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Abstract

Objective: To investigate the factors influencing the performance and cost-efficacy of periodic rounds of active case finding
(ACF) for TB.

Methods: A mathematical model of TB dynamics and periodic ACF (PACF) in the HIV era, simplified by assuming constant
prevalence of latent TB infection, is analyzed for features that control intervention outcome, measured as cases averted and
cases found. Explanatory variables include baseline TB incidence, interval between PACF rounds, and different routine and
PACF case-detection rates among HIV-infected and uninfected TB cases.

Findings: PACF can be cost-saving over a 10 year time frame if the cost-per-round is lower than a threshold proportional to
initial incidence and cost-per-case-treated. More cases are averted at higher baseline incidence rates, when more potent
PACF strategies are used, intervals between PACF rounds are shorter, and when the ratio of HIV-negative to positive TB
cases detected is higher. More costly approaches, e.g. radiographic screening, can be as cost-effective as less costly
alternatives if PACF case-detection is higher and/or implementation less frequent.

Conclusion: Periodic ACF can both improve control and save medium-term health care costs in high TB burden settings.
Greater costs of highly effective PACF at frequent (e.g. yearly) intervals may be offset by higher numbers of cases averted in
populations with high baseline TB incidence, higher prevalence of HIV-uninfected cases, higher costs per-case-treated, and
more effective routine case-detection. Less intensive approaches may still be cost-neutral or cost-saving in populations
lacking one or more of these key determinants.
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Introduction

Tuberculosis (TB) continues to pose a major global health

problem, causing an estimated 9.4 million new cases and 1.7

million deaths during 2009 [1]. TB is infectious and treatable, and

therefore identifying, diagnosing and starting active cases on

appropriate medication is at the core of current policies for TB

control [2]. Modelling work [3–6] has repeatedly emphasized the

importance of case detection. Infrastructure is poor in many of the

settings where TB incidence is at its highest [7,8], and medium

term methods for improving case acquisition and treatment will be

needed to hit the STOP TB goals for 2015. Interventions such as

active case finding (ACF) that screen large portions of the

population for active disease have a long history in TB control

[9]. Recent work has successfully demonstrated the potential of

ACF to reduce TB prevalence in contemporary settings with high

HIV prevalence [10], and intensified interest in the possibilities for

scale-up [11].

The sorts of control effort categorized as ACF are usually too

intensive to be continuously sustainable in resource-poor commu-

nities. In these cases, the intervention is typically applied as a series

of rounds: periodic active case finding (PACF). The choice of

intervention period affects the natural epidemic dynamics, which

rebound between rounds; and has the potential to differently affect

the case ascertainment of HIV-infected and HIV-uninfected TB

cases, whose contrasting typical duration affects their chances of

falling between rounds. This raises a series of questions around the

effect of round frequency on intervention outcomes and cost,

which have been subject to very few direct investigations [12].

In this paper, we employ a simple mathematical model of TB

transmission and disease among individuals who may be infected

with HIV. The model is parametrized by the initial TB incidences

and disease durations (different by HIV infection status), the

distribution of delays from recent infection to disease, and the

proportion of disease that is due to recent infection. We explore

the effect of community and intervention characteristics on

outcomes such as cases averted, cases found, and the total cost,

over a 10 year time-frame.

Methods

General model: incidence from prevalence
The usual assumption is that upon infection with Mycobacterium

tuberculosis (MTB) for the first time, there is a chance p*10% that

the individual will develop active TB disease within around 5 years

[13–15]. For the remaining (1{p)*90% of people, the risk of TB

has been estimated to be much lower, e.g. 0:3% per year [15],

though this may vary by population [16]. This situation can be
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captured by assuming a mixture model for the probability of

having avoided disease for a time t after infection (i.e. the

associated survival function), m(t):

m(t)~p:a(t)z(1{p):b(t) ð1Þ

N.B. ‘survival’ in this general terminology refers to avoiding a

specified event, which need not be death. The risk for the ‘fast’

route derived in [15] is well fit by an exponential survival function

with rate 0.9 per year. We shall write ra(t), rb(t) and rm(t) for the

hazards associated with survival from disease via the: fast route

(survival function a(t)); slow route (survival function b(t)); and

either route (survival function m(t)), respectively.

For those who have already been infected, it is often assumed

that they have some protection from progression to disease. We

will denote the factor reduction in likelihood of progression (1{v).
The value of protection v is not well known, but has been

estimated, e.g., as 16–41% in [15], and 63% for men and 81% for

women in [14].

Let us denote by x(t) and y(t) the fractions of the population

who are uninfected and infected by MTB at time t, respectively;

and write N(t) for the population size and �NN(t)~(x(t)z
y(t):(1{v))N(t) for an effectively susceptible population. If the

proportion of those remaining alive at time t after their infection

by TB is l(t), then, ignoring the fraction of the population with TB

disease, the incidence at time t is

ð?
0

dt:rm(t):m(t)l(t):F(t{t) �NN(t{t)~G(t)zH(t) ð2Þ

where F(t) is the force-of-infection at time t, and where G(t) and

H(t) are

G(t)~

ð
dt:p:ra(t):a(t)l(t):F (t{t) �NN(t{t) ð3Þ

H(t)~

ð
dt:(1{p):rb(t):b(t)l(t):F (t{t) �NN(t{t) ð4Þ

Equation 2 represents the current incidence as the result of the

history of infection combined with delays to disease.

The proportion of incident cases at time t that is ‘recent’ is

PR(t)~
G(t)

G(t)zH(t)
ð5Þ

Approximations
In this section we will justify two simplifying approximations to

this model, namely: that the prevalence of latent TB infection is

roughly constant; and that the incidence, H(t), due to distant

infection is roughly constant. These approximations are reason-

able over the time frames considered (10 years or less), but break

down for longer time frames.

In a (possibly growing) population, with annual risk of MTB

infection F , simple manipulation of the differential equations for

the total number, number infected, and number uninfected shows

that the fraction of the population infected grows with rate

Fx{gy, where g is the per-capita birth-rate that dilutes the

infected pool. This means, starting with equilibrium values F0, x0

and y0 holding at time 0, y satisfies

_yy~Fx{
F0x0

y0

y ð6Þ

If the risk of infection has changed to a new constant F~F0zDF ,

while time is such that x0:DF :t is small compared with y0,

Equation 6 has the approximate solution

y(t)&y0zx0:DF :t ð7Þ

In a high burden setting, F is typically less than a few percent, and

x0*0:5. Thus y is likely to change at no more than *1% per

year, e.g. [17,18].

For a constant population, the above approximation means that
�NN(t)& �NN0, and by linearity, DH~(H(t){H0) obeys:

DH(t)

H0
~

Ð?
0

dt:rb(t)b(t)l(t):DF (t{t)=F0Ð?
0

dt:rb(t)b(t)l(t)
ð8Þ

~O DF

F0

:
Y
�ll

� �
ð9Þ

where DF is the mean change in the force-of-infection over the

duration of intervention, Y denotes the duration of intervention,

and �ll is the average life-span after infection. This follows since the

rate of slow TB progression is negligible compared to mortality.

Assuming that H(t) is approximately constant is therefore a

reasonable approximation over time frames shorter than a life-

span.

Simplified model
With the approximation that H(t)&const:, we can write the

incidence in terms of the baseline proportion of TB that is ‘recent’,

PR0, as

I(t)&H(0)zG(t) ð10Þ

~(1{PR0):I0z
G(t)

G(0)
PR0:I0 ð11Þ

~(1{PR0):I0z

Ð
dt:a(t)l(t):F (t{t) �NN(t{t)Ð

dt:a(t)l(t):F0
�NN0

:PR0:I0 ð12Þ

The last equality, resulting in Equation 12, follows because we

further assume that the hazard, ra, associated with the ‘recent’

route is constant, and since all constant factors in the numerator

G(t) cancel with those in the denominator G(0).

We will restrict ourselves to the situation where the population

size is roughly constant, which, together with the approximation

that y(t)&const:, and neglecting mortality over the ‘fast’

timescale, means that

I(t)&(1{PR0):I0zPR0:I0:

ð
dt:~aa(t):F(t{t)=F0 ð13Þ

where ~aa(t)~ra:exp({rat) is the distribution of (fast) delays from

infection to disease. This represents a risk of developing TB disease

that is highest immediately after infection, decaying towards a
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steady background rate in subsequent years. It will be convenient

to use the notation

~FF (t)~

ð
dt:~aa(t):

F (t{t)

F0
ð14Þ

We will make the usual mass-action assumption that F (t) is

proportional to the number of active TB cases, D(t), so that

F (t)

F0

~
D(t)

N
ð15Þ

Together, Equation 13 and Equation 15 form a dynamical rule for

relating incidence to the prevalence of active TB cases. (A rule for

calculating D(t) from incidence, thus specifying a complete

dynamics, is provided in the section after next.) Note that the

uncertain parameters for the endogenous reactivation rate and the

protection from disease due to previous infection are not needed.

The influence of HIV
In many sub-Saharan African settings, a substantial proportion

of incident TB disease cases are HIV-infected [1]. Assuming a

constant underlying HIV prevalence and a constant incidence rate

ratio (IRR) for developing TB if infected with HIV, we can

determine the incidence of HIV-infected and HIV-uninfected TB

cases in the general population Iz(t), I{(t), as

I{(t)~(1{PR0):I{
0 zPR0:I

{
0 :

~FF (t) ð16Þ

Iz(t)~(1{PR0):Iz
0 zPR0:I

z
0 :

~FF (t) ð17Þ

where, again, zero subscripts indicate equilibrium values at time 0.

Note, we are assuming that the IRR applies equally to individuals

progressing via the ‘fast’ and ‘slow’ routes.

In the presence of HIV, we again assume that F (t) is

proportional to the prevalence of active TB cases, but with a

discount factor f for HIV-infected TB cases to capture their

reduced likelihood of being smear positive [19]. Writing Dz(t)
and D{(t) for the number of HIV-infected and HIV-uninfected

cases of TB, this means taking

F (t)

F0

~
D{(t)zf :Dz(t)

N
ð18Þ

Prevalence from incidence
This section applies to the prevalences and incidences of both

HIV-infected and HIV-uninfected TB disease. Since the form of

each set of equations is identical, we drop superscript z and {

signs and refer to a generic prevalence and incidence. The

evolution of the density of active TB cases, D(t,t), who have been

active for a time t at time t is modelled by the partial differential

equation and boundary condition:

L
Lt

z
L
Lt

� �
D(t,t)~{r(t)D(t,t) ð19Þ

D(t,0)~I(t) ð20Þ

where r(t) is the total removal rate (due to detection, death and

self-cure), and I is the incidence. This can be solved by

characteristics to give

D(t)~

ðt

0

dt:I(t)s(t{t)z

ð?
0

dt:D(0,t)
s(tzt)

s(t)
ð21Þ

where s(t) is the survival function for a case remaining active and

undetected until time t, generated by the hazard r(t), and

s(tzt)=s(t) is the conditional survival given a case that has

already remained active for a time t. If the system has been at

equilibrium until time t~0, then D(0,t)~I0:s(t) and as t grows

larger than a couple of years, this second term decays to zero. We

model s with Weibull survival functions, so that the times cases

remain active in the population for are Weibull-distributed with

distinct time scales for HIV-infected and uninfected TB cases.

Within this framework, PACF can be thought of as a series of

impulsive hazards. Since we assume that the probability of being

detected by PACF does not depend on t, these are equivalent to

fractional reductions in the density of active TB cases, D,

immediately after each round. We will call the fractional reduction

the round efficiency, �. The round efficiency � could be considered

as representing the mean over some distribution of detection

probabilities. One has

D(t)~

ðt

0

dt:D(t,t)I(t{t)s(t)zD(t,t)

ð?
0

dt:I0s(tzt) ð22Þ

where

D(t,t)~(1{�)n(t,t) ð23Þ

for a round efficiency �, and where n(t,t) counts the number of

rounds experienced by an active case at time t who has remained

active and undetected for a duration t. For an intervention with

period T , with initial round at time ti,

n(t,t)~½(t{ti)=T �{½(t{ti{t)=T � ð24Þ

where ½X � is the integer part of X§0 and 0 for Xv0. The

meaning of Equation 22 can be visualised as shown in Figure 1.

We will make a proportional hazards assumption for the rate of

detection, rd (t), namely that rd (t)~CDR0:r(t) where CDR0 is the

baseline case detection rate. This interpretation is justified as at

equilibrium, with I(t)!s(t), the detection probability for a case,

given by parameter CDR0, becomes equal to the WHO-defined

CDR (the past year’s notifications divided by the past year’s total

incidence).

The effects of subgroups of individuals who are less prone to

detection, possibly in a way that correlates with their likelihood of

being detected passively, can be conveniently modelled in this

framework with appropriate mixture models for D(t,t).

Parameter values
We assume f ~0:5, motivated by the reduced infectiousness of

of smear-negative TB [20], and the increased likelihood of TB

cases being smear-negative in HIV-infected individuals [19]. We

model the distribution of ‘fast’ delays from infection to disease as

exponential, with decay rate ra~0:9 per year, derived by fitting an

exponential to the delay distribution inferred in [15]. We model

the survival functions as active, undetected TB, s+
t , with Weibull

distributions with typical durations in the presence of routine
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services taken as half the values specified in the absence of routine

services in [21]. That is, we will take the survival shape and scale

parameters for HIV-negative cases to be (k{,L{)~(2:5,1 year)
and for HIV-positive cases (kz,Lz)~(2:5,3 months). Our

default proportion of TB cases due to recent transmission,

PR0~72%, appropriate for high-burden settings [22,23], and

our default prevalence of HIV among incident TB cases is

h~75%, appropriate for high-HIV settings [1]. Our default

baseline incidence will be 600 per 100,000 person-years.

For many of these parameters we explicitly consider the effects

as their values change. This information is summarized in Table 1.

Exploration of behaviour
Using asterisks to distinguish quantities under PACF from those

without intervention, we calculate the total number of cases

averted (TCA) as

TCA~

ð
dt: I(t){I�(t)½ �~(PR0|I0)

ð
dt: ~FF (t){~FF�(t)
� �

ð25Þ

All numerical computations were carried out using Euler-type

methods with a time-step of dt~0:02 years, implemented in the R

programming language [24]. To avoid interplay between the

initial epidemic dynamics and the intervention, we began the

intervention from the system at equilibrium. Round periods were

chosen so that a whole number of rounds are performed during

the intervention, and round-counts and responses were calculated

incrementally before the final round. A comparison between the

number of TB cases treated without intervention, and the

intervention cost (measured in terms of treatment costs) added to

the total number treated in this situation, was used as a very crude

indicator of regions that might be cost-saving.

Results

In this section we consider the behaviour of the model, as

defined by Equations 14, 16, 17, 18, and 22.

Typical dynamics are shown in Figure 2: the prevalence of active

TB is reduced by each round of case-finding (panel A), but begins to

bounce back afterwards, slightly more rapidly for HIV-infected TB.

Incidence also reduces (panel B), but in a smoother way, reflecting

its dependence on a weighted sum over historical prevalence. Active

case-finding works in competition with case detection by routine

services, and so the CDR for routine services reduces once the

intervention begins (panel C). This reduction is larger for HIV-

uninfected TB than for HIV-infected TB, and model experimen-

tation showed this to be a result of the shorter duration of HIV-

infected TB. As prevalence reduces, the proportion of incident TB

disease due to recent infection also reduces (panel D).

Cumulative cases found by both routine services and the active

case-finding rounds always increase initially (see Figure 3).

However, since the intervention reduces incidence, by the end of

10 years one may either find more cases in total (solid line for

HIV-uninfected TB in panel A of Figure 3), or fewer cases (solid

line for HIV-uninfected TB in panel B of Figure 3, and the dashed

line for HIV-infected TB in both panels).

Numerical experiments were carried out to investigate how

different round efficiencies, �, inter-round periods, T , and initial

case detection rates, CDR0, affected the number of cases found (by

both routine and active routes), TCF , and the number of cases

averted over a 10 year period (see Figure 4). The round

efficiencies, �, were chosen to vary from 10% to 90% in

increments of 10%; and 28 values of the period T were

investigated, chosen so that the number of rounds over the 10

years was an integer in the range 2 to 49. Plotting the results

against �|N (where N is the total number of rounds in this

period) collapsed the data fairly well. The data in panels C and D

are colored by CDR0, whereas the cases averted, TCA, are

independent of CDR0. This fact can be seen directly from

Equation 25. Moreover, since the HIV-uninfected and HIV-

infected cases averted are driven by a shared difference in force-of-

infection,

TCAz~
Iz

0

I{
0

|TCA{ ð26Þ

The linearity of the dynamics implies that both TCA and TCF are

proportional to the initial burden I0:

Figure 1. Modelling prevalence given incidence. An active TB
case develops at a, and remains active until v. The probability that this
case avoids death, self-cure or detection by routine services to remain
active at v is st. In the presence of T -periodic active case-finding
(vertical lines) beginning at time ti , the case must also avoid detection
by intersection with n(t,t) case-finding rounds (marked as filled circles),
which occurs with probability D(t,t).
doi:10.1371/journal.pone.0029130.g001

Table 1. Model parameters.

Parameter Meaning Value Ref

r0 rate for recent activation 0.9/y [15]

f relative infectiousness HIV+ TB 0.5 [19,21,31]

k Weibull shape for
duration active TB

2.5 guess

L{ Weibull timescale (HIV2) for
duration active TB

1 y{ [21,32]

Lz Weibull timescale (HIV+) for
duration active TB

0.25 y{ [21,33]

I0 initial incidence TB disease 600.10{5/y{ [1]

h HIV prevalence in
incident TB cases

75%{ [1]

PR0 initial proportion TB disease
incidence ‘recent’

72%{ [22]

CDR
(z={)
0

initial TB case-detection
rate (HIV+/2)

50%{* [1]

{Default example: changes in parameter investigated.
*Only affects conclusions about numbers of cases found.
doi:10.1371/journal.pone.0029130.t001
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TCA,TCF!I0 ð27Þ

Further, Equation 25 shows that

TCA!PR0|I0 ð28Þ

since it is the recent part of the incidence that the intervention

affects.

Interventions that could be realised in practice would likely have

�|Nv10, corresponding to 10 yearly, perfect case finding

rounds. In this regime, the data in Figure 4, i.e. both TCA and

TCF , are roughly linear, i.e.

TCA,TCF!�|N ð29Þ

From inspection of panels C and D of Figure 4, one can see that

it is primarily the initial CDR that determines whether fewer or

more cases are found in total over the duration of the intervention,

while �|N, as a measure of effort, and I0, which scales the overall

burden, determine the magnitude of this effect. Higher initial

CDRs make it more likely that fewer cases will be found in total

under the intervention. Figure 5 maps out the critical initial case

detection rates for HIV-infected TB CDRz
c (red) above which

fewer HIV-infected cases are found in total under the intervention,

Figure 2. Example dynamics with yearly rounds from year 10. Panel A: prevalence of active undetected TB (dashed line for HIV-infected TB,
solid line for HIV-uninfected TB; total population as denominator). Panel B: incidence of active TB (dashed line for HIV-infected TB, solid line for HIV-
uninfected TB; total population as denominator). Panel C: case detection rate by routine services. Dashed line for HIV-infected TB, solid line for HIV-
uninfected TB. WHO definition, i.e. the preceding year’s detections divided by the preceding year’s incidence. Panel D: the proportion of incident TB
due to recent infection. All panels for the default parameters in Table 1, with �~50%, and CDR0~50%.
doi:10.1371/journal.pone.0029130.g002
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and similarly CDR{
c (green) is the rather higher value above

which fewer HIV-uninfected TB cases will be found. The black

line demarcates the region where fewer TB cases in total are

expected to be found, regardless of HIV-status. It is not difficult to

show that the slope of this lines is

{
CDRz

c =CDR{
c

Dz
0 =D{

0

ð30Þ

so that this is strongly dependent on the HIV prevalence in

incident TB cases. The values of CDRz
c and CDR{

c are not

greatly affected by changed values of this HIV prevalence

however, nor are they very sensitive to changed assumptions

about the typical durations of HIV-infected and HIV-uninfected

TB. As indicated in Figure 5 though, the proportion of incident

cases initially due to recent infection, PR0, makes a large

difference to these critical case detection rates.

For a high enough initial burden, there may be situations where

the absolute size of the reduction in cases found compensates for

the cost of implementing the case finding rounds through

treatments avoided. Figure 6 plots the cost of the intervention in

a population of 100,000 individuals divided by �|N against the

initial burden above which the intervention saves the health system

money. Higher initial CDRs and higher proportions of incident

disease due to recent infection favour cost-saving.

Panel A of Figure 7 factors out the initial burden to indicate the

proportional number of cases one might expect to avert with 10

years of yearly case finding rounds of different efficiency. The

initial proportion recent again makes a large difference to the

achievable impact. Mindful that early diagnosis of cases through

active case finding may also improve patient outcome, we consider

the number of TB cases found by the active route at different

round frequencies (panel B of Figure 7). There is a marked drop-

off in numbers of HIV-infected TB cases found as rounds become

less frequent, whereas at high round efficiencies the return of HIV-

uninfected TB cases can increase from very frequent rounds that

do not give the prevalent pool time to replenish, before falling

again at low frequencies.

Finally, Figure 8 reports relative numbers of cases averted by

scenarios with different case-finding round efficiencies for HIV-

infected and uninfected TB cases. The numbers were computed

for yearly rounds and the default parameters of Table 1. However,

few of these make much difference, the picture being largely

determined by f and the relative duration of HIV-uninfected and

HIV-infected TB disease. Note that Equation 26 means this figure

could equally refer to HIV-infected, HIV-uninfected or total TB

cases averted. The contours indicate very little gain in cases

averted by increasing the efficiency of HIV-positive TB case

finding, compared with increasing the efficiency of HIV-negative

TB case finding.

Discussion

Traditional assessments of active case finding strategies have

focused on cases found, and the number-needed-to-screen (NNS)

to find one TB case. The NNS is a measure both of the efficiency

of the screening strategy and the baseline prevalence of disease in a

given population. If active case finding is used repeatedly, one

expects the prevalence to fall, thus changing the NNS. ACF can be

expected to reduce the passive notification rate (more strongly for

HIV-uninfected TB), by acting in competition with it. However,

while the overall number of cases found using active and passive

systems combined will always increase initially, in the long-run

introducing ACF may result in either an increase, or a decrease in

the total number of cases found, depending on the efficiency of the

passive system. Other things being equal, fewer cases are likely to

be found in total as a result of repeated ACF when the routine

system is functioning well and achieving a high CDR. This is

essentially because for a poor passive system, fewer of the cases

found by ACF would have been found otherwise, and are thus

more likely to constitute extra cases for the health system. Our

analysis also indicates that reductions in the cumulative HIV-

infected TB case load are more likely than reductions in the HIV-

Figure 3. Cumulative cases found by both active and passive systems. Solid lines for HIV-uninfected TB, dashed lines for HIV-infected TB,
and dotted lines for cumulative cases without interventions beginning at year 10. Both panels are for the default parameters of Table 1, with �~50%.
Panel A has CDR0~75%, whereas panel B has case detection rates CDR0~45%. Fewer HIV-infected TB cases are found in total under the
intervention in both panels. Fewer cases of HIV-uninfected TB are found in panel A, and more cases of HIV-uninfected TB in panel B.
doi:10.1371/journal.pone.0029130.g003
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uninfected TB case load, and that for situations where the

proportion of TB incidence due to recent infection is below 40%,

reductions in cases found become implausible or impossible.

The number of cases averted in a community by ACF increases

with the overall burden and with the proportion of disease due to

recent transmission. Every case averted represents a potential cost

of treatment that the health system may be spared. On the other

hand, finding TB cases and treating them both cost money.

Nevertheless, if the cost of periodic screening is low enough, and

the baseline burden high enough, our results suggest that ACF

may provide a net cost saving over a 10 year period. While the cost

of both treatment and case-finding vary by setting, it is their ratio

that determines whether money is saved. This makes it natural to

measure prices in terms of the cost of a DOTS treatment course,

as we did in this analysis. In these units, Heller et al. estimated the

price of an ACF round for a community of 100,000 people at

around 33 [25], assuming 2% of the population sputum tested,

with the price of smear microscopy twice its usual value to account

for operational costs. If the case finding efficiency of a round based

on smear microscopy were *25%, this would correspond to a

value of around 120 on the y-axis of Figure 6. As such, our results

suggest that for baseline TB incidences above 500/100,000 per

year, ACF would have the potential to be cost saving where the

routine CDR and proportion of incidence due to recent infection

are high enough, e.g. when both are around 70%. There appears

to be scant data available in the literature on the operational cost

of real mass screening strategies [26].

In comparing alternative screening strategies for a given

community, we find that strategies with similar values for the

product of detection efficiency and frequency of rounds can be

Figure 4. Cases found and averted for different round efficiencies, periods and initial case detection rates. Results from numerical
model experiments plotted against the product of round efficiency and the number of rounds during the 10 year intervention period, in a population
of 100,000. Panels A and B are the total HIV-infected and HIV-uninfected TB cases averted, respectively. Panels C and D are the total HIV-infected and
HIV-uninfected TB cases found by both routine and active routes, respectively. Panels C and D have points colored by initial case detection rates;
initial case detection rates do not affect cases averted. Realistic levels of achievement would be below �|N*10, or a perfectly efficient round once a
year. All panels have parameters other than those varied set to the default parameters of Table 1, although the overall level of incidence only affects
the scales here. The round efficiencies, �, were chosen to vary from 10% to 90% in increments of 10%; and 28 values of the period T were
investigated, chosen so that the number of rounds over the 10 years was an integer in the range 2 to 49.
doi:10.1371/journal.pone.0029130.g004
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expected to avert and find similar numbers of cases over the

medium term. Thus, a screening strategy that is twice as expensive

per round as another, so that it could only be used half as often for

the same price, would have to be twice as efficient per round to

achieve the same effect. A rule of thumb then, is to prefer the

screening strategy with the lower cost per percentage point of

round detection efficiency achieved. Practical limitations on round

frequency may still favour high-efficiency, high-cost strategies

when cheaper, less efficient alternatives could not be used

frequently enough in practice to achieve a given effect.

TB has a different natural history, characteristic duration and

clinical presentation depending on whether the individual is

infected with HIV. There is therefore no reason to expect that the

typical detection probabilities should not differ by HIV-status.

Considering different case-finding efficiencies by HIV-status

allows comparison of the impact, in terms of cases averted, of

finding HIV-infected or HIV-uninfected TB cases. Reflecting the

shorter duration and lower infectiousness of TB in HIV-infected

individuals assumed in the model, the impact is far greater for each

HIV-negative TB case found. This implies that we cannot rely on

case-finding among HIV-infected individuals for the purposes of

TB control at a population level. But this is not to say that finding

TB among HIV-infected individuals is unimportant, or does not

deserve particular attention. TB is more likely to be lethal in those

with an HIV infection [21,27], and their shorter duration as active

cases means that they are more likely to fall into the gaps between

rounds and escape detection. This means we should not rely on

PACF to find those likely to die of HIV-related TB, but need more

continuous and focused monitoring among those living with HIV

infection. Our remarks on cost-effectiveness are necessarily

simplistic at this level of generality; we aim rather at highlighting

factors likely to be important and indicating mechanisms through

which they act. A full cost-effectiveness analysis in a specific setting

would allow even-handed inclusion of the benefits of deaths-

averted from earlier diagnosis of HIV-infected TB cases, and

infections averted from early removal of HIV-uninfected TB cases.

The former would favour more frequent rounds, whereas the latter

plays off against the discount rate to determine optimal frequency.

We have introduced a model of active case-finding for TB (in

the presence of HIV) that is parametrized by a few, directly

observed quantities, is conceptually transparent and explicit in its

assumptions, and is simple enough to clarify some of the

relationships between quantities of interest. As with all models,

simplification entails limitations. The model is parametrized by

specifying various key quantities at baseline, such as the proportion

of disease that is due to recent infection, the incidence, and the

routine case detection rate. As these are input parameters, they

can be varied arbitrarily and independently in the model. In

reality, one would not expect these baseline quantities to be

independent, meaning that some combinations of parameter

values would be unlikely to occur. For example, one would expect

the proportion of incidence due to recent infection to correlate

positively with burden in real populations [23], and possibly the

case detection rate to correlate negatively with burden. This last

Figure 5. Approximate regions with fewer cases in total over the 10 years of the intervention. The red, vertically hatched regions are the
critical initial case detection rates for HIV-infected TB, above which fewer HIV-infected TB cases are found by the combination of routine and active
routes over 10 years. The green, horizontally hatched regions are the critical initial case detection rates for HIV-uninfected TB, above which fewer HIV-
uninfected TB cases are found by the combination of routine and active routes over 10 years. The grey, diagonally hatched region indicates fewer
total cases regardless of HIV-status. The default parameters of Table 1 are used but with PR0~70%. The HIV prevalence in incident TB affects the
slope of the diagonal line, but the main factor that changes this picture is the initial proportion recent: results for PR0~50% and PR0~40% are
indicated by dashed and dotted lines, respectively.
doi:10.1371/journal.pone.0029130.g005
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correlation would limit the situations in which ACF could be

expected to save money, but would influence a more comprehen-

sive measure of cost-effect far less. We have also not considered

here the possibility that the cost per round may have some

dependence on disease burden, if more symptomatic individuals

require more testing.

Other features of the natural history of TB were considered too

uncertain to incorporate. Changes in infectiousness through time,

and the extent to which infectiousness is prodromal, are important in

determining the difficulty of control [28]. When considering ACF,

a further distinction is required between clinical signs that may

be detected by a case finding round, and symptoms that cause a

patient to present at a clinic and become detected passively.

The relationship between these is poorly understood, particularly

through time, but data suggest that ACF appears to detect cases with

less severe symptoms [29,30]. The exact importance of this for TB

transmission depends to what extent this represents early detection

of cases who would later become more infectious, and remain so for

some time before detection; and to what extent it represents

detecting cases of permanently lower severity, and whether their

presumably lower infectiousness off-sets their longer duration

undetected. Another respect in which cases found actively may

differ is in initial default rate: in South Africa, Den Boon et al. [30]

observed higher initial default rates among cases found actively. The

implications of this for mortality and transmission again depend on

these aspects of TB natural history and patient behaviour.

Individuals are likely to be heterogeneous in their willingness to

present for detection by ACF efforts, and may exhibit reducing

willingness to participate in frequently repeated screening. If only a

certain fraction of the population are accessible to ACF, then its

impact in terms of cases averted will reduce by this fraction. The

impact of ACF will be diminished further if those who do not

present to ACF are the same individuals who do not present to

routine services, and are thus responsible for a significant fraction

of transmission.

Lastly, in order to avoid interactions between the dynamics of the

epidemic and the effects of round timing, we considered intervening

at equilibrium. The details, but not outline, of our conclusions are

likely to be affected by the natural trend in TB incidence, and by

changes in HIV prevalence and incidence risk ratio for TB given

HIV-infection, which are all evolving. We would expect PACF in

scenarios with an initial upward trend in TB incidence, ceteris paribus,

to result in higher numbers of cases averted, and vice versa; though

this need not be a strong effect if dominated by HIV-related TB.

A number of our assumptions could be classed as pessimistic,

from the point of view of cost-efficacy. First, we have implicitly

assumed that PACF, despite affecting force of infection, does not

influence the prevalence of latent infection. In reality, the reduced

risk of infection should reduce the latent prevalence and therefore

yield more successful reductions in incidence. Secondly, our

measure of the cost of disease only reflects the cost to the health

service of treatment (if detected), and does not include any other

negative externalities to society. Finally, it is also probable that

regular screening rounds serve to raise community awareness of

TB and its symptoms, and hence increase the chance of cases

seeking care between rounds.

In summary, we have argued that if the burden of TB is high

enough, ACF will be cost-effective. Indeed, in settings where the

routine case detection rate is high as well as the TB incidence,

ACF has the potential to be cost saving by reducing the total TB

Figure 6. Approximate regions where intervention is cost-saving over 10 years. If the reduction in case load over the intervention is large
enough to mean the treatments save (more than) pay for the case-finding rounds then the intervention saves the health system money. This happens for
a high enough initial burden, and for a low enough cost per round relative to the cost of treatment (hatched regions). We have factored out efficiency to
allow for approximate comparison between screening strategies of different efficiency. The HIV prevalence in incident TB, h, makes some difference; but
the most influential factors in determining these regions are the initial case detection rates (CDR0) and the initial proportion recent (PR0).
doi:10.1371/journal.pone.0029130.g006
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Figure 8. Contours of cases averted for different round efficiencies for HIV-infected and HIV-uninfected TB cases. These contours are
the cases averted (as a percentage of the largest number averted) by yearly rounds with different efficiencies at finding HIV-infected and HIV-
uninfected TB. Other parameters are the defaults of Table 1.
doi:10.1371/journal.pone.0029130.g008

Figure 7. Proportion of cases averted for different round efficiencies and cases found at different periods. Panel A shows the total
proportion of cases over a 10 year time frame averted by yearly case-finding rounds of different efficiency. Parameters are the default of Table 1, but with
different initial proportions recent PR0. Panel B compares for rounds of different efficiency, �, the influence of round frequency on the number of HIV-
infected and HIV-uninfected TB cases found by the active route (normalized by the number of cases actively found at the shortest round period considered).
doi:10.1371/journal.pone.0029130.g007
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case load over a 10 year period. Conversely, in settings with poorly

functioning health services, ACF is likely to increase the

cumulative case load over the short and medium term, and thus

care must be taken to ensure that treatment capacity is

strengthened where necessary to meet demand. Finding more

cases in total in a high burden settings with poor case detection

does not mean that ACF will be less cost-effective there however: if

the extra cases are treated, this extra cost will be buying them

more positive health outcomes.

Our work repeatedly highlights the importance of the

proportion of TB incidence due to recent infection as a key

determinant of ACF effectiveness. If this proportion is less than

about 40%, the impact of ACF is attenuated, and it is becomes

very unlikely that enough cases will be averted over a 10 year

period to reduce the cumulative case load. Whereas, if the

majority of TB incidence in a community is due to recent

infection, as seems to be the case where TB incidence is highest,

repeated rounds of ACF have the capacity to avert a substantial

proportion of TB cases.
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