Stabler, RA; Dawson, LF; Valiente, E; Cairns, MD; Martin, MJ; Donahue, EH; Riley, TV; Songer, JG; Kuijper, EJ; Dingle, KE; Wren, BW (2012) Macro and Micro Diversity of Clostridium difficile Isolates from Diverse Sources and Geographical Locations. PloS one, 7 (3). e31559. ISSN 1932-6203 DOI: https://doi.org/10.1371/journal.pone.0031559

Downloaded from: http://researchonline.lshtm.ac.uk/21137/

DOI: 10.1371/journal.pone.0031559

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/
Introduction

Clostridium difficile is a Gram-positive, spore-forming anaerobic bacterium that is responsible for a variety of gastrointestinal diseases in humans and animals, collectively referred to as C. difficile-infection (CDI) [1,2]. The pathogen is frequently associated with antibiotic treatment and the severity of CDI ranges from mild antibiotic-associated diarrhea to the life-threatening pseudomembranous colitis [3,4]. C. difficile has emerged rapidly as the leading cause of antibiotic-associated diarrheal disease, with the temporal and geographical appearance of dominant PCR ribotypes such as 017, 027 and 078. Despite this continued threat, we have a poor understanding of how or why particular variants emerge and the sources of strains that dominate different human populations. We have undertaken a breadth genotyping study using multilocus sequence typing (MLST) analysis of 385 C. difficile strains from diverse sources by host (human, animal, and food), geographical locations (North America, Europe and Australia) and PCR ribotypes. Results identified 18 novel sequence types (STs) and 3 new allele sequences and confirmed the presence of five distinct clonal lineages generally associated with outbreaks of C. difficile infection in humans. Strains of animal and food origin were found of both ST-1 and ST-11 that are frequently associated with human disease. An in depth MLST analysis of the evolutionary distant ST-11/PCR ribotype 078 clonal lineage revealed that ST-11 can be found in alternative but closely related PCR ribotypes and PCR ribotype 078 alleles contain mutations generating novel STs. PCR ribotype 027 and 017 lineages may consist of two divergent subclades. Furthermore evidence of microdiversity was present within the heterogeneous clade 1. This study helps to define the evolutionary origin of dominant C. difficile lineages and demonstrates that C. difficile is continuing to evolve in concert with human activity.
Diversity of *Clostridium difficile*

Materials and Methods

Strains

The 385 strains investigated in this study were 211 human isolates (including 21 PCR ribotypes), 109 animal isolates (bovine, 17 porcine, 4 equine, 5 murine, 1 macropine [kangaroo], 1 canine), 16 food isolates, 1 household and 49 with unspecified source (figure 1, data S1). Geographically these were isolated in Europe (132), North America (170) and Australia (36) and 47 with unspecified location (figure 1). Within the 385 strains were 67 known PCR ribotypes (breadth component of study). The depth component of the study included 53 027BI/NAP1 isolates and 107 RT078 both of which include clinical, animal and food isolates.

MLST

C. difficile strains were sequence typed using the scheme described by Griffiths et al using seven housekeeping genes (adk, atpD, dfrA, gldA, recA, sodA and tpi) [10]. Briefly, spores were incubated on Brazier’s agar (Biocollections, UK) for 24–72 h in an anaerobic environment at 37°C (Don Whitley Scientific). Three colonies were inoculated into 10 ml BHI, pre-equilibrated in an anaerobic environment. Genomic DNA was extracted either by phenol chloroform [33] or Tri-EDTA boilate [18]. High-throughput multilocus sequence typing was performed as per Griffiths et al [18]. Products of nucleotide sequencing reactions were analysed on an ABI 3730 (Applied Biosystems, USA) and nucleotide sequences extracted using Chromas v1.61 (Queensland, Australia). Allele designations were obtained by parsing forward and reverse sequencing reads through the *C. difficile* pubMLST batch profile query page (http://pubmlst.org/cdifficile/). Novel STs [18] and existing *C. difficile* pubMLST database (ST = 123; 80 previously published, 43 unpublished used with submitter’s permission) were analysed using MAFFT (mafft.cbrc.jp) and Archeopteryx (www.phylosoft.org/archaeopteryx). Phylogenies were calculated by MAFFT and MrBayes [36,37]. MrBayes used the neighbor-joining method [38] using all unggapped sites with 1000 boot strap resamplings. MrBayes used concatenated allele DNA sequences with a codon model, GTR+I+Γ* model (a General Time Reversible model with a proportion of invariable sites), heating of 0.5, 1,000,000 iterations with a 50% burn-in, 4 chains with the cold chain sampled every 100 iterations and invgamma distribution. Phylogeny consensus and Bayesian probabilities (p) were calculated using the last 1501 recorded cold chain trees (iteration 850,000 to 1,000,000) from three independent runs.

PCR ribotyping

PCR ribotyping was performed as described previously with some modifications [39]. Briefly, bacteria were harvested from 48 h anaerobic cultures on blood agar. Cells were resuspended into 5% (wt/vol) solution of Chelex-100 (Bio-Rad, United Kingdom) and heated to 100°C for 20 min. The suspension was separated by centrifugation (13000 g for 12 min) and the supernatant (5 µl) was added to a 45 µl-PCR mixture containing 25 µM of each primer: (CTGGGGGTGAAGTCGTAACAAGG) and (GGGCCCCCTTGGAGTTGACC), 2.5 u HotStar Taq DNA polymerase (Qiagen, United Kingdom), 0.4 mM dNTPs and 3.75 mM MgCl₂ per reaction. Reaction mixture was subjected to 30 cycles of 9°C for 1 min, 92°C for 1 min, 55°C for 1 min and 72°C for 1.5 min. This was followed by 95°C for 1 min, 55°C for 45 sec and 72°C for 5 min. The PCR products were concentrated to 20 µl by heating at 75°C for 40 mins. Electrophoresis was done at 100 mA in 3% precast 0.5% Tris-acetate-EDTA (TAE) agarose gels (BioRad, UK) containing ethidium bromide for 3.5 h. Banding patterns were analysed using GelCompar software (Applied Maths NV, Belgium). Dendrogram produced using GelCompar Software (Applied Maths, Belgium) using dice coefficient and UPGMA clustering with 1% tolerance and 0.5 optimization.
Results

Breadth study

The breadth study investigated the diversity of C. difficile isolates beyond previous studies by using diverse sources by host (human, animal and food), geographical location (North America, Europe and Australia) and PCR ribotype (figure 1, data S1). MLST analysis of 385 diverse C. difficile strains has identified 48 known STs, 18 novel STs and 3 new allele sequences. Previous studies investigated over 50 RTs and reported that there are 74 confirmed RT/ST associations (e.g. RT027 isolates are ST-1 and vice versa) [18,22]. In this study we analysed strains from 67 PCR ribotypes (including 29 previously untyped by MLST) and found 86 previously described STs (e.g. RT027/ST-1), 18 novel STs paired to 20 previously untyped RTs (1 ST was present in 3 RTs) (e.g. RT029/ST-137), 17 previously described STs with untyped RTs (e.g. RT042/ST-6) and 8 RTs had a new ST associated (e.g. RT268 was associated with ST-3, previously identified only in RT001, RT009, RT072, RT115 & RT262) (data S4).

Phylogenetic analysis using the MLST database (ST = 123, 01 Aug 2011) was comprised of 80 previously published, 43 newly described STs (used with the submitter’s permission) plus the 18 novel ST from this study. The analysis concurred with Griffiths et al. that there appeared to be five main clades (figure 2, 3, 4).

Clade 1 consists of 106 STs (figure 2), which were very heterogeneous in terms of alleles and RTs. No robust major subdivisions were detected in clade 1 by MAFFT analysis (supplementary figures S1, S2, S3, S4, S5, S6, S7). However, previously unreported microdiversity was observed in 15 small clusters (figure 4 ‘A’ to ‘O’, data S5). These mini clusters showed a range of STs linked to RTs. A robust mini cluster of 13 STs (mini cluster A, p = 1 (unequivocal)) contained a variety of PCR ribotypes; with divergent STs however, no 2 STs differed by more than 5 SNPs across all seven alleles. Examples are two RT050 (ST-18 and ST-16) were present, which differ by only a single SNP in glyA. Additionally, two RT002’s were present (ST-8 and a new ST from this study; ST-146 (strain S10.1920) which differed in a single SNP in yps. Mini cluster K, although less stable (p = 0.7) contains all three STs associated with RT101 (ST-45, ST-71 & ST-78) and two STs associated with RT087, RT145 (strain RPH35) and ST-46. ST-46 is not unique to RT087, it is also present in RT191 and RT230.

Mini cluster B (p = 0.9) contained ST-10 & ST-44 that are both RT015. RT015 has increased in the UK from 50 isolates in 2007/8 to 330 isolates in 2009/10 and had the second highest associated mortality rate, after RT027 [7]. Mini cluster I contained both STs linked to RT21 (ST-56 & ST-70) and 2/3 RT011 STs (ST-36 and ST-138 (strain CD1214). Although the majority (11/13) of mini clusters contained three or fewer STs, four contained conserved RTs e.g. mini cluster G contains both STs associated with RT202, in mini cluster E both STs were associated with RT014, mini cluster D STs were also linked with RT014 (although ST-13 has been present in RT129 isolates). The two RT014 mini clusters (D & E) were not that stable within the phylogram (p = 0.5 and 0.7 respectively) and may be a single mini cluster of RT014 isolates. The consensus of these two mini clusters differs by only 1 SNP in dxr (between dxr06 and dxr02) and 1 SNP in yps (between yps01 and yps03).

Interestingly strain AI18 (mini cluster D) looks to be a ST-13 that has acquired an adk05 allele, which has previously only been associated with ST-11/RT078 isolates. This may represent homologous recombination rather than the acquisition of the 5 specific SNPs present in adk05 (figure S1).

Clade 2 as defined by Dingle et al., apart from ST-1, also contained ST-67, ST-32 and ST-41 [22]. We identified 5 isolates from these STs; two RT262 were ST-67, one untyped isolate was ST-32 and two isolates were ST-41 (one of which was a RT135). Clade 2 in this study consists of 14 STs (figure 2 & 4). Clade 2 may be subdividable into two subclades; a ST-1 subclade (ii) and a ST-32 subclade (ii) (p = 0.83) (figure 2). Subclade 2i contained ST-1 (RT027), ST-67 (RT019) [18], ST-41 (RT106/164/321 [22]), ST-62 (RT036) and ST-140 (strain CD762, RT111). Subclade 2ii contained 6 STs (ST-32, ST-147, ST-61, ST-95, ST-97 & ST-123) with only ST-32 having a known RT (RT153 [18]). However in the Bayesian cluster (figure 4) this was less robust; for example the ST-41, ST-114 and CD762 (ST-140) group (2i) cluster closer to ST-47 and ST-95 (2ii) but with Bayesian probability values (p) or 0.6 and 0.5 shows that this part of the phylogram was not fully resolved.

Clade 3, includes ST-22/RT023, with an additional 3 STs; ST-5 and ST-25 as previously reported [18,22] plus ST-96 which has not been reported before in this clade (figure 2 & 4).

Clade 4 includes ST-37/RT017 and an additional 12 STs (figure 2 & 4). Clade 4 can be subdivided into two subclades (p = 1), an ‘ST-37’ subclade (i) and an ‘ST-23’ subclade (ii)) (table 1). Subclade 4i contains 4 STs, including both RT017 STs (ST-37 & ST-86) as well as RT085 (ST-39). Subclade 4ii contains 8 STs including ST-142 (strain CD909, RT264) and ST-23 (RT138 [22]). Subclade 4ii has significant divergence from subclade 4i and may represent a sixth lineage. The formation of the subclades is mainly due to divergence in the dxr, solC and yps alleles (table 1). Interestingly, while alleles from clade 4 cluster (figure S1, S2, S3, S4, S5, S6, S7) for ST-23, glyA14 represents a significant change within glyA phylogeny (figure S4) from glyA08, which suggests a recombination event.

Clade 5 including ST-11/RT078 and an additional two STs; two novel STs as well as ST-11 (discussed below).

Animal and food isolates

Sixty-three isolates taken from North American calves between 26/09/2006 and 15/10/2007 were MLST typed and the majority (46/63) were PCR ribotyped. Of these 57/63 were ST-11 and confirmed RT078, five isolates were ST-1 and confirmed as RT027 and one isolate was ST-3 (data S1). The single canine isolate was ST-2/RT020. The four equine isolates were ST-1/RT027, ST-03, ST-08/RT002 and ST-11/RT176. All five murine isolates were ST-35/RT002 but were all from the USA. The porcine isolates were predominately (13/17) ST-11, the USA ST-11 porcine isolates were RT-126 (2) or RT-078 (3), whereas the Australian ST-11 were RT-237 (3). In addition, two USA porcine isolates were ST-408/RT002, whereas the Australian porcine isolate was ST-08/RT014 (AI18), as AI18 had an unusual adk allele. The kangaroo isolate was an ST-11/RT126. Interestingly two Italian ST-11 clinical isolates were RT078 whereas the two Spanish ST-11 clinical isolates were RT126. All 16 food
and 1 household isolates were from the USA and were ST-01 (7), ST-11 (8) or ST-61 (2). One ST-11 was a RT-176 but of those typed they were the usual ST-01/RT027 or ST-11/RT078.

Identifying ancestral type

To investigate the ancestral root of *C. difficile*, MLST allele equivalent sequences were extracted from *C. botulinum* A BoNT/A1 (ATCC 19397) and *C. strichlandii* DSM 519 genome sequences. Based upon MAFFT analysis using the *C. difficile* MLST database, new STs from this study and the concatenated *C. botulinum* and *C. strichlandii* alleles were used to generate a phylogeny (figure S8).

The phylogram using distance demonstrated that these are distantly related to *C. difficile*, but interestingly these are rooted closest to the ST-11 clade (figure S8).
Discussion

\textit{C. difficile} is a diverse pathogen whose evolution has been driven by human activity with the emergence of clonal lineages such as RTs 017, 027 and 078. To date, MLST studies on \textit{C. difficile} have focused on human isolates from limited geographical regions. In this study we have investigated the MLST profiles of 385 \textit{C. difficile} isolates, including previously undocumented RTs, taken from clinical, animal and food isolates from geographically diverse locations. Despite the diverse origins of the isolates, the five subgroups previously reported were maintained, although further microdiversity within the subgroups was observed. By combining all available MLST data, there is evidence that clade 2 (including ST-1/RT027) and clade 4 (including ST-37/RT017) may consist of two divergent subclades. It is tempting to suggest that these virulent lineages may be evolving rapidly and diverging into potentially new virulent clones. Within clade 1 there was evidence of mini clusters which demonstrated some conservation of RT and identified the change in ST was the result of single SNPs within a single allele. Clustering of RTs in mini clusters demonstrated that these RTs had a recent common ancestor and, like the RT027 and RT078 lineages, are demonstrating signs of genome flux and potentially adaptation. RTs with multiple STs and vice versa demonstrate that the \textit{C. difficile} genomes are constantly diverging and that this is not equally distributed through the genome. Indeed recently Castillo-Ramirez \textit{et al} demonstrated that synonymous SNPs are mainly acquired through recombination rather than \textit{de novo} mutations and emerging strains tend to have more non-synonymous SNPs that have not yet been purified by selection over time [42]. Therefore, the next ‘hypervirulent’ strain could potentially emerge from any lineage. For example, RT027 emerged as a major problem in North America around 2003 and in the UK in 2006 yet this clone was first identified in 1985 in France (CD196) [43]. Genome sequencing has revealed that CD196 and subsequent outbreak strains are genetically very similar and are identical by MLST. The same is true for RT023 and RT078, indeed RT023 was originally identified by PCR-ribotyping prior to 1983, but is now emerging as a problematic clone [7]. Conversely, RTs that have persisted within hospitals, for example RT001 and RT106 in the UK, and not considered ‘hypervirulent’ belong to the heterogenous clade 1.

Outbreak strains are often referred to as PCR ribotype 027/ NAP1/BI, implying a strong correlation between all three typing methods. Recently Tenover \textit{et al} showed that these typing methods do not always correlate. For example, only 84/92 RT027 isolates were also type-able as NAP1 and BI [44]. All three typing methods rely on the examination of DNA migration through a matrix, usually an agarose gel and comparison to a standard. Simple changes in DNA can have distinct changes in this pattern. For example, change in repeat copy number, interchromosomal homologous recombination for PCR-ribotyping [45] and changes in primer binding sites or SNPs within restriction sites for PFGE or REA can produce differences in banding patterns, which may result in the strain being designated as a different type or variant. Type BI determined by REA has at least 17 subtypes. Analysis by Griffith \textit{et al} [2010] of 17 clinical RT027 identified one unique ST that was allocated ST-1. ST-1 was also found in a single RT036 isolate, a RT banding profile which differed by only a single band from RT027 [18]. We have confirmed that RT027, NAP1 or BI
Strains were all ST-1, with the exception of BI-9, (RT001), which was reflected in the ST data (ST-3). Interestingly RT176, closely related to RT027 by MLVA, was also demonstrated to be ST-1, as were an additional 9 RTs, including RT036, RT111, RT135, RT153, RT176 and RT262 with RT027. Recently Nyc et al have shown that in Poland RT027 was found in low numbers, but RT176 was responsible for a recent outbreak [46]. The authors compared RT176 MLVA with a previous MLVA of European RT027 isolates [47] and demonstrated a high degree of similarity between these two PCR ribotypes. Also Knetsch have shown that a RT027 genetic marker was also found in RT176, as well as RT016, RT019, RT036, RT075, RT111, RT122, RT153, RT156, RT208 and RT273 [34]. Valiente et al also recently demonstrated that some of the strains typed as BI by BI and presumed to be RT027 were in fact RT176 and other RTs including RT198 and RT244 due to slight variation in banding patterns compared to the RT027 strains [48]. This demonstrates that MLST has lower discriminatory power than REA, ribotyping or pulse field typing, which could indicate strain divergence. Given that PCR-ribotyping is the most widely used typing method, MLST studies that confirm that the close grouping of different RTs such as RT176, RT198 and RT244 grouping with the notorious RT027, suggests that there should be heightened awareness of these closely related RTs.

RT078 has recently emerged as a clinical problem after a long documented association with livestock (reviewed in [49]). Interestingly, microarray, MLST and whole genome sequencing studies have shown this RT to be highly divergent from other known RTs and has been suggested that the last common ancestor was 1.1–6.4 million years ago [13]. Dingle et al suggested this maybe a non-toxigenic strain that has recently acquired the PaLoc due to sequence similarity to clade 3 (RT023) PaLoc [22]. Our studies have shown that ST-11 is ubiquitous and is found in Australia, the USA and Europe in clinical, animal and food sources. Interestingly, six additional RTs were in ST-11, demonstrating that divergence within the 16S-23S PCR ribotyping region have not yet been reflected as divergence in the MLST alleles, suggesting that the emergence of these RTs are recent events. However local variation in Australia has resulted in novel alleles and RTs. There are also potential geographic differences observed in this clade; porcine ST-11 isolates differed in RT pattern between USA (RT078/RT126) and Australia (RT237). However, these differences are not reflected in the wider population; for example, an ‘American’ ST-11/RT126 was isolated from an Australian native Kangaroo and an Australian clinical isolate. This may be attributed to the limited number of animal isolates. Interestingly the novel adk allele (adk10) appears to be between ST-11 and all other adk alleles (supplementary figure S1). Three clustered SNPs differentiate adk10 from adk05 (bp 463, 469 & 471). The adk allele can give us an insight into the evolution of the ST-11 because of one of three possibilities. 1) adk10 is ancestral to the ST-11 allele (adk05), 2) adk05 has undergone reversions towards the consensus to generate adk10 or 3) recombination between ST-11 and an unknown ST(s) has resulted in a mosaic allele.

Evolution of ST-11 can also be observed using the tpi allele. In the case of tpi20 the deviation from the expected tpi0 involves 2 SNPs, one to the ancestral state and a second that mirrors a SNP only found in ST-6. For this to be a mosaic, two independent recombination events must occur or one from a currently unknown allele. It is interesting to note that the RT078 clone has spread globally with the ST remaining stable except in Australia where it appears to be acquiring SNPs. This is perhaps due to RT078 becoming more prevalent in humans than animals and is reverting to a genotype more applicable to this host and as such appears to be reverting to the consensus derived from mainly human isolates.

Table 1. Sub-division of clade 4.

<table>
<thead>
<tr>
<th>RT</th>
<th>ST</th>
<th>adk</th>
<th>SNP</th>
<th>atpA</th>
<th>SNP</th>
<th>dcr</th>
<th>SNP</th>
<th>glyA</th>
<th>SNP</th>
<th>recA</th>
<th>SNP</th>
<th>sodA</th>
<th>SNP</th>
<th>tpi</th>
<th>SNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT060</td>
<td>38</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4i</td>
<td>109</td>
<td>3</td>
<td>12</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>18</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>18</td>
<td>3</td>
<td>15</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>RT264</td>
<td>CD909</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>14</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>25</td>
<td>1</td>
<td>15</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT138</td>
<td>23</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>14</td>
<td>2</td>
<td>14</td>
<td>3</td>
<td>11</td>
<td>1</td>
<td>16</td>
<td>2</td>
<td>15</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>14</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>16</td>
<td>2</td>
<td>15</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4ii</td>
<td>87</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>20</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>9</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>18</td>
<td>3</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>11</td>
<td>1</td>
<td>20</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT017</td>
<td>86</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>19</td>
<td>3</td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT017</td>
<td>37</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT085</td>
<td>39</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Con</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RT = PCR ribotype, ST = MLST sequence type, Con = most prevalent MLST alleles for clade 4, SNP = number of single nucleotide changes from consensus.

doi:10.1371/journal.pone.0031559.g004
Interestingly, when *C. botulinum* and *C. strichlandii* were added to the clustering they rooted more closely to the ST-11 clade, which may suggest that these represent an older lineage, having been associated with animals prior to the emergence of *Homo sapiens*. However, He et al., using SNP analysis on the whole genome of *C. difficile*, alongside *C. barletti* and *C. hiranonis* identified the root to among the other four clades [13]. *C. botulinum* and *C. strichlandii* were selected over *C. barletti* and *C. hiranonis* due to the lack of useful sequence equivalent to the *C. difficile* alleles. For example *C. barletti* and *C. hiranonis* lack sodA and *C. hiranonis* lacks glyA and *C. barletti* has only a partial BLAST match (141/210 bp identities) to the 516 bp allele. The different data explain the different rooting and it is arguable whether highly conserved sequence (for example 16S) are more suitable than whole genomes which have greater variability and horizontal transfer to estimate ancestral type.

Interestingly one of the novel STs (ST-148) that was a variant on ST-11 was shown to be a toxin A negative, toxin B positive toxin variant, previously only found in RT017 isolates. Recently it has been shown that novel non-RT017 A-B+ isolates are present in Australia and Asia [29,50]. Rupnik et al. have shown that the loss of toxin A expression is not necessarily due to loss of all or part of tcdA, but rather due to a nonsense point mutation that abrogates expression [51]. This suggests that, rather than RT017 A-B+ isolates diverging into novel RTs and/or genotypes, it is possible that *C. difficile* may spontaneously lose the ability to express TcdA.

The second ST-11 variant was A-B- (RT239, ST-147), which previous microarray data suggested was through spontaneous loss of the PaLoc as this occurred in different lineages [19].

With the current PCR ribotyping database containing at least 377 known PCR ribotypes [Vall Hall, personal communication 26/10/2011], population studies have been limited by the breadth of the samples tested. The continued collection and typing of diverse *C. difficile* strains is vital for monitoring and emergence (and disappearance) of evolving virulent and hypervirulent clones. The MLST analysis performed on diverse strains from different geographic locations and environments has revealed new links between closely related RTs and STs, which has provided an insight into the microevolution of *C. difficile*. Our analysis of the potentially divergent clonal lineages has broadened our understanding of the evolution of this enigmatic pathogen.

Supporting Information

Figure S1 MAFFT circular phylogram with *adk* alleles.
A) Circle phylogeny coloured by allele. B) MrBayes SNP phylogram of *adk* alleles coloured by allele. SNPs indicated on branch (e.g. 22a→g (8V→I)) indicates a SNP that changes the 22nd base from adenine to guanine, brackets indicate a non-synonymous change i.e a valine (V) to an isoleucine (I).

Figure S2 MAFFT circular phylogram with *atp* alleles.
A) Circle phylogeny coloured by allele. B) MrBayes SNP phylogram of *atp* alleles coloured by allele. SNPs indicated on branch. * indicates a non-unique SNP that occurs in more than one place on phylogram.

Figure S3 MAFFT circular phylogram with *dxr* alleles.
A) Circle phylogeny coloured by allele. B) MrBayes SNP phylogram of *dxr* alleles coloured by allele. SNPs indicated on branch. * indicates a non-unique SNP that occurs in more than one place on phylogram.

Figure S4 MAFFT circular phylogram with *glyA* alleles.
A) Circle phylogeny coloured by allele. B) MrBayes SNP phylogram of *glyA* alleles coloured by allele. SNPs indicated on branch. * indicates a non-unique SNP that occurs in more than one place on phylogram.

Figure S5 MAFFT circular phylogram with *recA* alleles.
A) Circle phylogeny coloured by allele. B) MrBayes SNP phylogram of *recA* alleles coloured by allele. SNPs indicated on branch. * indicates a non-unique SNP that occurs in more than one place on phylogram.

Figure S6 MAFFT circular phylogram with *sodA* alleles.
A) Circle phylogeny coloured by allele. B) MrBayes SNP phylogram of *sodA* alleles coloured by allele. SNPs indicated on branch. * indicates a non-unique SNP that occurs in more than one place on phylogram.

Figure S7 MAFFT circular phylogram with *tpi* alleles.
A) Circle phylogeny coloured by allele. B) MrBayes SNP phylogram of *tpi* alleles coloured by allele. SNPs indicated on branch. * indicates a non-unique SNP that occurs in more than one place on phylogram.
Figure S8 MAFFT Rooted phylogram. A) Scaled phylogram displaying relationship of C. botulinum A BoNT/A1 (ATCC 19397) and C. difficile DSM 519 to C. difficile, B) MAFFT unscaled phylogram showing location of C. botulinum A BoNT/A1 (ATCC 19397) and C. difficile DSM 519 within C. difficile population. Black branches = clade 1, orange branches = clade 2 (inc ST-1), green branches = clade 3 (inc ST-23) blue branches = clade 4 (inc ST-37), red branches = clade 5 (inc ST-11).

Data S1 Strains in study (inc MLST data).

Data S2 Strains in PCR ribotype 027 depth study.

Data S3 Strains in PCR ribotype 078 depth study.

Data S4 PCR ribotypes associated with RT. Griffiths = data taken from Griffiths et al, Dingle = data taken from Dingle et al, Stabler = data from this study, PCR ribotypes (RT) tested (highlighted indicates previously untested RT), Nos = number of isolates with RT and Sequence Type (ST) combination in this study, ST = sequence type (highlight indicates a new RT/ST association, ‘new’ indicates a novel ST.

Data S5 Mini clusters within clade 1. Closely related sequence types cluster in to mini clusters within the larger heterogenous clade 1. MC = micro cluster identifier, adk, atpA, dcr, glyA, recA, sodA and yph columns indicate allele numbers (red = consensus, ‘.’ = same as consensus), SNP column indicates the number of single nucleotide polymorphisms between consensus allele and deviant allele (‘Δ’ indicates a single base pair deletion within sodA allele), associated RT columns indicate any known PCR ribotype associated with this ST.

References

