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Abstract

Background: Survival and fitness attributes of free-living and sporocyst schistosome life-stages and their intermediate
host snails are sensitive to water temperature. Climate change may alter the geographical distribution of schistosomiasis
by affecting the suitability of freshwater bodies for hosting parasite and snail populations.

Methods: We have developed an agent-based model of the temperature-sensitive stages of the Schistosoma mansoni
and intermediate host snail lifecycles. The model was run using low, moderate and high warming climate projections
over eastern Africa. For each climate projection, eight model scenarios were used to determine the sensitivity of
predictions to different relationships between air and water temperature, and different snail mortality rates.
Maps were produced showing predicted changes in risk as a result of increasing temperatures over the next 20
and 50 years.

Results: Baseline model output compared to prevalence data indicates suitable temperatures are necessary but
not sufficient for both S. mansoni transmission and high infection prevalences. All else being equal, infection risk
may increase by up to 20% over most of eastern Africa over the next 20 and 50 years. Increases may be higher
in Rwanda, Burundi, south-west Kenya and eastern Zambia, and S. mansoni may become newly endemic in
some areas. Results for 20-year projections are robust to changes in simulated intermediate host snail habitat
conditions. There is greater uncertainty about the effects of different habitats on changes in risk in 50 years’ time.

Conclusions: Temperatures are likely to become suitable for increased S. mansoni transmission over much of eastern
Africa. This may reduce the impact of control and elimination programmes. S. mansoni may also spread to new areas
outside existing control programmes. We call for increased surveillance in areas defined as potentially suitable for
emergent transmission.
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Background
The transmission potential of most neglected tropical
diseases in a particular location is partly dependent on
abiotic factors affecting either free-living life stages and/
or those which occur in poikilothermic organisms such
as snails and mosquitoes. As an exemplar, both the
schistosome parasite and its intermediate host snails are
very sensitive to water temperature [1-4]. Increasing
temperatures in freshwater bodies in sub-tropical and
tropical areas may therefore alter the geographic distri-
bution of schistosomiasis. There is some empirical evi-
dence that this may be occurring already in Uganda,
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with transmission occurring at altitudes previously con-
sidered too cold [5,6].
Climate change projections show increasing tempera-

tures across Africa [7], where the majority of people in-
fected with schistosome parasites are located [8]. What
remains unclear is how this phenomenon might affect
the transmission potential of schistosomiasis in different
locations, given the non-linear relationship between water
temperature and schistosome transmission [9].
Perhaps because of the lack of research into this issue,

the implications of climate change for schistosomiasis
control and elimination have been largely ignored, and
were not mentioned in the World Health Organization’s
2012 ‘Roadmap to implementation’ [8]. Only a few math-
ematical models have explored the effects of temperature
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on schistosomiasis transmission [9-15], and while some
incorporated projected increases in mean temperature, no
previous models have been run using climate projections.
Although many geostatistical models of schistosomiasis
prevalence incorporate temperature (e.g. [16-18]) (and, in
one case, climate change [19]), limitations of the empirical
data and the complex, non-linear relationship between
water temperature and infection risk [9] mean that they
are unlikely to capture the full contribution of temperature.
In this study, we advance the field by producing, for the
first time, high-resolution maps of eastern Africa highlight-
ing areas where temperatures may become suitable for in-
creased or decreased transmission, and where Schistosoma
mansoni may spread to new areas.

Methods
Model
The model used in this study is described in full in
McCreesh and Booth [9]. Briefly, the model is an
agent-based model, written in Netlogo [20]. Snail eggs,
juveniles and adults; prepatent and infectious snails;
cercariae; and miracidia are represented as agents with
temperature dependent birth or production, develop-
ment and mortality rates. A diagram of the model
structure is given in Figure 1. The model is parameterised
using experimental and field data from Biomphalaria
pfeifferi, the most widespread S. mansoni intermediate
host snail species in sub-Saharan Africa [19], and the
parasite.
The main output of the model is ‘infection risk’, a

measure of the mean number of cercariae in the model
each hour, adjusted for the fact that their probability of
causing infection decreases as the amount of time since
they were shed from the snail increases. It can be viewed
as an estimate of the suitability of temperatures for schis-
tosome transmission in an area. The non-temperature
Figure 1 Model structure. Boxes show types of agents. Solid arrows show
show the production of one type of agent by another. Dotted lines indicat
schistosomes. Agents of all types can die and be removed from the model
dependent stages of the schistosome lifecycle – the
stages in humans – are not simulated, and the rate of
miracidium introduction into the model is constant.
The model has a time step of one hour, allowing the

cercariae and miracidia, which have lifespans of the
order of hours, to be accurately represented. Hourly
temperatures are simulated using a sine wave, with max-
imum temperatures reached at 3 to 4 pm, and minimum
temperatures at 3 to 4 am [21].
To allow schistosomes to become established in the

model in new locations, a snail egg is introduced into
the model each hour with a probability of 0.00012
(which gives an average rate of one snail egg per model
year). As non-temperature dependent egg mortality is
simulated using reduced egg production rates in the
model, this is equivalent to a ‘real life’ egg introduction
rate of 10 eggs per year.

Climate projections
An ensemble of regional climate simulations over Africa
was used to provide projected daily maximum and mini-
mum temperature data for the eastern Africa study re-
gion. The ensemble consists of three members of the
Rossby Centre Regional Climate Model (RCM) – RCA4
[22], driven by a coupled atmosphere ocean general cir-
culation model (AOGCM) – EC-EARTH [23]. Three
Representative Concentration Pathway (RCP) scenarios
were used – RCP2.6, RCP4.5 and RCP8.5 – which rep-
resent low, moderate and high levels of warming re-
spectively. All three regional simulations were made
within the African branch of the Coordinated Regional
Downscaling Experiment (CORDEX), and cover the
whole African continent at about a 50 km (0.44°) reso-
lution. A smaller sub-domain in eastern Africa was se-
lected for the study and has size of 1470 (35 x 42) grid
boxes.
where agents can change from one type to another. Dashed lines
e infection. Red outlines and arrows indicate the presence of
.
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The mean absolute increases in temperature over the
study area over the next 20 years (2026–2035 relative to
2006–2015) were 0.34°C, 0.42°C, and 0.66°C in the low,
moderate, and high warming projections, respectively.
Over the next 50 years (2056–2065 relative to 2006–
2035) the mean increases were 0.53°C, 1.2°C, and 1.8°C
(Additional file 1: Figure S1). To prevent confusion, the
different climate projections or scenarios are referred to
as ‘projections’ throughout the paper, and the term ‘sce-
narios’ reserved for the model scenarios described below.

Model scenarios
For each set of climate projections, the model was run
for eight model scenarios. Four different relationships
between air temperature and water temperature were
simulated:

(i) daily minimum and maximum water temperatures
equal to daily minimum and maximum air
temperatures;

(ii) minimum and maximum water temperatures 2°C
higher;

(iii) minimum and maximum water temperatures 2°C
lower; and

(iv) minimum water temperatures 2°C higher, and
maximum water temperatures 2°C lower.

These were each simulated using two sets of snail
mortality rates: rates estimated from experimental and
field data [9], and double these rates. Therefore, in total,
eight model scenarios were simulated for each of three
climate projections.
The model was initially run using the first two years of

the climate data (2006–2008) to allow snail numbers to
reach plausible initial values. Following this, the model
was run using the full climate data between 2006 and
2065. The model was run separately for each of the 1470
grid squares. For each location, the model was run 20
times and the results averaged. Outputs were averaged
over each of three 10-year time periods: baseline (2006–
2015), 20 years in the future (2026–2035), and 50 years
in the future (2056–2065). Kernel interpolation using a
fifth order polynomial function was used to produce
smooth risk maps for each scenario and time period.

Comparison with empirical data
Geo-referenced data on the prevalence of S. mansoni in
human populations in the model output region were ex-
tracted from the open-access Global Neglected Tropical
Disease (GNTD) database [24]. The database brings to-
gether historical and contemporary survey data on schis-
tosomiasis and other neglected tropical diseases, and the
data have been widely used in statistical models of disease
prevalence (e.g. [18,19]). For grid squares containing more
than one data point, the un-weighted mean of the preva-
lence estimates was calculated. The mean prevalence for
each grid square was then plotted against the mean
(across scenarios) model output ‘infection risk’ for the
same square, and the area under the receiver operating
characteristic curve (AUC) calculated for the ability of the
model to predict prevalences of above 0%, 10%, 20% and
50%. The analysis was then repeated, restricting the preva-
lence data to estimates from children, collected from 2004
onwards, and where at least 10 children were tested
(‘selected data’).

Analysis
To enable easy interpretation of model results, for each
climate projection and future time period median changes
in risk (across model scenarios) were calculated to give a
central estimate of the magnitude of changes that may
occur. Means were not used as the predicted changes in
each scenario were highly skewed in some locations, due
to very high relative risks in some areas and scenarios
where baseline risks were very low.
The level of agreement between scenarios in the direc-

tion of change in risk was also investigated. For each
scenario, climate projection, and future time period,
areas were given the value of +1 if risk was predicted to
increase from its baseline value, −1 if risk was predicted
to decrease, and zero if it was predicted to stay the same.
Risk was considered to stay the same if it changed by
less than ±10%. The values were then summed over all
eight scenarios for each climate projection and future
time period to give an indication of the overall predicted
direction of change. For areas where both an increase
and a decrease in risk were predicted by one or more
scenarios, the number of scenarios that disagreed with
the overall predicted direction of change was calculated.
Additional analyses were conducted on each of the

model scenarios to explore the possibility of schistosome
transmission becoming established at new sites. For
these analyses, areas were given the value of +1 if risk
was predicted to increase from below to above a cut-off
between the two time periods, and zero otherwise. The
analysis was conducted for all possible cut-offs between
1% and 99% of the maximum risk in the scenario in any
time period, increasing in increments of 1% of the max-
imum risk. The cut-offs were split into three equal-sized
groups (1-33%, 34-66%, and 67-99% of maximum risk),
and the proportion of cut-offs crossed was calculated for
each location, for each group, time period and climate
projection.

Results
Comparison with empirical data
Empirical prevalence data were available from 2965 re-
cords in total, and 594 records when surveys that did
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not meet stricter inclusion criteria were excluded (‘selected
data’). Figure 2a illustrates prevalence data plotted on a
map of the mean (across scenarios) model output ‘infection
risk’ at baseline (2006–2015). The prevalence data yielded
estimates of prevalence for 19% (279/1470) of grid squares
when all data were used, and 7% (100/1470) when selected
data were used (Table 1). Prevalence estimates for each
square were calculated from 1–119 (median = 4) and 1–37
(median = 4) individual estimates when all and selected
data were used respectively.
Figure 2 Comparison of model output ‘infection risk’ at baseline (200
Background colour shows model output ‘infection risk’, averaged across sce
circles show empirical prevalence data. b) Model output ‘infection risk’ plot
prevalence for all 279 grid squares for which any prevalence data were ava
for which higher quality and more suitable prevalence data were available
maximum infection risk. The green line shows where prevalence and trans
When all data were used, the AUC’s were 0.6 (0.52-
0.67), 0.62 (0.55-0.69), 0.63 (0.56-0.71), and 0.57 (0.46-
0.69) for prevalence cut-offs of above 0%, 10%, 20% and
50% respectively. When selected data were used, the
AUC’s were 0.56 (0.45-0.68), 0.62 (0.47-0.77), 0.68 (0.50-
0.86), and 0.76 (0.39-1.00) (Table 1). Figure 2b illustrates
the mean model output at baseline divided by the max-
imum model output at any location, plotted against the
prevalence data. The mean prevalence is higher than the
adjusted model output in 9/279 (3.2%) grid squares
6–2015) with empirical prevalence estimates. a) Baseline risk map.
narios, and translated into proportion of maximum risk. Greyscale
ted against empirical prevalence data. The red squares show mean
ilable. The blue diamonds show mean prevalence for 100 grid squares
(‘selected data’). Infection risk has been translated into proportion of
lated infection risk are equal.



Table 1 Comparison of model output ‘infection risk’ at baseline (2006–2015) with empirical prevalence estimates

All data (N = 279) Selected data (N = 100)

Prevalence cut-off Number above cut-off (%) AUC* (95% CI) Number above cut-off (%) AUC* (95% CI)

0% 209 (75) 0.60 (0.52-0.67) 66 (66) 0.56 (0.45-0.68)

10% 98 (35) 0.62 (0.55-0.69) 22 (22) 0.62 (0.47-0.77)

20% 69 (25) 0.63 (0.56-0.71) 13 (13) 0.68 (0.50-0.86)

50% 26 (9) 0.57 (0.46-0.69) 4 (4) 0.76 (0.39-1.00)

*Area under receiver operating characteristic curve.
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when all data were used, and 1/100 (1.0%) grid squares
when selected data were used.

Increase in risk
Figure 3 illustrates the median predicted change in
S. mansoni infection risk across scenarios, over the
next 20 and 50 years. Figure 4 gives an indication of
the level of agreement between scenarios in the over-
all direction of change (increased risk or decreased
risk), and the number of scenarios that disagree with
the overall direction. There is widespread agreement
between scenarios and climate projections that infec-
tion risk may increase in Rwanda, Burundi, and east-
ern Zambia and over most of Uganda, Tanzania and
south-west Kenya over the next 20 years, and that in-
fection risk may decrease in north-east Kenya. A similar
picture is found in 50 years’ time, with the exception of
the high warming scenario where risk is predicted to de-
crease over larger areas, and where there is disagreement
between scenarios in the direction of change in risk over
Figure 3 Median predicted change in S. mansoni risk in eastern Africa
relative to 2006–2015 (bottom). Median is calculated across eight model sc
larger areas. In the majority of areas, the median predicted
increase in infection risk is less than 20%. In parts of
Rwanda, Burundi, south-west Kenya and eastern Zambia,
however, the median increase in risk is higher.
There is widespread agreement between scenarios that

infection risk may decrease by more than 50% over the
next 20 and 50 years in parts of north and east Kenya,
southern South Sudan, and eastern People’s Democratic
Republic of Congo. The size of the area over which re-
ductions may occur is larger with higher levels of warm-
ing, and in 50 years’ time.

Newly endemic areas and new foci of transmission
Figure 5 highlights areas at risk of new transmission foci
developing. The left-hand maps show areas where the
model predicts that cut-offs corresponding to 1-33% of
maximum risk will be crossed over the next 20 and
50 years. These cut-offs correspond to temperatures
which are suitable for transmission, but not ideal. These
cut-offs are therefore most likely to be crossed in areas
. Results are for 2026–2035 relative to 2006–2015 (top) and 2056–2065
enarios for each map.



Figure 4 Agreement between scenarios in the direction of change in S. mansoni risk in eastern Africa. Results are for 2026–2035 relative
to 2006–2015 (top) and 2056–2065 relative to 2006–2015 (bottom). Areas are shown in yellow if all scenarios agree that increasing temperatures
will have little effect on schistosomiasis transmission. Areas are shown in red and blue respectively if there is widespread agreement between
scenarios that temperatures will become suitable for increased or decreased schistosomiasis transmission over the next 20 years. Areas are shown
in grey if the majority of scenarios predict increasing risk or little change, but one or more scenarios predict decreasing risk, or vice versa.
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where both levels of human risk behaviour are high, and
where highly suitable snail habitats are found (for in-
stance permanent habitats with a good supply of food
and few predators). The right-hand maps illustrate areas
where the model predicts that cut-offs corresponding to
67-99% of maximum risk will be crossed. These cut-offs
correspond to temperatures which are highly suitable for
transmission. Schistosome transmission may therefore
newly occur in villages and at potential transmission
sites where levels of human risk behaviour are lower
and/or snail habitats are more marginal. Figure 5 shows
the results for the moderate warming projections only.
The results for the low and high warming projections
are similar and are shown in Additional file 1: Figures S2
and Additional file 2: Figure S3.

Discussion
The results suggest that, all else being equal, S. mansoni
infection risk may increase across much of eastern Af-
rica as temperatures increase over the next few decades.
In most areas, the predicted increases are less than 20%.
Temperature driven increases in risk may be much lar-
ger in Rwanda, Burundi, south-west Kenya, and eastern
Zambia. Conversely, infection risk may decrease by more
than 50% in parts of north and east Kenya, southern
South Sudan, and eastern People’s Democratic Republic
of Congo. The results also highlight areas where schisto-
some transmission may occur at new sites.
The results predict changes in risk that are attributable
to increasing temperatures only. Other climatic changes,
such as changes in patterns of rainfall, flooding and
droughts, will also have an impact on future schistosom-
iasis prevalence [25]. Changes in patterns of rainfall may
be particularly important in determining the seasonality
of transmission in many areas, and therefore results are
not presented by season. In addition to climatic changes,
non-climatic changes will play a large role in determining
future prevalence and infection intensity. These include
changes in land use, population growth and mobility,
water contact behaviour and sanitation infrastructure.
Potential modifying factors of risk also include mass
treatment control programmes, and snail control ef-
forts. For these reasons, the model results should not
be taken as predictive of future schistosomiasis preva-
lence as such, but instead as indicative of areas where
temperature changes are likely to influence schisto-
somiasis transmission potential.
A novel feature of the model presented here is consider-

ation of the relationship between air and water temperature
in different types of water body and in different seasons.
Compared to minimum and maximum air temperatures,
minimum and maximum water temperatures may be both
higher [21,26], both lower [26], or may be higher and lower
respectively [26,27]. Furthermore, snails may be capable of
escaping above optimum water temperatures by moving to
deeper water [25], where water temperatures may be up to



Figure 5 Relative risk of new foci of transmission developing, using the moderate warming climate projection. Results are for 2026–2035
relative to 2006–2015 (top) and 2056–2065 relative to 2006–2015 (bottom). Blue colours indicate little or no risk. Red colours indicate high risk.
The maps on the left show risk in villages with high levels of risk behaviour and good snail habitats. The maps on the right show risk in villages
with lower levels of risk behaviour and/or poor snail habitats. The key indicates the proportion of cut-offs that were crossed between baseline and 20
and 50 years’ time. Results for the low and high warming scenarios are shown in the Additional file 2: Figures S2 and Additional file 3: Figure S3.
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2°C cooler [28], or by burrowing in mud [25]. For these
reasons, a number of scenarios were simulated, with dif-
ferent relationships between air temperature and water
temperature. Scenarios with high and low snail mortality
rates explored the effect of differences between different
types of habitat further. With the exception of the moder-
ate and high warming projections in 50 years’ time, there
is little disagreement between scenarios in the direction of
change in risk, suggesting that the model results are ro-
bust to variations between snail habitats. The eight scenar-
ios also act as a form of sensitivity analysis, as shifting
temperatures and keeping snail and parasite temperature
preferences constant is equivalent to keep the tempera-
tures constant but altering model parameterisation.
Validation of the model is challenging as the model

produces an estimate of the contribution of temperature
to infection risk, whereas infection prevalence is the
standard measure of population infection risk. Estimat-
ing prevalence was outside of the scope of this study due
to a lack of available information (at high spatial reso-
lution) on most of the underlying processes and phe-
nomena that drive infection prevalence, including the
presence or absence of suitable snail habitats, water con-
tact behaviour, and sanitation infrastructure and usage.
In addition, prevalence is a poor indicator of infection
risk, and data on infection intensity are rarely routinely
collected [29]. Existing prevalence data are also of varying
quality, having been collected for a wide range of different
purposes, at different times, in different age groups, using
different sampling methods, and using different tests with
widely varying sensitivities [30]. Areas where temperatures
are considered to be unsuitable for schistosomiasis may be
greatly under-sampled, and these are the areas where the
predictive ability of the model is likely to be highest. These
limitations both impede model validation, and reduce the
ability of geostatistical models to accurately capture the ef-
fects of temperature.
Despite the limitations of the empirical data, a com-

parison of model output at baseline with prevalence data
gives AUC’s of around 0.6 (Table 1), which suggests that
temperature does play an important role in determining
empirical prevalence (and that the model is able to cap-
ture that role), but that other factors are also important.
Figure 2 illustrates clearly that zero or low prevalences
of schistosomiasis can occur in any area, regardless of
temperatures, but that higher prevalences only occur in
areas where temperatures are suitable for higher levels
of transmission. In other words, suitable temperatures
are necessary but not sufficient for both schistosome
transmission and for high prevalences of schistosomiasis.
Snail eggs are introduced into the model at an average

rate of one a year. This is necessary to allow simulated snail
populations to become established in areas where condi-
tions become newly suitable. In real snail populations, this



McCreesh et al. Parasites & Vectors  (2015) 8:4 Page 8 of 9
may occur through movement of snails from intercon-
nected water bodies or during flooding [31], or through
live snails being transported short distances on objects
such as fishing nets. These events are all extremely sto-
chastic, and the ‘newly endemic’ model results should
therefore be taken to indicate areas that may become
newly suitable for the establishment of schistosome trans-
mission only, and not as a definite guide to the spread of
schistosomiasis. The exception to this is cooler areas where
snails are found but schistosome transmission does not
currently occur, where new transmission foci could quickly
become established as temperatures become suitable.
Taking regional climate simulations made by only one

regional climate model, downscaling one global circula-
tion model (under different RCP scenarios), is not
enough to assess the full range of uncertainties in future
climate projections. However, the main focus of the
study is to provide a range of plausible future changes in
schistosomiasis risk, suitable for public health planning
purposes, and to explore the effect of uncertainties asso-
ciated with the disease model and its parameterisation.
Using a wider range of different climate projections
(from different RCMs downscaling different AOGCMs)
is unlikely to have any real effect on the public health
consequences of our findings. As the main focus of the
study was infectious disease modelling, there was also
no bias correction applied to the RCM data.
To maximise the potential utility of our results for

public health purposes, we used short (10-year) time
slices for the analysis, namely: 2006–2015 (baseline),
2026–2035 and 2056–2065. Using 10-year time periods
can lead to errors if natural multi-decadal variability is
attributed to the global warming signal. We do not be-
lieve that this was the case for our study however, as cli-
mate projections for daily maximum and minimum
temperatures in eastern Africa averaged over 10-years
were robust and consistent across the three RCP trajec-
tories (Additional file 1: Figure S1).
The model was parameterised using data from B. pfeifferi

snails. This is the most widespread intermediate host snail
species in sub-Saharan Africa [19]. Other species of inter-
mediate host snail are found at many transmission sites
however, and previous modelling work has shown that the
species of snail used in parameterising a model can have a
large effect on the relationship between water temperature
and infection risk [15]. Simulating different relationships be-
tween air temperature and water temperature goes some
way towards testing the sensitivity of the model to the
choice of snail species, as the higher and lower simulated
temperatures could also be viewed as alterations in mini-
mum, maximum, and optimum temperatures for snail
survival and reproduction. The widespread agreement
between scenarios therefore suggests that the model is
not very sensitive to small differences in temperature
preferences between snail species. Nevertheless, experi-
mental work with the different species of intermediate
host snail found in eastern Africa would increase confi-
dence in the model results by allowing the model to be
explicitly parameterised to other species of snail.
A practical application of the model presented here is

associated with planning the long-term control of schis-
tosomiasis. Current efforts rely on periodic mass admin-
istration of medicines within specific areas. As climate
change begins to exert an influence on the African envir-
onment, the situation on the ground is likely to change.
Mitigation and/or adaptation measures to climate change
will require greater surveillance efforts to capture those
changes in advance of them becoming significantly dele-
terious. A rapid mapping of snail populations within the
areas identified as being at risk of new endemicity would
pinpoint the communities at highest risk, allowing tar-
geted monitoring of human populations.

Conclusions
Climate change may have a large effect on both the distribu-
tion and intensity of S. mansoni infection over coming de-
cades. Temperatures are predicted to become suitable for
increased transmission over much of eastern Africa over the
next 20 years. This may lead to increased prevalences and
intensities of infection in some areas, and is likely to reduce
the effects of control and elimination programmes. In some
areas, particularly in Rwanda, Burundi, south-west Kenya
and eastern Zambia, increases in infection risk may be large.
Schistosomiasis may spread to new areas, outside the
current range of control programmes. Increased surveillance
of these areas would enable education and control pro-
grammes to be promptly implemented in newly en-
demic areas, minimising disease morbidity.

Additional files

Additional file 1: Figure S1. Projected changes (relative to 2006-2015)
in maximum and minimum temperatures under RCP2.6, RCP4.5 and
RCP8.5, averaged over the eastern Africa study region and smoothed
using a 10-year moving average. Vertical lines mark 2006-2015, 2026-2035
and 2056-2065. The numbers show the increase in temperature (°C).

Additional file 2: Figure S2. Relative risk of new foci of transmission
developing between 2006-2015 and 2026-2035 (top) and 2056-2065
(bottom), using the low warming climate projection. Blue colours indicate
little or no risk. Red colours indicate high risk. The maps on the left show risk
in villages with high levels of risk behaviour and good snail habitats. The
maps on the right show risk in villages with lower levels of risk behaviour
and/or poor snail habitats. The key indicates the proportion of cut-offs that
were crossed between baseline and 20 and 50 years’ time.

Additional file 3: Figure S3. Relative risk of new foci of transmission
developing between 2006-2015 and 2026-2035 (top) and 2056-2065
(bottom), using the high warming climate projection. Blue colours indicate
little or no risk. Red colours indicate high risk. The maps on the left show risk
in villages with high levels of risk behaviour and good snail habitats. The
maps on the right show risk in villages with lower levels of risk behaviour
and/or poor snail habitats. The key indicates the proportion of cut-offs that
were crossed between baseline and 20 and 50 years’ time.

http://www.parasitesandvectors.com/content/supplementary/s13071-014-0617-0-s1.docx
http://www.parasitesandvectors.com/content/supplementary/s13071-014-0617-0-s2.docx
http://www.parasitesandvectors.com/content/supplementary/s13071-014-0617-0-s3.docx
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