Gallo, V; Leonardi, G; Genser, B; Lopez-Espinosa, MJ; Frisbee, SJ; Karlsson, L; Ducatman, AM; Fletcher, T (2012) Serum Perfluorooctanoate (PFOA) and Perfluorooctane Sulfonate (PFOS) Concentrations and Liver Function Biomarkers in a Population with Elevated PFOA Exposure. Environmental health perspectives, 120 (5). pp. 655-60. ISSN 0091-6765 DOI: https://doi.org/10.1289/ehp.1104436

Downloaded from: http://researchonline.lshtm.ac.uk/21157/

DOI: 10.1289/ehp.1104436

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/
Supplemental Material

Serum Perfluorooctanoate (PFOA) and Perfluorooctane Sulfonate (PFOS) Concentrations and Liver Function Biomarkers in a Population with Elevated PFOA Exposure

Valentina Gallo¹,², Giovanni Leonardi¹, Bernd Genser³,⁴, Maria-Jose Lopez-Espinosa¹, Stephanie J Frisbee⁵, Lee Karlsson¹, Alan M Ducatman⁶, Tony Fletcher¹

¹Social and Environmental Health Research (SEHR), London School of Hygiene and Tropical Medicine, London, UK
²School of Public Health, Imperial College London, London, UK
³Mannheim Institute of Public Health, Social and Preventive Medicine, University of Heidelberg, Heidelberg, Germany
⁴Instituto de Saúde Coletiva, Federal University of Bahia, Salvador, Brazil
⁵Department of Community Medicine and Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV, USA
⁶Department of Community Medicine, West Virginia University School of Medicine, West Virginia, USA
Detail of between- and within-regression models

Water district data available in the C8 Health Project questionnaire data were considered: using the geocoded locations of the address, combined with a detailed mapping of streets covered by each water district’s piped water supplies, geocoded residences could be assigned a water district code. These analyses were restricted to those living in the six contaminated districts (Little Hocking Water Association of Ohio; City of Belpre, Ohio; Tupper Plains–Chester District of Ohio; Village of Pomeroy, Ohio; Lubeck Public Service District of West Virginia; Mason County Public Service District of West Virginia) at the time of the survey \((n=26,777) \). For each water district, on the ln-transformed scale, a mean PFOA value and a deviation from the mean for each individual was calculated as the difference between the individual level and the water district mean. Regression coefficients with relative standard errors (SE) and p-values were calculated for the association within water district and between water districts with both the mean ln-PFOA values, and the individual deviations, in a fully adjusted linear regression model. The significance of the difference between these within and between water district coefficients was also assessed. Models also included a random effect at the water district level.

Formal model description:

To estimate within and between water district \((i=1,..., 6)\) coefficients relating log serum PFOA in individual \(j\) in that district \((x_{ij})\) to numerical outcomes \((y_{ij})\), we fit the model:

\[
y_{i,j} = a + \beta_w (d_{i,j}) + \beta_b \bar{x}_i + \{\text{covariate terms}\} + \alpha_i + \varepsilon_{i,j},
\]

Where \(d_{i,j} = (x_{ij} - \bar{x}_i), \alpha_i \sim N(0, \sigma_b^2), \text{and } \varepsilon_{i,j} \sim N(0, \sigma_u^2)\)
To test the hypothesis $\beta_w = \beta_b$, we re-parameterised this relationship writing $\beta_{\text{diff}} = \beta_w - \beta_b$, giving:

$$E(y) = a + \beta_w(x_{i,j}) + \beta_{\text{difference}}x_i + \{\text{covariate terms}\}$$

We used the Wald test for $\beta_{\text{diff}} = 0$ as a test for $\beta_w = \beta_b$.

For dichotomous outcomes we fit analogous logistic models, except that instead of fitting a random effect at water district level, which was computationally cumbersome, we used a sandwich (Huber-White) estimator of variance clustering by water district.