Fonseca, JD; Knight, GM; McHugh, TD (2015) The complex evolution of antibiotic resistance in Mycobacterium tuberculosis. International journal of infectious diseases, 32. pp. 94-100. ISSN 1201-9712 DOI: https://doi.org/10.1016/j.ijid.2015.01.014

Downloaded from: http://researchonline.lshtm.ac.uk/2137900/

DOI: 10.1016/j.ijid.2015.01.014

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/
The complex evolution of antibiotic resistance in *Mycobacterium tuberculosis*

J.D. Fonseca a,*, G.M. Knight b, T.D. McHugh a

a Centre for Clinical Microbiology, University College London, London, NW3 2PF, UK
b TB Modelling Group, TB Centre, Centre for the Mathematical Modelling of Infectious Diseases, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK

Summary

Multidrug-resistant and extensively drug-resistant tuberculosis (TB) represent a major threat to the control of the disease worldwide. The mechanisms and pathways that result in the emergence and subsequent fixation of resistant strains of *Mycobacterium tuberculosis* are not fully understood and recent studies suggest that they are more complex than initially thought. In this review, we highlight the exciting new areas of research within TB resistance that are beginning to fill these gaps in our understanding, whilst also raising new questions and providing future directions.

© 2015 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/4.0/).

1. Introduction

Tuberculosis (TB) remains one of the leading causes of death worldwide. In 2013, an estimated 9 million people developed TB and 1.5 million died from the disease.1 Despite evidence that TB is slowly declining, the emergence and spread of multidrug-resistant strains of *Mycobacterium tuberculosis* (MDR-TB) represents a major challenge to the global control of the disease.1,2

High cure rates for susceptible TB can be achieved with treatment regimens consisting of a 2-month ‘intensive’ phase, where isoniazid (INH), rifampicin (RIF), pyrazinamide, and ethambutol are administered, followed by a 4-month ‘continuation’ phase with only INH and RIF.3 However, the effectiveness of such regimens is threatened by rising resistance to these first-line drugs. In its 2014 report on TB, the World Health Organization (WHO) estimated that 3.5% of new and 20.5% of previously treated cases have MDR-TB.1 MDR-TB is caused by *M. tuberculosis* (M.tuberculosis) isolates resistant to the two most powerful anti-TB drugs, RIF and INH, and is notoriously difficult to treat, with global success rates of around 48%.1 The treatment of MDR-TB patients commonly lasts for 2 years or longer and relies on the use of second-line drugs (such as fluoroquinolones and injectable aminoglycosides) that are less effective, more toxic, and far more costly.2 The additional acquisition of resistance to these second-line drugs defines extensively drug-resistant (XDR) cases of TB. The prognosis of patients infected with XDR-TB is extremely poor,4 and the spread of these strains raises the possibility of the return to a pre-antibiotic era.5

The *de novo* emergence of drug resistance in an individual patient can occur as a result of low adherence to treatment, inadequacy of the drug regimen (e.g., wrong antibiotic choices or dosages, poor drug quality), and patient-dependent pharmacodynamic and pharmacokinetic properties of the drugs administered.5 In recent years, several determinants of acquired resistance to the drugs commonly used in the treatment of TB have been elucidated. These are associated with spontaneous mutations that interfere with drug–target binding (e.g., for RIF in the rpoB gene, for fluoroquinolones in the gyrA/B genes), compromise prodrug activation (e.g., for INH in the katG gene, for PA-824 in the fgd gene), or cause overexpression of the target (e.g., for INH/ethionamide in the promoter region of *inhA*).7 However, the resistance phenotypes of a significant proportion of clinical isolates of *M. tuberculosis* cannot solely be explained by these mutations: up to 30% of isolates resistant to INH and approximately 5% of those resistant to RIF do not harbour mutations in the known resistance genes.6 On the other hand, there is growing evidence that bacteria are not merely spectators of their own evolution; instead, they are able to develop a series of mechanisms that facilitate a rapid adaptation to changes in their environment (such as exposure to drugs) and modulate the effects of drug resistance.8–12 These observations illustrate the complexity of drug resistance in *M. tuberculosis* and highlight...
the need for deeper exploration into the repertoire of strategies that lead to the emergence and subsequent fixation of drug-resistant strains of M.tb.

This review outlines recent findings relating to the evolution and spread of drug resistance. The aim is not to provide an exhaustive description of all the mechanisms known to date, but to illustrate the most important concepts brought to light by recent studies.

2. Identification of additional mechanisms of drug resistance in Mycobacterium tuberculosis

Several approaches have been used to elucidate the molecular mechanisms employed by bacteria to survive antibiotic treatment. They include transcriptional studies to profile responses to the exposure to different drugs, comparative studies of whole genome sequences of susceptible and resistant strains, and the use of mutagenesis to study gene function. The application of these approaches to M.tb has provided us with insights into the modes of action of current anti-TB drugs and new compounds in the TB drug discovery pipeline. It has also enabled the identification of new genes and intergenic regions (particularly genes involved in lipid metabolism, cell wall homeostasis, purine metabolism, and transcriptional regulation) under positive evolutionary selection by drug pressure.13–19 However, the role of most of these genes in drug resistance remains unclear and warrants further study.

Recent efforts have, for example, led to the description of new mechanisms of resistance to ethambutol. Resistance to this drug was firstly attributed to mutations in the embCAB operon (particularly mutations in codons 306, 406, and 497 of embB), which encodes mycobacterial arabinofuranosyltransferases thought to be the targets of ethambutol.20–22 Subsequently, Rv3806c and Rv3792 have also been shown to play a role in ethambutol resistance by increasing the synthesis of decaprenyl-phosphoryl-β-D-arabinosyluridine (a substrate of the EmbCAB enzymes) and the expression of embC, respectively.23 Some of the mutations identified in these genes only conferred low-level resistance to ethambutol.23 Low-level resistance is defined as an increase in the minimum inhibitory concentration (MIC) of a particular drug above that of the average susceptible bacterial population but below the threshold for clinically relevant resistance.24–26 The low-level resistance to ethambutol associated with these mutations might be a stepping-stone to higher levels of resistance, a view that is supported by the observation that several ethambutol resistance mutations can be present in the same resistant isolate.22,25 These findings point to a complex pathway to clinical resistance towards ethambutol; it involves mutations in several genes that are acquired in a stepwise manner and that interact to determine the overall level of resistance to this drug.20,21,25 Mutations within the gidB gene (encoding a putative 16S rRNA methyltransferase) have similarly been found to produce a low-level streptomycin resistance phenotype.26 Further work is needed to investigate the existence of low-level resistance mechanisms against other anti-TB drugs and determine their clinical significance.

3. Contributing factors to the emergence of drug resistance in Mycobacterium tuberculosis

Exposure to drugs induces a complex stress response in M.tb and produces changes in metabolic state and activity that functionally contribute to resistance. The study of such responses, some of which are discussed below, provides a better understanding of how M.tb can enhance its ability to survive antibiotic treatment.

3.1. DNA repair system, mutation rates, and antibiotic resistance

There has been increasing interest in the study of the role of DNA repair systems in the emergence of antibiotic resistance, as they directly influence the type and frequency of mutations that occur in bacteria. Alterations within these systems can result in a reduced ability to repair DNA damage and, as a consequence, increase the rates of mutation.27,28 Such mutator phenotypes can represent a selective advantage under stressful conditions, as bacteria can more readily develop mutations that will enhance their survivability (e.g., resistance mutations).27,28

In M.tb, the interest in the study of the link between mutations within DNA repair genes, hypermutator phenotypes, and an increased ability to acquire antibiotic resistance was fuelled by the observation that polymorphisms in three putative antimutator genes (mut) appeared to be unique to the Beijing lineage.29 Beijing strains have been associated, in some settings, with a higher risk of drug resistance (including MDR and XDR) when compared with that of other lineages.30 Ebrahimi-Rad et al.30 hypothesized that this higher propensity to acquire resistance could be attributed to increased mutation rates produced by missense mutations in the mut genes. Subsequent studies were unable to establish a definitive link between particular mutations in such genes and antibiotic resistance.31 Nonetheless, there is some indication that the Beijing lineage might be associated with higher mutation rates.32,33 This seems to be in line with results from whole genome sequencing that suggest that Beijing isolates are more variable than non-Beijing ones.34,35 Some of this variability involves genes encoding DNA repair proteins.36 The implications of these findings in the emergence of antibiotic resistance in Beijing strains warrant further study.

Mutation rates may be raised during exposure to sub-inhibitory concentrations of certain antibiotics, particularly those whose primary mode of action is DNA damage.38 For example, fluoroquinolones target DNA gyrase, generating lethal double-stranded DNA (dsDNA) breaks that induce transcriptional changes in the genes responsible for DNA repair and preservation of the genome integrity, such as those involved in the SOS response.39 Genome-wide expression studies in M.tb have shown the up-regulation of DNA repair clusters in response to exposure to fluoroquinolones.40,41 For example, sub-inhibitory concentrations of ciprofloxacin induce the expression of LexA and RecA, the two key regulatory proteins of the SOS regulon, and of the error-prone DNA polymerase DnaE2 (even though this response is significantly delayed after exposure to the drug).40 In patients with TB infection, the previous use of quinolones has not only been associated with the development of resistance to this antibiotic class, but also to first-line anti-TB drugs.42,43 Interestingly, exposure to INH (a drug that does not directly act on DNA metabolic processes) might also result in the induction of the SOS response and in higher mutation rates.44,45

SOS-induced DNA polymerases, such as DnaE2, lack intrinsic proofreading activity, which leads to mutations when DNA replication bypasses lesions or errors.46 DnaE2 is thought to be an important mediator of induced mutagenesis (damage-induced expression of DnaE2 can increase the mutation rate up to 20–50 times) and to play a role in the emergence of drug resistance in M.tb.47,48 In an in vitro study, resistance to Rif was found to emerge more frequently in the wild-type than in the dnaE2 knockout strain.49 Furthermore, specific Rif resistance-conferring mutations within the rpoB gene have been associated with the overexpression of dnaE2 in fitness-impaired strains, suggesting a role for DnaE2 in the adaptation of these strains.50 A better understanding of this and other mechanisms of DNA repair in M.tb will allow us to identify strains with an enhanced ability to adapt and resist antibiotic treatment.

3.2. Efflux pumps—a gateway to high-level resistance?

Many efflux pumps of M.tb (belonging to the major facilitator superfamily, the ATP-binding cassette superfamily, the resistance
nodulation division family and to the small multidrug resistance family) have been characterized and their role in antibiotic resistance investigated. Drug efflux pumps are constitutively expressed in wild-type cells but can be induced by mutations within their regulatory genes or by the presence of antibiotics (due to interactions with such regulatory systems).

The overexpression of several efflux systems has been shown in clinical isolates of MDR-TB upon exposure to common anti-TB drugs. In contrast with the high-level resistance caused by mutations in genes that encode the primary targets of the main TB drugs, the reduction in intracellular levels of antibiotics caused by increased activity of efflux systems is generally responsible for only conferring low-level resistance. The same efflux pump can induce cross-tolerance to structurally and mechanistically diverse compounds, and there is a vast overlap in substrate specificity among the pumps present in M.tb.52,53 These findings, together with the observation that genes encoding for efflux pumps are overexpressed soon after exposure to drugs, provide evidence to support the notion that the extrusion of antibiotics mediated by efflux pumps represents a rapid, non-specific response to highly noxious agents.52,56 The level of tolerance conferred by these mechanisms might confer a selective advantage in the presence of suboptimal, low antibiotic concentrations, enabling the survival of certain bacterial subpopulations until a classical high-level mutation emerges and a population with clinically significant antibiotic resistance is established.28,56-58 On the other hand, individual mechanisms may not be sufficient to confer clinical resistance but may interact (e.g., additively or synergistically) with other resistance determinants resulting in high-level resistance. The differential expression of efflux pumps might, at least in part, explain the observation that some clinical isolates harbouring the same classical resistance-conferring mutations can have different antibiotic susceptibility patterns.59

Efflux pump inhibitors have been shown to reduce the MICs of a wide range of drugs (including RIF, INH, ciprofloxacin, ofloxacin, streptomycin, and linezolid) in resistant strains of M.tb. Although in vivo data are limited, there is some indication that the efflux pump inhibitor verapamil is able to restore the activity of RIF, INH, and pyrazinamide against M.tb in mice.53 These findings have stimulated an interest in the introduction of inhibitors of efflux pumps into the treatment regimen for TB as an adjunctive therapy that could increase the intracellular concentration of (and therefore the susceptibility to) certain drugs, which is particularly relevant in the treatment of MDR-TB cases. It should be noted that the exposure of MDR-TB isolates to efflux pump inhibitors does not generally produce a phenotype of full susceptibility, as resistance-conferring mutations have often accumulated in other genes that are not inhibited by these agents.53

Efflux systems are responsible for fundamental physiological processes: for example, some of those that have been linked to antibiotic resistance in M.tb are also involved in virulence, oxidative stress responses, and growth.64,65 Thus physiological regulatory systems may determine the levels of drug resistance.63,64 The regulation of these efflux systems is still poorly understood, but several of them have been shown to be induced during macrophage infection.60,62 In the future, a better understanding of the efflux substrate specificities and of the mechanisms of efflux pump regulation will help the development of strategies to inhibit them.

4. The evolutionary trajectory of drug-resistant Mycobacterium tuberculosis

Antibiotic resistance mutations represent a selective advantage during antibiotic treatment, but in vitro studies have shown that they can significantly impair bacterial fitness in the absence of antibiotics. Interestingly, clinical isolates harbouring such mutations can be more fit than isogenic laboratory-constructed strains.60 This observation suggests the existence of other determinants of fitness that could mitigate the deficits incurred by resistance mutations. These could be secondary compensatory mutations or factors related to the genetic background of the strain.60

Compensatory evolution, by reducing or eliminating the fitness costs associated with antibiotic resistance, might play a pivotal role in the spread of drug-resistant M.tb. However, only a few compensatory mechanisms have been described so far. Sherman et al. showed that INH-resistant strains of M.tb with an inactivated katG gene can acquire mutations in the regulatory region of the alkyl hydroperoxide reductase aphC gene conducive to its overexpression. The authors concluded that these mutations might represent a compensatory mechanism for the loss of KatG catalase–peroxidase activity. In another study, Mycobacterium smegmatis was used to model the evolution of aminoglycoside resistance in M.tb. It was observed that the fitness cost of an aminoglycoside resistance-conferring mutation (G1491U) in the 16S rRNA gene, was, could be ameliorated by a secondary mutation within the same gene (C1409A). These dual mutations were identified in clinical isolates of M.tb but at low frequencies, suggesting that their epidemiological relevance might be minor. More recently, a set of non-synonymous mutations in the genes that encode RNA polymerase subunits RpoA and RpoC were implicated in the compensatory evolution of RIF resistance.72,74 These gene sequences are generally highly conserved in M.tb, so non-synonymous mutations are likely to represent recently acquired adaptive mutations and not natural polymorphisms.72 These putative compensatory mutations, which appear to be preferably located in the rpoA–rpoC interaction region of the rpoC gene, have been associated with increased in vitro fitness and are often present in MDR-TB strains.72,74 The acquisition of rpoA–rpoC mutations generally occurs in strains that are already RIF-resistant due to alterations in the rpoB gene72,77, in a process that seems to be facilitated by the continued exposure to drugs.76 This compensatory evolution leads to improved transmissibility as evidenced by the clonal expansion of M.tb strains harbouring such combinations of resistance and compensatory mutations.72,73 Interestingly, these changes are frequently present in strains that harbour rpoB resistance mutations associated with the lowest in vitro fitness deficits.72,74 For example, they are often co-present with rpoB mutation S531L, simultaneously one of the most frequent mutations in RIF-resistant clinical isolates and one of the least costly.72,74,77

In an in vitro study, double drug-resistant mutants of M. smegmatis containing certain combinations of rpoB and gyrA mutations (conferring resistance to RIF and ofloxacin, respectively) were found to have higher fitness than at least one of the corresponding single drug-resistant mutants. This means that, in some cases, the overall cost of carrying multiple resistance mutations can be less than what would be expected if those mutations had independent (multiplicative) effects on fitness. Further work is needed to confirm these findings (as the authors were unable to exclude the acquisition of compensatory mutations as a possible explanation for the observed phenotypes) and elucidate the mechanisms behind them. Nonetheless, the identification of the same combinations of rpoB and gyrA mutations in clinical isolates of M.tb suggests that this might represent another form of compensatory evolution with a potential significant impact on the emergence of transmissible MDR-TB strains. The acquisition of additional resistance determinants, instead of further impairing fitness, can ameliorate the deficits produced by resistance to other drugs. The resulting strains will have both a selective advantage in the presence of
antibiotics and increased competitiveness in the absence of such selective pressure.

The strain genetic background can also modulate in vitro fitness and drug susceptibility, meaning that the same resistance mutation can incur different fitness costs and produce different resistance patterns depending on the host strain. Mutations in the rpoB, katG, and inhA genes were found to convey different levels of antibiotic resistance in strains from different phylogenetic lineages of M.tuberculosis. Furthermore, some resistance mutations appear to be lineage-specific or more likely to be present in certain M.tuberculosis lineages. There is also an indication that some lineages are particularly associated with multi-drug resistance and that strain background can affect transmissibility. On the other hand, evidence that the genetic background can influence the fitness costs of resistance came from the observation that the same rpoB mutation (H526D) could confer different fitness deficits in M.tuberculosis strains CDC1551 (which belongs to lineage 4) and T85 (lineage 2). Further work is needed to elucidate the mechanisms behind these findings.

The in vitro studies described above have shed some light on the interplay between resistance determinants, strain background, bacterial fitness, and compensatory mutations in the evolution of antibiotic resistance in M.tuberculosis. Less is known about the emergence of resistance in vivo and the relative importance of each of these factors. Data from available studies point to the complex evolution of drug resistance in TB patients undergoing treatment. Within-host M.tuberculosis populations appear to be heterogeneous and highly dynamic: there are successive changes in antibiotic resistance and fitness profiles of isolates obtained in serial samples from the same patient. The co-existence of subpopulations with different levels of resistance in the same sample, mixed clonal infections, and exogenous re-infection, have also been observed. MDR is the result of the stepwise accumulation of resistance-conferring mutations, and highly resistant mutations that do not impair fitness or transmissibility are favoured in the long-term.

5. Mathematical modelling—what can we tell us about the evolution of drug resistance in Mycobacterium tuberculosis

Many of the above outlined mechanisms and aspects of drug resistance within M.tuberculosis are considered in vitro conditions and in isolation. Determining how important they are to clinical populations can be achieved, in part, using mathematical models. These allow predictions to be made about the impact of such mechanisms, for example relative fitness, on levels of drug resistance in the future, but can also explore the experimental data and help in the guidance of new experimental work. This becomes especially important as the pipeline of new drugs for TB treatment fills. However, it is also useful for understanding the dynamics of evolution of resistance to the existing spectrum of anti-TB drugs.

The quality of the output from mathematical modelling is highly dependent on the quality of the data used to construct the model structure and to inform parameters. Within drug resistance epidemiology, the data on transmission is relatively poor due to the current low prevalence and availability of drug susceptibility tests. These tests are also usually phenotypic and hence may not capture detailed data on the varying mechanisms or levels of resistance. Other parameters may be extremely difficult to measure, such as the relative fitness, or ability to transmit, of different resistance strains. Fortunately, it is likely that commonly used fitness measures in vitro are matched to clinical success. Moreover, mathematical models are hampered by a desire to accurately capture biological complexity, such as the many facets of drug resistance mechanisms, without becoming overly complicated and too difficult to parameterize.

The power of mathematical models to generalize conclusions from experimental and genetic work, however, means that there is great scope for collaboration and interaction. Through an interdisciplinary approach, experimental results can be broadened to applications in the clinical population suffering from TB disease. Modellers can help to guide experimentalists to collect needed data, whilst aiding experimentalists to understand the full impact of their explorations. This is especially true for the mechanisms outlined in this review—models could be used in the future to explore both their complex interplay but also to highlight their potential importance in the spread of drug resistance within M.tuberculosis.

6. Impact for drug development, resistance diagnosis, and treatment

In light of recent research, the mechanisms and rates of resistance, as well as the associated fitness costs and compensatory mutations, should be investigated in the early stages of drug development, as they provide relevant information about the potential for the emergence, spread, and fixation of resistance towards a particular drug. The ideal anti-TB drug would be one for which resistance mutations are not only rare but also associated with high fitness costs. In addition, it is important to identify targets for which the rate of fitness-restoring mutations is low. Restoration of fitness will be less likely when the fitness defect is pleiotropic and affects more than one cellular process. The study of the interactions between mutations conferring resistance to different antibiotics (namely their combined effect on bacterial fitness) could help optimize treatment regimens by identifying those less likely to be associated with the emergence of multiple drug resistance.

Drug resistance in M.tuberculosis is commonly believed to be caused by single-step mutations, but there is now evidence to suggest that, at least for certain anti-TB drugs, it is the result of a stepwise acquisition of mutations leading to a gradual decrease in susceptibility. The first step in this process may involve a mutation that does not increase the MIC of a drug above the breakpoint for clinical resistance. These findings highlight the importance of unveiling the full spectrum of resistance mechanisms towards a particular drug. However, low-level resistance is often overlooked because it is not generally thought to be associated with a higher likelihood of therapeutic failure. Low-level mutants can, nonetheless, be selected in the presence of suboptimal antibiotic concentrations and serve as a gateway for the amplification of resistance. TB patients undergoing treatment can be exposed to such concentrations of anti-TB drugs either as a result of inadequate dosing (e.g., low patient compliance or poor drug quality) or gradients of drug concentration created in the body by the differential penetration of drugs into tissues and lesions. The identification of patients infected with these ‘pre-resistant’ M.tuberculosis mutants may suggest the use of increased antibiotic dosages or an alteration of treatment strategies before the establishment of full-scale drug resistance. However, low-level mutants (such as those recently described for ethambutol and streptomycin) cannot be detected by standard culture-based susceptibility testing. Current methods rely on breakpoint concentrations to qualitatively define resistance and are, therefore, insensitive to changes in drug susceptibility below these thresholds. Further studies are needed to clarify the relationship between the presence of these low-level mutations, the emergence of clinical resistance, and patient outcomes to inform potential changes in current diagnostic tests (e.g., broaden molecular tests for drug resistance to include screening for such mutations). Given the putative pivotal role of low-level mutations in the spread of resistance, surveillance systems based on resistance produced by high-level mutations
Table 1
Potential future directions in anti-TB drug resistance research

<table>
<thead>
<tr>
<th>Mechanisms of acquired resistance</th>
<th>Fitness costs of resistance</th>
<th>Mutation rates to antibiotic resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify additional mechanisms of drug resistance to anti-TB drugs, including those that produce low-level resistance</td>
<td>Further characterize the fitness effects of resistance determinants (including those responsible for low-level resistance) and identify additional mechanisms of compensatory evolution</td>
<td>Gain a better understanding of the factors and mechanisms that affect mutation rates in M.tb and their role in the emergence of drug resistance</td>
</tr>
<tr>
<td>Study the role of low-level resistance determinants in the emergence of high-level resistance and their clinical relevance</td>
<td>Study the interactions between the fitness effects of different resistance mutations</td>
<td>Investigate the role of DnaE2 in the emergence of drug resistance in the host and its potential as a target for therapeutic intervention</td>
</tr>
<tr>
<td>Further characterize the fitness consequences between certain resistance mutations and the development of MDR-TB</td>
<td>Investigate how strain genetic background can modulate the fitness impact of drug resistance-conferring mutations</td>
<td>Investigate the potential association of certain sub-lineages of M.tb with drug resistance and increased mutation rates</td>
</tr>
<tr>
<td>Investigate how strain genetic background can influence the level of resistance conveyed by certain mutations</td>
<td>Investigate how strain genetic background can modulate the fitness impact of drug resistance-conferring mutations</td>
<td>Clarify observations of an association between certain drug resistance-conferring mutations and elevated mutation rates</td>
</tr>
<tr>
<td>Investigate the potential association of certain sub-lineages of M.tb with drug resistance and increased mutation rates</td>
<td>Better characterize the evolution of drug resistance, bacterial fitness, and acquisition of compensatory mutations in M.tb populations within the host during antibiotic treatment</td>
<td>Determine whether anti-TB drugs, other than fluoroquinolones, can increase the in vitro mutation rates of Mtb</td>
</tr>
<tr>
<td>Investigate the occurrence of stable mutant strains within M.tb populations during human infection</td>
<td></td>
<td>Determine whether particular drug combinations are associated with a higher probability of the development of resistance</td>
</tr>
</tbody>
</table>

TB, tuberculosis; MDR, multidrug-resistant; M.tb, Mycobacterium tuberculosis.

alone may be insufficient. Indeed, high-level resistance mutations might be just the tip of the iceberg. Finally, the heterogeneity within-host M.tb populations can also have implications for resistance diagnostics. Culture-based drug susceptibility testing usually involves the examination of a single isolate from a single sample from a given disease episode, with the assumption that it is representative of a homogeneous bacterial population, which might not be the case. Knowing the existence and prevalence of the different subpopulations and their corresponding drug susceptibilities could be useful for the management of the patient. To obtain a measure of the heterogeneity of the TB infection, several independent bacterial isolates should be examined from each patient sample. Similarly, the heterogeneity of M.tb infections might also confound molecular antibiotic resistance tests. For example, the GeneXpert MTB/RIF (Cepheid, Sunnyvale, CA, USA) (which is becoming a leading screening tool for TB) has an increased false-negative rate for detecting Rif resistance in mixed M.tb complex infections, failing to identify it when <90% of the organisms present in the sample are Rif-resistant. In order to avoid poor clinical outcomes, GeneXpert results might warrant further confirmation in settings where mixed infections are common.100

7. Concluding remarks

The mechanisms by which drug resistance emerges and is fixed in M.tb populations are not wholly understood (Table 1). In vitro studies have identified several determinants of resistance to the main anti-TB drugs, but whole-genome analyses suggest that the response to drug exposure might be much more complex than initially thought and involve a set of strategies developed by mycobacteria to enhance their ability to adapt and evolve. Furthermore, there are indications that the acquisition of clinically significant resistance to certain drugs might be a stepwise process that often involves an initial low-level mutation that acts as a gateway for high-level resistance. The clinical implications of these findings should be investigated.

Recent research suggests that bacterial fitness might play a pivotal role in the spread of antibiotic-resistant M.tb. In vitro, bacterial fitness is determined by the interplay of numerous factors including the growth deficits incurred by resistance mutations, strain genetic background, and compensatory evolution. Future studies should elucidate the interactions and relative importance of these and other factors in the transmissibility of drug-resistant TB. The development of new tools, such as mathematical modelling, will facilitate this process and provide important information for the control of drug-resistant TB.

The growing threat of MDR- and XDR-TB highlights the need for a better understanding of the complexity of drug resistance in M.tb. This will allow the development of enhanced diagnostic tests to identify resistant strains and strategies to curb their spread, and also help the design of more powerful anti-TB drugs.

Conflict of interest: None to declare.

Acknowledgments

JDF was supported by grant SFRH/BD/70037/2010 from FCT, Portugal.

References

