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Sample size calculations for skewed distributions
Bonnie Cundill and Neal DE Alexander*
Abstract

Background: Sample size calculations should correspond to the intended method of analysis. Nevertheless, for
non-normal distributions, they are often done on the basis of normal approximations, even when the data are to
be analysed using generalized linear models (GLMs).

Methods: For the case of comparison of two means, we use GLM theory to derive sample size formulae, with
particular cases being the negative binomial, Poisson, binomial, and gamma families. By simulation we estimate the
performance of normal approximations, which, via the identity link, are special cases of our approach, and for
common link functions such as the log. The negative binomial and gamma scenarios are motivated by examples in
hookworm vaccine trials and insecticide-treated materials, respectively.

Results: Calculations on the link function (log) scale work well for the negative binomial and gamma scenarios
examined and are often superior to the normal approximations. However, they have little advantage for the Poisson
and binomial distributions.

Conclusions: The proposed method is suitable for sample size calculations for comparisons of means of highly
skewed outcome variables.

Keywords: Sample size, Generalized linear models, Power, Berry-Esséen theorem
Background
Sample size calculations estimate the required number
of patients to meet a study’s objective(s). The method
used to analyse the subsequent data will affect the actual
power, although this dependence is often ignored in
practice. Sample size calculations are often based on
normal approximation, such as those described by
Lachin [1], even for data which are not Gaussian and
which are analysed using generalized linear models
(GLMs) [2-6]. Some medical statistics textbooks which
cover Poisson regression still obtain sample sizes for
rates via a normal approximation [7-10]. Using a statis-
tical method which does not correspond to that used for
the sample size may result in the actual power differing
from the nominal value.
Methods have been proposed for the specific cases of

logistic [11-14] or Poisson [15] models, or both [16], or
for the negative binomial [17], and for generalized linear
models [18,19]. The more general methods concentrate
on single or multiple continuous predictor variables and
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can be somewhat complex to use. In particular, not all of
them yield an explicit formula for sample size. In the
current paper we consider a comparison of two means,
i.e. a dichotomous predictor variable. We obtain a gen-
eral formula which encompasses, for example, the
Poisson and binomial distributions, but concentrate on
the negative binomial and gamma — partly replicating
Zhu and Lakkis for the former [17] — because these can
be used to model skewed data, for which normal ap-
proximations are less likely to be satisfactory. We apply
these methods to examples based on actual studies, in-
cluding the negative binomial distribution for hookworm
egg counts, a potential vaccine trial endpoint, and the
gamma distribution for concentrations of insecticide on
bednets.
Methods
We examine the magnitude of errors in normal approxi-
mations for discrete probability distributions. Then,
using GLM theory, we then derive sample size formulae
which are assessed using worked examples and simula-
tions Additional file 1.
d Central. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/4.0), which permits unrestricted use,
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Assessing the magnitude of error using normal
approximations
The central limit theorem guarantees that, for a suffi-
ciently large sample size, the sample mean has a distri-
bution which is arbitrarily close to normal (Gaussian).
To evaluate the adequacy of the normal approximation
under specific circumstances, in terms of cumulative
distribution functions, we used a) the Berry-Esséen
theorem and b) computation of the specific distribu-
tions. All computing was done using R, version 2.15 or
higher.

Berry-Esséen theorem
Let R1,R2,....,Rn be independent and identically distributed
(iid) zero-mean random variables with positive variance

σ2. Defining Sn ¼
Xn

k¼1
Rk=σ

ffiffiffi
n

p
as the standardised

mean of the random variables, Fn(y) as the cumulative dis-
tribution function (CDF) of Sn, and Φ as the CDF of the
standard normal distribution, the Berry-Esséen theorem
[20] states

Fn yð Þ−Φ yð Þj j ≤ Cρ
σ3

ffiffiffi
n

p ð1Þ

where C is a distribution-independent positive constant,
and ρ < ∞ is the absolute third central moment, Ε(|R −
Ε(R)|3), which equals Ε(|R|3) thanks to the specification of
zero mean. Values of C have decreased markedly from
Esséen’s original bound of 7.59 [20] to 0.4690 obtained by
Shevtsova in 2013 [21]. For Poisson sums, including the
Poisson itself, and the negative binomial as a mixture of
Poissons, this can be replaced by 0.3051 [22]. More pre-
cise values are also available for the special cases of the bi-
nomial distributions with parameter 0.5 [23] or with
denominator 1 [24], although the latter is applicable only
to sample sizes of at least 200.
The Berry-Esséen approach can be used even when

direct calculation from the distribution is not feasible.
The bound can be expressed in terms of the third
non-absolute central moment and a finite sum (see
Additional file 2). Such bounds are one way to assess
the adequacy of the normal distribution assumptions
implicit in common sample size methods. In the fol-
lowing section we describe a potentially more robust
sample size approach.

Sample sizes from generalized linear model theory
Generalized linear models are for vectors of independ-
ent responses, Yi(i = 1,…,N), arising from an exponen-
tial family distribution. Such distributions include the
Poisson, binomial and gamma, as well as the negative
binomial if its k parameter is assumed fixed [25,26]. Co-
variates xij enter the model as linear combinations with
unknown regression coefficients βj and can be written
as

ηi ¼
Xp
j¼1

βjxij

where ηi is related to μi, the mean of Yi, via the link
function g:ηi = g(μi).
The sample size for a hypothesis related to the mean

of such a distribution can be calculated from the vari-
ance of its maximum likelihood estimate (MLE), on the
scale of the link function. The covariance matrix of the
parameter estimates for GLMs is approximately

XTWX
� �−1 ð2Þ

where X is the design matrix and W is the diagonal
matrix of weights [27]. We need to know how the sam-
ple size affects the variance of the parameter estimate.
When comparing the means of two groups of size N0

and N1 (with N0 + N1 = N), X has two columns and N
rows. The first column, corresponding to the intercept,
is all 1′s, and the second column is N0 zeros and N1 1′s.
W is defined by

W ¼
dμ
dη

� �2

V μð Þ ð3Þ

where V (μ) is the variance function relating the mean
and variance of Y [27]. The diagonal of W is composed
of N0 copies of w0 and N1 copies of w1, in an obvious
notation. To compare the two means, we are interested
in the second diagonal element of the 2 × 2 matrix given
by equation (2). Some basic matrix algebra shows that
this element is (N0w0)

−1 + (N1w1)
−1.

For the sample size of this comparison, we apply prin-
ciples outlined by Lachin [1]. His notation uses sub-
scripts 0 and 1 for the null and alternative hypotheses,
which here we will change to O and A, using 0 and 1 in-
stead to refer to the two groups being compared: 0 for
reference or control, and 1 for intervention. We will also
use λ rather than μ as a generic parameter, using the lat-
ter to denote the mean. We will also use a different sub-
script notation for standard normal deviates, so that zp
means the standard normal deviate for lower tail area p.
Our statistic (X in Lachin’s notation) is the estimate of
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the difference in transformed means obtained by GLM.
The transformation is typically log, or logit for binomial.
The mean of this statistic is λO under the null hypothesis
and λA under the alternative hypothesis, with the stand-
ard deviation being ΣO and ΣA. Lachin’s equation 1 then
becomes

λA − λOj j ¼ z1−α
2
ΣO − z1−βΣA ð4Þ

Following Lachin again, we will denote the proportions
in the groups by Q0 = N0/N and Q1 = =N1/N. Our ap-

proach is to apply a normal approximation on the scale
of the link function. This is often the log, although, with
the identity link, more familiar equations are obtained.
We consider two approaches for estimating the variance
under the null hypothesis. One is to use the reference
value in both groups: following Zhu and Lakkis [17], we
call this method 1. Using the above matrix algebra, ΣΟ

equals

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Q1N
V μ0ð Þ

dμ=dηð jμ¼μ0Þ2
þ 1
Q0N

V μ0ð Þ
dμ=dηð jμ¼μ0Þ2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

V μ0ð Þ
dμ=dηð jμ¼μ0Þ2

1
Q1

þ 1
Q0

� �s

and ΣΑ equals

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Q1N
V μ1ð Þ

dμ=dηð jμ¼μ1Þ2
þ 1
Q0N

V μ0ð Þ
dμ=dηð jμ¼μ0Þ2

s

Hence, for method 1, we obtain
ffiffiffiffi
N

p
¼

Z1−α
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q1

þ 1
Q0

� �
V μ0ð Þ

dμ=dηð jμ¼μ0 Þ2

r
þ Z1−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q1

V μ1ð Þ
dμ=dηð jμ¼μ1 Þ2

þ 1
Q0

V μ0ð Þ
dμ=dηð jμ¼μ0 Þ2

r
g μ0ð Þ−g μ1ð Þ ð5Þ
Zhu and Lakkis [17] find that the test characteristics
are generally better if, instead, μ1 is used for the inter-
vention arm under the null hypothesis (‘method 2’), so
ΣΟ equal ΣΑ, and
ffiffiffiffi
N

p
¼

Z1−α
2
þ Z1−β

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q1

V μ1ð Þ
dμ=dηð jμ¼μ1 Þ2

þ 1
Q0

V μ0ð Þ
dμ=dηð jμ¼μ0 Þ2

r
g μ0ð Þ−g μ1ð Þ
Equations (5) and (6) are general, with special distribu-
tional cases being easily determined. We will use equa-
tion (6) except when referring to previous work based
on method 1.

Negative binomial distribution
The negative binomial distribution is a generalization of the
Poisson for count data, with an additional parameter (k)
which can describe over-dispersion [28]. Small k implies a
large variance and as k → ∞ the distribution tends to Pois-
son. We derive results first for the negative binomial distri-
bution, then for the Poisson as a limiting case. Let Y be a
random variable which follows the negative binomial distri-
bution with population mean μ and dispersion parameter k,
with the variance function being V(μ) = μ + (μ2/k) and
density as shown in Additional file 3. Analysis by GLM
usually employs a natural logarithm link function [25] for
which dμ/dη = μ. Substituting into equation (5) gives

ffiffiffiffi
N

p
¼

Z1−α
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
μ0
þ 1

k0

� �
1
Q1

þ 1
Q0

� �r
þ Z1−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q1

1
μ1
þ 1

k1

� �
þ 1

Q0

1
μ0
þ 1

k0

� �r
log μ0ð Þ− log μ1ð Þ

ð7Þ
For the special case of equal sample sizes and (Q0 =

Q1 = 0.5) and k parameters (k0 = k1) this reduces to the
equation by Brooker et al. [29]. Using equation (6) in-
stead gives:

ffiffiffiffi
N

p
¼

Z1−α
2
þ Z1−β

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q1

1
μ1
þ 1

k1

� �
þ 1

Q0

1
μ0
þ 1

k0

� �r
log μ0ð Þ− log μ1ð Þ

ð8Þ
A normal approximation can be obtained by applying

equation (6) on the identity scale, with variances equal
to μi þ μ2i =ki i ¼ 0; 1ð Þ:
ð6Þ
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ffiffiffiffi
N

p
¼

Z1−α
2
þ Z1−β

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q1

μ1 þ μ21
k1

� �
þ 1

Q0
μ0 þ μ20

k0

� �r
μ0−μ1

ð9Þ
We used simulation to estimate the actual power sam-

ple sizes obtained from equations (8) and (9), by gener-
ating repeated datasets of the calculated sizes and
analysing them by GLM and Wald tests. We also used
likelihood ratio tests, with similar results, unless where
commented. For this we used the rnegbin and glm.nb
function of the MASS package in R.

Poisson distribution
Let Y be a random variable denoting the number of
events per unit time (for example, per study duration)
then Y follows the Poisson distribution with mean μ. By
letting k tend to infinity in equation (8), or, equivalently,
from equation (6) with log link and V(μ) = μ, we obtain:

ffiffiffiffi
N

p
¼

Z1−α
2
þ Z1−β

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q1

1
μ1
þ 1

k1

� �
þ 1

Q0

1
μ0
þ 1

k0

� �r
log μ0ð Þ− log μ1ð Þ

ð10Þ
This is compared by simulation, for the case Q0 = Q1 =

0.5 (equal size arms), with the following normal approxi-
mation, on the scale of the identity link, obtained from
equation (9) by again letting k tend to infinity:

ffiffiffiffi
N

p
¼

Z1−α
2
þ Z1−β

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 μ1 þ μ0ð Þp

μ0 − μ1
ð11Þ

This is also used, for example, by Kirkwood & Sterne
[7], except that here we include a factor of 2 inside the
square root to obtain the total study size.

Binomial distribution
Let Y be a binomial random variable denoting the
number of successes in d independent Bernoulli
events, each with probability μ. The most common
situation is to have d = 1, with each unit (person) hav-
ing a response of 1 or 0 (e.g. positive or negative). An
assumption of d = 1 may explain why the literature
does not always show d in the variance function: we
follow Fox [30] in using V(μ) = μ(1-μ)/d. For the canonical
logit link, dμ/dη = μ(1-μ), so, from equation (6), we
obtain

ffiffiffiffi
N

p
¼

Z1−α
2
þ Z1−β

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q1

1
μ1 1−μ1ð Þ þ 1

Q0

1
μ0 1−μ0ð Þ

q
ffiffiffi
d

p
logit μ0ð Þ− logit μ1ð Þð Þ ð12Þ

On the scale of difference in proportions (identity link),
the corresponding equation is:
ffiffiffiffi
N

p
¼

Z1−α
2
þ Z1−β

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ1 1−μ1ð Þ 1

Q1
þ μ0 1−μ0ð Þ 1

Q0

q
ffiffiffi
d

p
μ0−μ1ð Þ

ð13Þ
This differs from the Lachin’s equation (12), and that of

Kirwood and Sterne, both of which have Zα multiplied by
a function of �π 1−�πð Þ, where �π is an average of the μ0 and
μ1. Some outcomes, in particular the occurrence of a given
condition, could be quantified either as a Poisson rate
(events per unit time, with rate μ) or as a binomial propor-
tion (fraction of people experiencing the condition in a
given period T). These options can be linked mathematic-
ally, with the latter probability equalling 1-e-μT. This rela-
tion can, in turn, be used to compare the power or sample
size for quantifying a given scenario as either a rate or
proportion. In this case the rate is the more powerful op-
tion [31]. This is to be expected, since the proportion loses
information by considering all those with one or more
events as a single category.

Gamma distribution
The gamma is a two-parameter continuous distribution
family over positive values. Special cases include the
exponential distribution, and the sum of identical
independent exponentials. In applications it typically
models right-skewed data [32]. If Y is such a random
variable with shape parameter κ and scale parameter θ,
then E(Y) = κθ ≡ μ and V(μ) = κθ2 = μ2/κ [33]. Here
we use the logarithmic link, although the reciprocal is
canonical. Hence dμ/dη = and wi = μ2/(μ2/κi) = κi so
equation (6) becomes

ffiffiffiffi
N

p
¼

Z1−α
2
þ Z1−β

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Q1κ1
þ 1

Q0κ0

q
log μ0ð Þ− log μ1ð Þ ð14Þ

Results
Berry-Esséen bounds
For the example of a fixed sample size of 100, the Berry-
Esséen bounds are shown in the Table 1, along with
corresponding values based on computation of the non-
Gaussian CDFs. As expected, both methods show the
normal approximation to be better for larger means.
The Berry-Esséen bounds are often much wider than
those obtained from explicit computation. Hence we
concentrate on the latter approach. Figure 1 shows the
results for binomial distributions of varying sample size
and proportion (μ). As expected, the discrepancy in the
CDF of the normal approximation is generally larger for
smaller sample sizes and values of μ further from 0.5.
The differences are non-negligible for parameter values
found in some research studies, in particular for small
values of μ, say between 1 and 5%, which would be
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Table 1 Maximum discrepancy in the approximating
normal CDF, for sample size 100, in terms of Berry-Esséen
bounds, and via computation

Distribution Parameter
estimates

Maximum error

Berry-Esséen Exact CDF

Negative Binomial k μ

0.05 0.05 28.9% 12.5%

0.1 27.9% 9.8%

10 27.3% 6.1%

50 27.3% 6.0%

0.1 0.05 22.3% 11.9%

0.1 20.6% 8.8%

10 19.5% 4.4%

50 19.5% 4.4%

0.5 0.05 15.7% 11.3%

0.1 12.5% 8.3%

10 9.4% 2.1%

50 9.4% 1.9%

Poisson μ

0.05 13.7% 11.6%

0.1 9.8% 8.2%

10 4.9% 3.2%

50 4.9% 1.5%

Binomial μ

(d = 1) 0.05 19.5% 11.6%

0.1 12.8% 8.3%

0.5 4.7% 4.0%
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expected to approximate Poisson. This tends to sustain a
concern that power calculations based on normal ap-
proximations may not be accurate.
GLM approach for negative binomial distribution
We first revisit the example of Brooker et al. [29], which
was motivated by the Human Hookworm Vaccine Initia-
tive (HHVI). The degree of hookworm morbidity de-
pends on the numbers of parasites in the intestines.
Hence a quantitative endpoint is of interest for vaccine
trials, and one option is the faecal egg count per Kato
Katz slide. The negative binomial is often a good ap-
proximation to the distribution of such data, and the
mean is a suitable summary measure [34]. For this, μ1 =
50, μ0 = 71.4 (30% vaccine efficacy), k0 = k1 = 0.33, Q0 =
Q1 = 0.5, a null hypothesis of both means being equal to
71.4, 90% power and 5% significance level (two-sided).
From equation (7) we again obtain a sample size of 505
per arm. From equation (8) we obtain 505 once more.
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This is because the methods differ in terms of the form
1/μ + 1/k and, for this example, 1/k dominates 1/μ, and
k did not change. With the same parameter values, the
normal approximation in equation (9) gives 531 per arm.
Two sets of simulations were done: a) k was allowed

to vary from 0.1 to 10, with the Poisson as a final limit-
ing case (k = ∞); b) the efficacy, i.e. 1-(μ1/μ0), was
allowed to vary from 0.3 to 0.7. Otherwise the parame-
ters were held constant. The results are shown in
Figure 2, where each data point is based on 10,000 simu-
lations. For 30% vaccine efficacy, using the log link
maintains close to the nominal power and the identity
link is only slightly conservative (upper panel). As the ef-
ficacy, and the difference between the means, increases,
the log link still maintains close to the nominal power
whereas the identity link over-estimates the sample size,
by more than 50% for the largest values of efficacy
(lower panel).
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Figure 3 Poisson. This is similar to the lower panel of Figure 2, with each
shown, and μ1 = μ0 × (1-efficacy).
GLM approach for Poisson distribution
Equations (10), on the log scale, and (11), on the un-
transformed scale, were compared, with the power again
set at 90%, and with three values of the mean in the con-
trol arm (μ0): 5, 2 and 0.2. Again using 10,000 simula-
tions for each combination, the results are shown in
Figure 3. The two methods are similar, and both slightly
conservative for higher efficacies; the log link slightly
more so.

GLM approach for binomial distribution
Similar simulations were done for equations (12) and
(13) with d = 1 and various values of μ0 and efficacy
(1 minus the odds ratio). As before, data for each set of
values was simulated 10,000 times. For μ0 = 0.5 both
methods give close to nominal power. For μ0 = 0.1 and
0.05, the pattern is similar to the smaller Poisson means,
with both being slightly conservative for higher
31
5

33
5

35
9

38
5

41
4

44
7

48
4

52
6

57
3

62
7

27
9

30
2

32
6

35
4

38
4

41
8

45
6

49
8

54
7

60
1

0.5 0.6 0.7

32343639424549535863

28313336394246505561

0.5 0.6 0.7

y 1−(μ1/μ0)

13141516171820222326

12131415161719202225

0.5 0.6 0.7

panel comparing two Poisson means. In each panel, the value of μ0 is



Cundill and Alexander BMC Medical Research Methodology  (2015) 15:28 Page 7 of 9
efficacies; the logit link slightly more so (not shown).
The simple dependency of the equations on d means
that similar patterns were seen for d equal to 5 and 10
(not shown).

GLM approach for gamma distribution
Here we use an example based on concentrations of the
insecticide deltamethrin on hammock nets in the
Colombian Amazon [35], the mean being 8.46 mg/m2,
and κ estimated as 0.639. As before, we compare the
power of sample sizes from equation (14) with those
from the corresponding normal approximation on the
original scale. The results are shown in Figure 4. As in
Figure 2, the sample size calculated on the scale of the
link function maintains close to nominal power, while
the normal approximation over-estimates the necessary
sample size, by 50% or more for the larger differences in
means.
In this case, the likelihood ratio test resulted in higher

estimated powers for both tests (not shown). Since the
sample size inputs were the same for both test methods,
the difference scale again had appreciably more power
than the logarithmic scale.

Summary of simulation results
For the Poisson and binomial distributions, the results
show little or no advantage for sample size calculations
on the scale of the link function, i.e. log rates or log-
odds, as opposed to the difference in rates or in propor-
tions. By contrast, for the negative binomial and gamma
distributions, which have additional parameters which
can reflect skewness, sample size calculations based on
differences in means can be very conservative, giving
1−(μ1/μ0)
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Figure 4 Gamma. Similar to the previous two figures but
comparing means of two gamma distributions, with parameters
based on a study of the insecticide deltamethrin on hammock nets.
larger numbers which substantially exceed the required
power. Sample size calculations on the log scale, how-
ever, retain close to the nominal power for the examples
studies.

Discussion
Normal approximations to distributions are often used
to estimate sample sizes for discrete data, even when the
data are to be analysed by generalized linear models. As
well as being logically inconsistent, the magnitude of
error is potentially large, judging by the discrepancies in
CDF between the normal approximation and the exact
distributions, whether assessed by the Berry-Esséen the-
orem or directly from distribution functions. This tends
to sustain concerns about lack of robustness of normal
approximations. Berry-Esséen and related theorems can,
in principle, be used to estimate the speed of conver-
gence of the normal approximation to that specified by
the central limit theorem [20,22]. However, their bounds
proved to be often markedly wider than those obtained
from computing the CDF of the relevant distribution.
Considering robustness at the analysis stage, the t test

performs well under certain large departures from nor-
mality [36]. Nevertheless, it is liable to break down when
‘skew is severe or when population variances and sample
sizes both differ’ [37,38]. These are the circumstances
for which we suggest the methods presented in the
current paper are most suitable. The negative binomial
and gamma distributions can capture severe skewness,
and their variances differ between samples if the means
do, due to their variance functions (V(μ)). We have used
examples related to parasitology and entomology, but
numbers of events, such as clinic visits or epileptic fits
can also yield skewed count data. On the other hand, if a
particular distribution family cannot be assumed then
methods are available for sample sizes for non-parametric
tests [39].
Under the simulation scenarios examined, where the

proposed and standard methods differ, the latter tend to
be conservative. The fact that many trials do not recruit
their target sample sizes [40] may suggest acquiescence
in such sample size over-estimation. However, compli-
ance with the ethical requirement to avoid unnecessary
exposure to novel treatments [41] — both to reduce po-
tential harms, and to speed the acceptance of favourable
interventions — would seem to be better assured by im-
proving both the mathematical estimation and the re-
cruitment process, rather than anticipating a tendency
for their errors to cancel.
Some previous sample size methods for GLMs con-

centrate on single or multiple continuous predictor vari-
ables. They tend to be complex and do not always
involve an explicit expression for the sample size. Here
we have obtained simple equations for the comparison
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of two means, which is the most common situation for
clinical trials. For the negative binomial, the method
shown here corresponds to Zhu and Lakkis ‘Approach 2’
[17], although we allow k to differ between the arms
(our k is the reciprocal of Zhu and Lakkis’). The ap-
proach was motivated by the need to plan later phase
trials of vaccines against hookworm [29], a disease
whose morbidity is related to infection intensity which
in turn is measured by faecal egg counts. The high skew-
ness of these counts seemed to preclude the use of nor-
mal approximations [34]. Negative binomial modelling
may be appropriate for other parasite species [42] and
other types of count [28], including insects [43] disease
episodes [44], lesions [45], and cells [46]. For this distri-
bution, there is a visible correspondence between the
current formulae and that given by Krebs for estimating
a mean with given percentage precision [47]. In fact our
approach does not require specification of the complete
distribution but only the link and variance functions. For
the gamma, another example in the hookworm vaccine
trials was the use of faecal heme as a candidate second-
ary endpoint. This is likely to be roughly proportional to
the number of adult worms in the gut, and a gamma dis-
tribution was found to be a good fit to available data.
More generally, gamma GLMs are commonly used for
analysis of data on costs and length of stay in health fa-
cilities [32]. Despite the typically high skewness of cost
data, analysis of arithmetic mean is statistically valid,
and relevant due to it being proportional to total cost
[48]. Other continuous skewed variables, for which
gamma GLMs can be used, include serum concentra-
tions of lipids, cytokines or hormones [49,50].
Conclusions
The method seems most useful for the negative binomial
and the gamma distributions which, depending on their
parameters, can be highly skewed, making a normal ap-
proximation less accurate for the sample mean. Moti-
vated by two biomedical studies, we have shown that the
method can be advantageous. Generalized linear models
are commonly used to compare means of non-normal
distributions and our method is well aligned with this, as
well as being simple to use. We hope it will prove useful
for situations in which the response variable is expected
to be highly skewed, and for which the accuracy of nor-
mal approximations are likely to be poor.
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