low efficacy and to discourage its con-
tinuous use for the for the treatment of uncomplicated
malaria. Access to ACTs should be expanded and made
affordable especially in the private sector where a high
number of persons with fever are treated.

Conclusion
There is a high level of CQ-resistant-haplotypes of
P. falciparum (CVIET) and high frequency of mutations
in Pfmdr1 four years after the change in malaria treat-
ment policy from CQ to ACTs for the treatment of
uncomplicated malaria in Lagos, South-western Nigeria.
This suggests persistent circulation and spread of CQ-
resistant P. falciparum parasites in the population and
the need to strengthen current efforts at promoting
ACT use in the treatment of uncomplicated malaria.
The continued use of CQ for the treatment of malaria
in Nigeria could be one major reason for the persistence
of mutant Pfcrt haplotypes and Pfmdr1 mutations in the
study area. This could threaten the efficacy of partner
drugs in the ACTs. Data from this study provided
evidence of continued CQ use and the need for the key
players in the Federal Ministry of Health to decisively
regulate the use of CQ in Nigeria.
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