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Abstract

Urogenital schistosomiasis is a tropical disease infecting more than 100 million people in sub-Saharan Africa. Individuals in
endemic areas endure repeated infections with long-lived schistosome worms, and also encounter larval and egg stages of
the life cycle. Protective immunity against infection develops slowly with age. Distinctive age-related patterns of infection
and specific antibody responses are seen in endemic areas, including an infection ‘peak shift’ and a switch in the antibody
types produced. Deterministic models describing changing levels of infection and antibody with age in homogeneously
exposed populations were developed to identify the key mechanisms underlying the antibody switch, and to test two
theories for the slow development of protective immunity: that (i) exposure to dying (long-lived) worms, or (ii) experience of
a threshold level of antigen, is necessary to stimulate protective antibody. Different model structures were explored,
including alternative stages of the life cycle as the main antigenic source and the principal target of protective antibody,
different worm survival distributions, antigen thresholds and immune cross-regulation. Models were identified which could
reproduce patterns of infection and antibody consistent with field data. Models with dying worms as the main source of
protective antigen could reproduce all of these patterns, but so could some models with other continually-encountered life
stages acting as the principal antigen source. An antigen threshold enhanced the ability of the model to replicate these
patterns, but was not essential for it to do so. Models including either non-exponential worm survival or cross-regulation
were more likely to be able to reproduce field patterns, but neither of these was absolutely required. The combination of life
cycle stage stimulating, and targeted by, antibody was found to be critical in determining whether models could
successfully reproduce patterns in the data, and a number of combinations were excluded as being inconsistent with field
data.
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Introduction

Urogenital schistosomiasis, which is caused by the blood fluke

Schistosoma haematobium, is a tropical disease of great public health

importance, infecting more than 100 million people in sub-

Saharan Africa [1,2]. S. haematobium has a complex lifecycle, which

includes free-living stages in the environment and asexual

reproduction in intermediate freshwater snail hosts, as well as

maturation and sexual reproduction within mammalian hosts

[1,3]. Humans acquire infection through contact with water

bodies containing the infective stages (cercariae). Humans are

exposed to the larval (cercariae and schistosomulae), adult worm

and egg stages of the schistosome life cycle. The number of adult

worms infecting a person cannot be measured directly, but is

estimated from egg output in urine [4], and the average life span of

the adult worm is estimated to be around 3–10 years [5,6].

Infection intensities in populations with endemic urogenital

schistosomiasis consistently follow a ‘peaked’ (or convex) curve

with age, with infection levels peaking between the ages of 6–20

years old, and lower infection intensities found in older adults

[7,8,9]. In areas with higher overall levels of infection, the peak in

infection intensity tends to be higher and occurs at an earlier age

than in areas with lower infection levels. This pattern is described

as a peak shift [10]. Previous modelling work has demonstrated

that the peak shift is consistent with the development of acquired

protective immunity, as a function of cumulative exposure to

schistosome antigens [11]. Age-related changes in the nature of

the immune response generated against schistosomes have also

been reported. Two studies in Zimbabwe have identified different

groups of schistosome-specific antibody sub-classes (isotypes)

which display contrasting age profiles. One group of isotypes

was shown to rise with host age while a second group declined in

older individuals [12,13]. Both studies reported negative

correlations between antibodies from the two different groups.

The ‘switch’ between the different antibody responses occurred

after the peak in infection intensity for both populations. Some of

the isotypes which increased with age in these populations have

been associated with protection against re-infection in other

studies, particularly IgE specific for adult worm antigen

preparations [14], but these protective responses tend to develop
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slowly with age, despite frequent exposure to infection from an

early age [15].

In this study, two hypotheses were explored for the slow

development of protective immunity. The first hypothesis was that

dying worms are the main source of protective antigen. It has been

observed that treatment with the antihelminthic drug praziquan-

tel, which kills adult worms, induces an antibody switch in young

children similar to the switch seen occurring naturally in older

children [16]. It is hypothesised that the long life span of schisto-

some worms delays exposure to protective antigens, delaying the

development of natural protective immunity [17]. Second, it has

been proposed that exposure to a certain threshold level of antigen

is needed before protective responses can be stimulated [17,18].

This is supported by the finding that, in a S. haematobium endemic

area, older or more heavily infected groups produced detectable

antibody against a wider range of schistosome antigens [18].

Mathematical models of schistosome and other helminth

infections have previously been used to identify mechanisms

capable of explaining the peaked age-intensity curve and the peak

shift [11,19,20]. Such patterns can often be reproduced by several

different models which imply different underlying mechanisms

[21,22]. Pattern-oriented modelling (POM), an approach developed

in ecological modelling, can be used to identify models which

simultaneously replicate multiple different patterns observed in real

systems at different levels or scales [23]. This approach enables

quantitative or qualitative patterns to be used, and the requirement

for models to replicate multiple different patterns can greatly

increase their discriminatory power. POM has been used in

ecological modelling to distinguish between possible model

structures, for example to choose between different models for

tree-thinning which made different assumptions about the distribu-

tion of initial plant size and growth rates, and were compared for

their ability to give realistic levels of plant size inequality and canopy

diameter, as well as reproducing the well-established relationship

between plant density and plant size [24]. POM has also been used

in ecological modelling to reduce parameter uncertainty, for

example in models of amphibian population dynamics, where there

was greater confidence in the model structure, but certain key

parameters (juvenile and adult toad survival) were unknown [25]. A

similar approach has also been used to infer pre-breeding survival

rates for woodpeckers [26].

This study used a pattern-oriented modelling approach to

determine whether previously proposed epidemiological and

immunological mechanisms were able to explain all of the key

patterns in infection and antibody observed in field studies of S.

haematobium. Previous modelling work has generally focussed upon

reproducing patterns of infection intensity rather than antibody

responses, so it was of particular interest whether models could

reproduce antibody patterns, particularly the antibody switch.

Robust patterns in infection and antibody data for S. haematobium

endemic populations were identified and quantified to draw up

model criteria. Deterministic models were used which described

changing levels of infection and two separate antibody responses

with age in a homogeneously exposed population. Whilst such

models do not capture all of the complexity and variability in this

system, they should be sufficient to capture the patterns of interest:

similar models have been used previously to identify factors

leading to the peaked age-intensity curve and the peak shift [10],

and are expected to be able to identify the mechanisms underlying

the antibody switch. The models were used to test whether one or

more of the following factors were necessary to reproduce these

patterns: dying worms as the principal antigen (versus other life

cycle stages), non-exponential worm survival distribution (expected

to affect the timing of exposure to dying worms), an antigen

threshold, or cross-regulation between the two antibody responses.

Each stage of the schistosome life cycle was considered as a

potential source for protective antigen, since different immune

responses have been shown to be stimulated by each of the

different stages, which have different life spans and distinct

patterns of exposure with age. In animal models, cercariae

stimulate local and systemic inflammatory responses [27], whilst

eggs are potent inducers of Th2 responses [28]. Despite their

relatively long life span, live adult worms are associated with less

potent immune stimulation, which may be associated with reduced

surface antigen expression and adsorption of host molecules

[29,30]. Cross-regulation of antibody responses was also consid-

ered specifically to see whether this was necessary to generate the

antibody ‘switch’ pattern, in line with the antagonism known to

exist between different cytokine responses, which are involved in

determining which antibody isotypes are made [31,32]. It was

found that each of these factors enhanced the ability of the models

to reproduce the required patterns, but none of them were

necessary for the models to be able to reproduce patterns of

infection and antibody consistent with field data. The combination

of the stage of the schistosome life cycle which stimulated each

antibody response, and the stage of the life cycle targeted by the

antibodies, was found to be informative.

Methods

Drawing up model criteria
Key patterns of infection and antibody seen in field data were

characterized and quantified where possible, and used to draw up

criteria which must all be met by a successful model. The following

patterns were included: a peaked age intensity curve with control

of infection in adults, a peak shift, reasonable mean worm life span

and an antibody switch, occurring after the age of peak infection

intensity.

Previous models have qualitatively reproduced the peaked age-

intensity curve [11,21], but here we wished to do this within limits

drawn from field data. Age-intensity curves from a variety of

Author Summary

Urogenital schistosomiasis is a tropical infectious disease
caused by schistosome blood flukes, infecting more than
100 million people in sub-Saharan Africa. Protective
immunity develops against schistosomes, but takes many
years to do so, with children acquiring multiple infections
with long-lived parasites. It is important to understand
how this protection develops, both to aid vaccine
development, and to understand the long-term implica-
tions of other control strategies which may reduce or alter
natural exposure to the parasite. We used mathematical
models to investigate possible explanations for this slow
development of protection, including the possibility that
when worms die (after surviving in the host for 3–10 years)
they release large quantities of the molecules needed to
stimulate a protective immune response, or the idea that
an individual’s infection burden needs to exceed a
threshold number of parasites before they mount a
protective immune response. We found that these
mechanisms were consistent with patterns of levels of
infection and antibody measured in populations with
schistosome infection, but that neither was essential to
explain these patterns. We found that the combination of
the stage of the parasite life cycle which stimulated
protective immunity, and the life cycle stage targeted by
this immunity, was critical.
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endemic settings were used to determine limits for two criteria: the

age range over which the peak in infection intensity occurs for S.

haematobium, and the extent to which infection is reduced in adults

relative to the peak level seen. The peak shift, which has previously

been demonstrated for infection curves for S. mansoni in Kenya

[21] and S. haematobium in Zimbabwe [33], and has also been

reproduced by previous models [11,21], was used as a qualitative

criterion. Considerable variability in field data makes it difficult to

put formal quantitative bounds on the peak shift, and also means

that such a shift may not always be seen between any two

particular study sites (although it is a strong pattern across multiple

populations). The model criterion requires a shift to consistently be

seen between parameter sets which differ only in their transmission

rate, since the deterministic models used here do not incorporate

many of the sources of variability which are likely to obscure this

relationship in the data.

Previous modelling work has shown that in models with

immune responses which kill adult worms, short worm life spans

are predicted in older infected individuals [20]. In order to avoid

accepting models which predict an unrealistically short worm life

span, a criterion determining the minimum average worm life

span of worms in the oldest adults in the population was set (the

oldest individuals were used as worm lifespan is most likely to have

settled at an equilibrium level by this age). Studies which estimate

the worm life span for S. haematobium and S. mansoni in populations

in which transmission has been stopped give life span estimates of

3–10 years [6,34,35]. A conservative cut-off of 1 year was used in

the criterion to allow for uncertainties in the true duration of worm

life span (bearing in mind that field estimates came from people of

a variety of ages, in whom immune pressure may have been

waning as a result of transmission having stopped).

The antibody switch has previously been characterised for

schistosome-specific IgA and IgG1 responses in two neighbouring

populations [16]. Here, we further examined data from these and

other populations for which age-related S. haematobium-specific

antibody data was available to determine how widespread the

antibody switch was across different antibody isotypes and

different settings, and to identify a criterion to test for the switch.

Since initial model simulations indicated that cross-regulation

could lead to an antibody switch being predicted in very young

individuals, the age of the antibody switch relative to the age of

peak infection intensity was also examined in these studies, and an

additional criterion restricting the age of the antibody switch was

drawn up.

Data sets and analysis for the criteria. Previously

published data on S. haematobium infection intensity was taken

from (pre-treatment) baseline studies of six Zimbabwean popula-

tions from three different field studies: Valhalla and Kaswa were

both part of the Burma Valley study conducted in 1994 [12]; the

Mutoko-Rusike study was conducted in 2003 [36,37], and

Magaya, Chipinda and Chitate were all part of the Murehwa

study conducted in 2008/2009 [38]. Antibody data came from the

Burma Valley and Mutoko-Rusike studies. Infection and antibody

data were grouped into five age groups chosen to give roughly

equal numbers of individuals in each group for the Burma Valley

populations (age groups: #8, 9–10, 11–12, 13–23, 24–34 years

old). Arithmetic means were calculated for infection intensities in

each age group. The 24–34 year olds were used as the adult group

for comparison with peak infection levels. To test for an antibody

switch, significant changes in each antibody isotype with age were

assessed using a Kruskal Wallis test, with age as a categorical

variable, and correlations between antibody levels across the whole

population were calculated using a two-tailed Spearman’s rank

correlation coefficient (non- parametric methods were used since

the data are highly skewed). All tests used a significance cut-off

level of 1%. Statistical analyses were performed using SPSS

version 15. A survey of the wider literature was undertaken to

identify studies which reported infection intensity levels by age, to

help with the estimates for the age of peak infection intensity and

relationship between adult and peak infection levels. To be

included, studies had to measure infection intensities of endemic S.

haematobium, had to include both children and adult subjects

(over the age of 20), and had to give infection levels for at least four

different age groups. Data was taken from results tables where

given, otherwise it was extracted from graphs using the software

application Datathief III version 1.5. A similar search for studies

reporting S. haematobium-specific antibodies by age found only

one suitable publication [13].

Water contact data
Data on water contact for the Burma Valley area, which had

been collected by direct observation of water contact sites, was

taken from figure 1 in Chan et al. (2000) [39] using Datathief

software. A two-part linear function was fitted to this data by least

squares, using the solver function in Microsoft Excel 2003, with

the initial part of the function constrained to pass through (0,0).

Mathematical model
Age-related development of schistosome infection and antibody

responses were modelled using a set of differential equations, using

a similar framework to earlier models of helminth immunity

[11,20,40] and immune memory development [41,42]. Two

different structures for the immune response were explored: one

with only plasma cells and the other including both plasma cell

and memory B cell populations. Different stages of the worm life

cycle were allowed to provide the main antigenic stimulus for, and

different stages of the life cycle were assumed to be the principle

target of, each protective antibody response. The model with

plasma cells only is presented first, followed by the memory model

and the models including antigen thresholds. The equations are

given below, and the model is represented schematically in

figures 1–3. Parameters are defined, and parameter ranges given,

in table 1.

Plasma cell model. The plasma cell-only model (figure 1)

describes the development of infection and two antibody responses

(modelled as populations of plasma cells) with age in a

homogeneous population with endemic schistosome infection.

Each antibody response is stimulated by antigen from a single

stage of the schistosome life cycle, and each antibody response

targets a single life cycle stage in this model. It is assumed that

antibody levels are directly proportional to the size of their

respective plasma cell populations. This is reasonable, since

plasma cells are constitutive producers of antibody, and antibody

has a relatively short plasma half-life in humans, of the order of

days to weeks [43,44].

Infection rates are assumed to be the same for all individuals

within the population, and to be constant with time, but vary with

age as described by equation 1. The age-related contact rate (L) is

zero at birth, increases linearly with age up to age ac, when it

reaches its maximum level (Lm) and remains at this maximum level

for all subsequent ages. Worm burden (P ) is modelled using n

compartments (equation 2), shown schematically in figure 2. New

worms enter the first compartment at a rate L(a), which can be

reduced by anti-reinfection antibody responses as a decreasing

exponential function of the number of relevant plasma cells (A1 or

A2 or both), with relative strength hj (h1 or h2 as appropriate for the

1st or 2nd ( j th) antibody response) (equation 2). Worms move

between compartments at a constant rate nm, dying naturally when

Explaining Age-Profiles for Schistosome Antibodies
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they leave the final (nth) compartment, giving a natural death rate

nmPn(a) and an overall mean natural worm life span (in the absence

of immunity) of 1/m. Increased immune-induced worm death is

included as an additional per-worm death rate, directly propor-

tional to the number of plasma cells and scaled by a factor yj

(figure 2 and equation 2). This additional worm death rate applies

equally to all worm compartments (meaning that the ability of the

immune response to kill adult worms is not affected by worm age).

For exponentially distributed worm life span, a single worm

compartment is used (n = 1), using the equation for i = 1 (where i is

the compartment number) (equation 2). For an approximately

Gaussian distribution of worm life spans, nine worm compart-

ments are used (n = 9), with the first compartment described by the

first line of equation 2, for i = 1, and all other compartments

described by the second line (for 1,i#n). The number of eggs

measured in urine (E) is assumed to be directly proportional to

total worm burden (summed over all worm compartments), and

can be reduced by anti-fecundity antibody responses as a

decreasing exponential function of the number of plasma cells,

with relative strength gj (equation 3).

Figure 1. Schematic diagram of the plasma cell model. This shows the main state variables, worm burden (P) and two populations of plasma
cells (A1 and A2), with production of eggs (E). A single worm compartment (n = 1), corresponding to exponential worm survival, is shown for clarity.
Worms accumulate at an age-dependent rate L and die at a per-capita rate m. Egg output (E) is assumed to be directly proportional to current worm
burden unless anti-fecundity responses are operating. The first antibody response shown here (A1) receives its antigenic stimulus from the live worm
population, and the second (A2) is stimulated by dying worms, but each response could be stimulated by any one of cercariae, live worms, dying
worms or eggs. In the figure, the first antibody response (A1) is shown reducing re-infection, with relative strength h1, and the second antibody
response (A2) is reducing worm fecundity with relative strength g2, but each response could target any one of re-infection, worm death or fecundity
(immune-mediated worm death is shown in figure 2). The two plasma cell populations (A1 and A2) decay at a per-cell rate of c1 and c2 respectively.
Cross-regulation between the two responses (of strength r1 and r2) is shown using dashed lines. All parameters are defined in table 1 with parameter
values given.
doi:10.1371/journal.pcbi.1002237.g001

Figure 2. Schematic diagram of the multi-compartment worm model, used to alter the natural worm survival curve. The first three
and the final (nth) compartments are shown for a model with multiple worm compartments, with worms moving between these compartments at a
constant per-worm rate, nm, dying as they leave the final compartment. When either antibody response increases the rate at which worms die, worms
additionally leave each compartment at a rate (y1A1+y2A2), where A1 and A2 are the sizes of the two plasma cell populations and y1 and y2 give the
strength of immune-mediated worm killing for each antibody response. All parameters are defined in table 1 with parameter values given.
doi:10.1371/journal.pcbi.1002237.g002
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The antibody responses are modelled as two separate

compartments of plasma cells, A1 and A2 (equations 4, 5). Each

plasma cell population grows at a rate directly proportional to the

level of antigen (Gj) exposure (with the rate governed by parameter

kj). The antigen stimulating each cell population (Gj) comes from a

single stage of the schistosome life cycle (Sj): cercariae, live adult

worms, dying adult worms or eggs (equation 6). Each plasma cell

population decays at a constant per-cell rate cj. Cross-regulation

between the two different antibody responses is modelled as a

reduction in the production rate of each plasma cell population,

proportional to the level of antigen stimulating the other response.

This is scaled using a decreasing exponential function, with the

strength of cross-regulation governed by the parameter rj.

L að Þ~
Lm

a

ac

if avac,

Lm if a§ac:

8<
: ð1Þ

dPi að Þ=da~

L að Þexp {h1A1 að Þð Þexp {h2A2 að Þð Þ
{ nmzy1A1 að Þzy2A2 að Þð ÞPi að Þ

for i~1,

nmPi{1 að Þ{ nmzy1A1 að Þzy2A2 að Þð ÞPi að Þ for 1viƒn:

8<
: ð2Þ

E að Þ~
Xn

i~1

Pi að Þexp {g1A1 að Þð Þexp {g2A2 að Þð Þ ð3Þ

dA1 að Þ=da~k1G1 að Þexp {r1G2 að Þð Þ{c1A1 að Þ ð4Þ

dA2 að Þ=da~k2G2 að Þexp {r2G1 að Þð Þ{c2A2 að Þ ð5Þ

Figure 3. Schematic diagram of the memory model. This model has state variables for worm burden (P), two populations of memory cells (M1

and M2) and two corresponding populations of plasma cells (A1 and A2). Worms accumulate at an age-dependent rate L and die at a per-capita rate
m. Egg output (E) is assumed to be directly proportional to current worm burden unless anti-fecundity responses are operating. The first memory
response (with associated antibody) shown here (M1 and A1) receives its antigenic stimulus from the live worm population, and the second (M2 and
A2) is stimulated by dying worms, but each response could be stimulated by any one of cercariae, live worms, dying worms or eggs (with the same
antigen stimulating both memory cells and plasma cells for each response). Plasma cells are generated through activation of memory cells by
antigen, at a rate governed by the parameter dj. Protection is mediated by the plasma cell population, as in the plasma cell-only models. Cross-
regulation is shown using dashed lines - it is shown acting in one direction (reducing production of M2 and A2, with strength r2) for clarity, but may
also act to reduce production of M1 and A1. Cross-regulation between the two responses affects both memory and plasma cell production. All
parameters are defined in table 1, with parameter values given.
doi:10.1371/journal.pcbi.1002237.g003

Explaining Age-Profiles for Schistosome Antibodies

PLoS Computational Biology | www.ploscompbiol.org 5 October 2011 | Volume 7 | Issue 10 | e1002237



where c1§c2

Gj að Þ~

{L að Þ for Sj~cercarial antigen,Pn
i~1

Pi að Þ for Sj~live adult worm antigen,

nmPi að Þz
Pn
i~1

Pi að Þy1A1 að Þzy2A2 að Þð Þ for Sj~dying adult worm antigen,

E að Þ for Sj~egg antigen:

8>>>>>>><
>>>>>>>:

ð6Þ

Memory cell model. The memory models include memory

B cell populations as well as plasma cells (figure 3). The memory

cell populations are assumed to grow through antigen-dependent

activation of naive cells, at a rate directly proportional to antigen

exposure, with relative strength sj (equations 7,8). The antigenic

source comes from a single life cycle stage (equation 6), and the

same stage stimulates the production of both memory cells and

plasma cells for each antibody response. A density dependent

function with strength KM is used to restrict memory cell

population growth. The memory cell populations each decay at

a constant per cell rate vj. In the memory models, the plasma cell

populations expand through antigen-dependent activation of their

respective memory cell populations, governed by the parameter dj,

and decay at a constant per-cell rate, cj (equations 9,10). The

effects of the immune response upon the schistosome life stages are

mediated by the plasma cells, with no direct effect of memory cells.

The infection processes and the impact of antibody upon the

parasite life cycle stages are identical to those in the plasma cell-

only model (equations 1,2,3,6). Cross-regulation affects the rate of

production of both memory and plasma cell populations in these

models (with relative strength rj).

dM1 að Þ=da~s1G1 að Þexp {r1G2 að Þð Þ 1{M1 að Þ
KM

{v1A1 að Þ ð7Þ

dM2 að Þ=da~s2G2 að Þexp {r2G1 að Þð Þ 1{M2 að Þ
KM

{v2A2 að Þ ð8Þ

where v1§v2

dA1 að Þ=da~d1G1M1 að Þexp {r1G2 að Þð Þ{c1A1 að Þ ð9Þ

dA2 að Þ=da~d2G2M2 að Þexp {r2G1 að Þð Þ{c2A2 að Þ ð10Þ

Table 1. Parameters used in the models.

Parameter Meaning Values used Units Source/rationale

Lm Maximum rate of infection 12.5, 25, 50, 100, 200 Worms year21 person21 [39]

ac Age above which contact rate stays constant 7.8 Years of age Fit to data from [39]; see figure 4

n Number of worm compartments in model 1, 9 Compartments n = 1/n = 9 for exponential/approximately
Gaussian distribution of worm survival
respectively

1/m Natural mean worm life span 3, 6.5, 10 Years [5,6]

kj Rate of production of plasma cells in
plasma cell model

1 Cells year21 unit antigen21 Variation accounted for in varying
immune strength

sj Rate of production of memory B cells
in memory model

1 Cells year21 unit antigen21 Variation accounted for in varying
immune strength

dj Rate of production of plasma cells from
antigen-driven memory cell activation
in memory model

1 Plasma cell year21 memory
cell21 unit antigen21

Variation accounted for in varying
immune strength

Km Maximum size of memory population 1000 Cells Set to limit memory cell growth rate

cj Rate of loss of plasma cells (all models) 0.008, 0.08, 0.8, 8, 80 Cells year21 cell21 [50,53]

vj Rate of loss of memory B cells 0.008, 0.08, 0.8, 8, 80 Cells year21 cell21 [53,59]

hj Strength of protection against
re-infection

0.00025, 0.001, 0.004,
0.016, 0.064, 0.256, 1.024

Cell21 Broad exploratory range

yj Strength of immune-mediated
worm killing

0.00025, 0.001, 0.004,
0.016, 0.064, 0.256, 1.024

Cell21 Broad exploratory range

gj Strength of anti-fecundity response 0.00025, 0.001, 0.004,
0.016, 0.064, 0.256, 1.024

Cell21 Broad exploratory range

rj Strength of cross-regulation 0.01, 0.1, 1 Unit antigen21 Set to give significant effect on
immune development

b Rate of production of ‘cumulative’
response (threshold model)

1 Arbitrary units year21 unit
antigen21

Arbitrary constant

T Threshold for cumulative antigen
exposure

25, 250 Antigen units Set to give significant effect on
age-intensity curve

Parameter descriptions with all values used, units and sources from the literature where relevant. Antigen units = number of cercariae/live worms/dying worms/eggs as
appropriate. ‘Cell’ refers to units of the plasma or memory cell populations. Subscript j refers to values for the two different antibody responses (j = 1,2).
doi:10.1371/journal.pcbi.1002237.t001
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Antigen threshold. For models which include an antigen

threshold, a separate equation records cumulative exposure (C) to

one of the antigens (G2). Cumulative antigen exposure builds up at

a rate directly proportional to the level of antigen (with relative

strength b), and does not decay over time (equation 11). It is

assumed that this cumulative antigenic exposure has to exceed a

certain threshold level for one of the two immune responses to be

stimulated. Preliminary analyses showed that an antigenic

threshold can delay the development of an antibody response.

Antibody responses which show an age-related ‘switch’ only have a

delay in one antibody response, not both, and so an antigen

threshold is only applied to one of the responses in this analysis. As

different decay rates are used for the two responses (see ‘Model

Analysis’ section) the threshold is applied to the response with less

rapid decay (A2 in this analysis), which is likely to develop later

than the more rapidly decaying response [45]. For the plasma cell-

only model, A2 is not produced if the level of cumulative exposure

is below the set threshold. Once this threshold has been exceeded,

the plasma cell population grows at a rate proportional to current

antigen level (equation 12). At all times, these plasma cells decay at

a constant per cell rate c2. The other antibody response, A1, is not

affected by the antigen threshold, and its production and decay is

the same as in the earlier model (equation 4).

C að Þ~bG2 að Þ ð11Þ

dA2 að Þ=da~
{c2A2 að Þ if C að ÞvT ,

k2G2 að Þ{c2A2 að Þ if C að Þ§T :

�
ð12Þ

where T is a constant.

For the memory model, cumulative exposure is calculated in the

same way (equation 11), but the threshold now applies to the more

slowly decaying memory response (M2 in this analysis). M2 is only

made when the level of cumulative exposure to the relevant

antigen exceeds the threshold, and is then made at a rate

proportional to current antigen levels (equation 13), at all times

decaying at a rate v2. The equations describing the dynamics of

the other memory response and the two antibody responses are the

same as previously (equations 8, 9, 10).

dM2 að Þ=da~
{v2A2 að Þ if C að ÞvT ,

s2G2
1{M2 að Þ

KM
{v2A2 að Þ if C að Þ§T :

(
ð13Þ

where T is a constant.

Model analysis. For both plasma cell-only and memory

models, every possible pair wise combination of antigen stimulus

(cercariae, live worms, dying worms or eggs) and antibody target

(reduced re-infection, increased worm death or reduced fecundity)

was used in turn for each of the two antibody responses in a grid-

search of the parameter space. All models were run using two

different worm survival curves, with worm life spans following

exponential or approximately Gaussian distributions (using n = 1

or n = 9 respectively). Cross-regulation between the two antibody

responses was included, operating in one or two directions. An

antigen threshold was included in separate models (without cross-

regulation). The average worm life span (L), taking into account

both natural and immune-mediated death, was calculated using

equation 14.

L að Þ~ 1

nmzy1A1 að Þzy2A2 að Þ

� �Xn

i~1

nm

nmzy1A1 að Þzy2A2 að Þ

� �i{1

ð14Þ

Models were run for values of age from 0 to 34 years old (in line

with field data showing stable contact rates in adults up to the age

of 34; figure 4). The parameters determining infection rate,

antibody strength, antibody and memory decay rates, average

worm life span, strength of cross-regulation and threshold level

were each varied across plausible ranges, mostly in geometric

series (values used are given in table 1), and all possible

combinations of these parameters were used in turn. For the

plasma cell models, the combinations of plasma cell decay rates

used were restricted to those in which A1 decayed at the same or a

faster rate than A2 (c1$c2). For the memory models, it was

assumed that both plasma cell populations decayed very rapidly

(c1 = c 2 = 80 year21), with different combinations of memory cell

decay rates, again restricted to combinations where M1 decayed at

the same or a faster rate than M2 (v1$v2). For each model,

parameter combinations were identified which allowed the model

to simultaneously meet all of the criteria identified from field data

(criteria are detailed in table 2) over a two-fold change in the

infection rate (Lm).

The differential equations were solved numerically using a

variable time step fifth-order embedded Runge-Kutta algorithm,

adapted from the rkqs routine in Press et al. 2002 [46]. This

routine allows both a fourth-order and a fifth-order approximation

to be made at each time step, and the difference between the two

estimates is used to estimate the truncation error of the fourth-

order solution, which is used to determine the size of the next time

step taken. Cash-Karp parameters were used for the constants,

recommended for their efficiency and error properties [46]. The

numerical integration algorithm was implemented in C++.

Results

Model criteria
Age infection profiles for six Zimbabwean communities with

endemic S. haematobium infection are shown in figure 5. The key

parameters of interest (age and level of peak infection, and ratio

between adult and peak infection levels) for these populations are

given in table 3. Note that data was only included for individuals

up to the age of 34, because data on water contact for the Burma

Valley populations showed that this remained fairly stable for

adults up to this age, although it declined at older ages (figure 4;

[39]). Table 3 also includes information on the infection peak and

its relationship to infection in adults for a number of studies of

endemic schistosomiasis taken from the literature, which give

mean infection intensities by age group, and cover a sufficiently

wide age range to capture both the peak and adult levels. The age

group in which peak infection occurred ranged between 5–8 for

Valhalla and 16–20 [9] or 13–23 for both Chipinda and Chitate.

Since 5–8 years was the youngest age group used in the Valhalla

analysis, different age groupings were also used to show that

infection peaks in the upper end of this age group (data not

shown), so that this age range truly reflects where the peak occurs.

The median values for these minimum/maximum age groups

were used to give an overall estimated range for the age of the peak

of 6–18 years old (cf. 12–25 years old for S. mansoni [21]). The

criterion used for the models uses a range of 6–20 years old, to

allow for the fact that wide age ranges were used when grouping

adults in these studies (owing to smaller sample sizes), reducing

confidence in the actual maximum age of the peak. Adult age
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groups for comparison with the peak were chosen to be as close to

the range used in the analysis in figure 5 as possible. Results from

studies giving means of log-transformed egg counts were back-

transformed to give geometric means. It is difficult to compare

these studies or use all of the estimates for the ratio between adult

and peak levels of infection since the different studies use a range

of types of means (arithmetic or geometric mean, including the

whole population or only those with infection), which give very

different answers. From the studies which use arithmetic means for

S. haematobium infections, the ratio of final:peak infection level is

0.5–26%. Using different age groupings for the populations shown

in figure 5 changed the ratio of final:peak infection level

substantially for some of the populations (Valhalla - ratio up to

34%, Chipinda - ratio up to 30%), so the range used in the model

criterion was 0–40% to allow for this instability at the top end of

the range.

Testing for significant negative correlations between different

antibody isotypes across the full population age range (using an age

range of 0–34 as in the previous analyses) was able to discriminate

well the dichotomous antibody relationship indicative of an

antibody switch. In the Burma Valley populations, these negative

correlations all occurred between isotypes which changed

significantly with age in opposite directions - i.e. one of the pair

increased with age and the other decreased (as assessed by Kruskal

Wallis test, using age as a categorical variable in the five age

groups used for the infection profiles). In Kaswa, significant

negative correlations were found between the IgG4 and IgA anti-

SEA responses, IgG1 and IgA anti-WWH responses and the IgM

and IgG1 anti-WWH responses as well as the SEA IgA and IgG1

antibodies (figure 6A). In Valhalla, all of these correlations were

also seen, and additionally a negative correlation between IgA and

IgM SEA antibodies (figure 6B). For the negative correlations

Figure 4. Age-related water contact frequency. Data is for the Burma Valley region in Zimbabwe, with data points extracted from figure 1 in
Chan et al. 2000 [39]. The two-part linear function was fitted using least squares.
doi:10.1371/journal.pcbi.1002237.g004

Table 2. Criteria used to judge whether model outputs replicate patterns seen in field data.

Pattern seen in field data Model criterion Justification

Peaked age intensity curve Maximum level of infection occurs between age 6–20 years old [6,7,8,12,38,60,61]

Reduction of infection level in adults Infection level at age 34,40% of peak level [7,12,38,60]

Peak shift Peak infection intensity is lower and occurs at a later age when infection rate
is halved (except for lowest value of Lm, where infection intensity is higher and
occurs at an earlier age when infection rate is doubled)

[10]

Worm life span Mean worm life span .1 year in 34 year olds [5,6]

Antibody switch The two antibody responses never simultaneously exceed 30% of their
respective maximum levels

[12,13,16]

Antibody switch after age of infection peak Initial antibody response falls below 30% of its maximum level after the
age at which maximum infection level recorded

[12,13]

All criteria must be met over a two-fold change in maximum infection rate (Lm) for any parameter set to be deemed successful.
doi:10.1371/journal.pcbi.1002237.t002
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which were significant at the 1% level, the correlation coefficient

varied between 20.662 and 20.247. In Mutoko-Rusike, there were

no significant negative correlations between different isotypes

directed at the same antigen preparation (for cercarial, egg or adult

worm antigen preparations). Most antibodies were significantly

positively correlated with each other (data not shown). This may

have been because relatively few adults were included in this

dataset. In a further published study [13], for which the raw data

were not available, negative correlations were also reported between

antibody responses which have opposite trends with age: SEA IgE

and SEA IgG4, SEA IgE and SEA IgM, and WWH IgA and WWH

IgM [13], strongly suggesting similar antibody switch patterns.

Because testing for a correlation was not suitable for detecting

an antibody switch in the deterministic models used here, an

Figure 5. Age-intensity graphs for six Zimbabwean populations with endemic S. haematobium. Grey bars represent arithmetic mean egg
counts per 10 ml urine for the five age-groups shown, error bars represent standard error of the mean. The numbers at the top of each graph show
the sample size for that age group.
doi:10.1371/journal.pcbi.1002237.g005
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alternative metric was used to construct the antibody switch

criterion: that the two antibody responses never simultaneously

exceed n% of their respective maximum levels. A suitable level for

n was determined by selecting 10 parameter sets which passed the

criterion only at each of the following cut-offs: 40%, 30%, 20%,

10%, 5%, and running a stochastic individual-based model based

upon the same model framework to check the correlation across

different ages. While those which passed at 5% or 10% always

gave a highly significant negative correlation in the stochastic

version of the model, those which passed at 20% or 30%

occasionally did so as well, and so a conservative threshold of 30%

was chosen. For all of the antibody switches detected in the

datasets, the antibody switch occurred after the age of infection

intensity and so this was used as an additional criterion. The final

set of model criteria is given in table 2.

Model results
The combination of both the parasite life cycle stage providing

the main antigenic stimulus for each antibody response, and the

stage being targeted by the antibody responses (‘antigen:target

combination’), was critical in determining whether or not the

models were able to reproduce all of the patterns identified from

field data. For this reason, results are presented and analysed by

antigen:target combination within each model structure. For each

model structure (described in the subsections below), the main

outputs of interest were the number and consistent features of

antigen:target combinations for which all of the model criteria

could ever be met, and the proportion of total parameter space

explored for which all of the criteria were met. Note that the

number of antigen:target combinations meeting the criteria for

each model structure should not be taken as an indication of how

‘good’ each model is. The proportion of parameter space explored

for which all criteria were met gives some indication of how well

each model agrees the data (although this should be interpreted

with caution – see Discussion section). Proportions rather than

absolute numbers were used because different numbers of para-

meter sets were explored for each model.

Plasma cell models without cross-regulation or

thresholds. Figure 7 shows results for the plasma cell-only

models without cross-regulation or antigen thresholds. For each

of the possible antigen:target combinations of the two antibody

responses, the proportion of parameter sets tested over which

models were able to simultaneously reproduce all of the required

patterns is shown. Results are shown separately for models with

exponentially distributed worm life span (n = 1; figure 7A), and

with approximately Gaussian-distributed worm life span (n = 9;

figure 7B). In the absence of either cross-regulation or an antigen

threshold, only a small number of antigen:target combinations

were able to reproduce all of the patterns for any part of the

parameter space tested, 6/144 for n = 1 and 8/144 for n = 9.

These models all had one antibody response stimulated by

antigens from live or dying worms, which reduced worm

fecundity, with the other antibody response stimulated by egg

antigens. In all cases, the antibody response stimulated by eggs

peaked early and was replaced by the other, worm-stimulated,

response. Usually the egg-stimulated response decayed more

rapidly than the worm-stimulated response (models with egg-

stimulated A1 and worm-stimulated A2), but for some of the

models with Gaussian-distributed worm life span and dying worm

antigen, this was reversed (models with worm-stimulated A1 and

egg-stimulated A2). For the antigen:target combinations which

were ever able to reproduce the required field patterns, a very

restricted part of parameter space (#8.3% of combinations

tested) gave results which passed all of the criteria. Using

Table 3. Summary of age-intensity profiles for S. haematobium.

Reference Country Mean Peak age Peak level Adult age Adult level % Adult/Peak

Kaswa [12] Zimbabwe arithmetic 11–12 29.1 24–34 1.4 4.9

Valhalla [12] Zimbabwe arithmetic 5–8 30.2 24–34 3.3 10.9

Mutoko-Rusike [37] Zimbabwe arithmetic 11–12 53.7 24–34 2.3 4.3

Magaya [38] Zimbabwe arithmetic 11–12 75.3 24–34 0.4 0.5

Chipinda[38] Zimbabwe arithmetic 13–23 45.4 24–34 3.0 6.6

Chitate[38] Zimbabwe arithmetic 13–23 9.8 24–34 2.5 26.0

[60] Tanzania arithmetic 9 311.0 33–34 35.0 11.3

[7] Zimbabwe arithmetic 10–12 3405.6 21–40 428.0 12.6

[7] Zimbabwe arithmetic 7–9 853.4 21–40 20.7 2.4

[7] Zimbabwe arithmetic 10–12 922.3 21–40 55.9 6.1

[7] Zimbabwe arithmetic 7–9 688.3 21–40 18.2 2.6

[7] Zimbabwe arithmetic 10–12 373.7 21–40 43.0 11.5

[62] Kenya geometric (all) 11–15 25.2 31–40 3.8 15.0

[61] Nigeria geometric (all) 10–14 11.6 30–39 7.4 64.2

[6] Gambia geometric (all) 8–12 326.0 25–39 1.9 0.6

[6] Gambia geometric (all) 8–12 170.0 25–39 1.8 1.1

[8] Gambia geometric (all) 5–9 108.6 15+ 11.0 10.1

[9] Zimbabwe geometric (positives) 16–20 234.7 31–50 32.4 13.8

[9] Zimbabwe geometric (positives) 7–9 116.3 31–40 11.1 9.5

[13] Zimbabwe geometric (positives) 10–14 31.0 25–44 4.3 14.0

[63] Kenya geometric (unspecified) 12–15 34.9 adults 6.0 17.1

doi:10.1371/journal.pcbi.1002237.t003
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approximately Gaussian distributed worm survival (figure 7B)

increased the range of parameters for which it was possible to

pass all of the criteria when compared with exponentially distributed

worm survival (figure 7A). Across the whole parameter space tested,

only 0.25 parameter sets per 1000 tested were able to meet all of the

criteria for models with exponentially distributed worm survival,

compared with 1.5 per 1000 tested for approximately Gaussian

distributed worm survival.

Memory models without cross-regulation or thresholds.

Figure 8 shows the same results for memory models without cross-

regulation or an antigen threshold. As in the plasma cell-only

models, a small number of antigen:target combinations were able to

reproduce all of the field patterns (11/144 for both n = 1 and n = 9).

Most of these, like the plasma cell-only models, had one fecundity-

reducing worm-induced antibody response while the other response

was stimulated by egg antigen. A small number of models had a

different combination of antigens and targets, with one response

stimulated by antigens from dying worms, which reduced worm

survival, and the other stimulated by cercarial antigens and reducing

reinfection.

For the antigen:target combinations which were ever able to

reproduce the required field patterns, only a limited range of the

parameter space (#15% of combinations tested) gave results which

passed all of the criteria. As with the plasma cell models, using

approximately Gaussian distributed worm survival (figure 8B)

increased the range of parameters for which it was possible to pass

all of the criteria when compared with exponentially distributed

worm survival (figure 8A). Across the whole parameter space

tested, only 0.54 parameter sets per 1000 tested were able to meet

all of the criteria for models with exponentially distributed worm

survival, compared with 2.9 per 1000 tested for approximately

Gaussian distributed worm survival.

Plasma cell models with cross-regulation. Figure 9 shows

the impact of cross-regulation in plasma cell-only models, acting in

one or both directions. Inclusion of cross-regulation increased the

number of antigen:target combinations which could meet the

criteria. Across all of the cross-regulation models (figure 9), 57/144

(40%) of the different antigen:target combinations tested were ever

able to reproduce the infection and antibody patterns. For the

models that were able to reproduce these field patterns, one of the

antibody responses always fell into one of two broad groupings of

antigen:target combinations: (i) antigen cercariae/live worms/

dying worms, target fecundity; or (ii) antigen cercariae/dying

worms, target re-infection. Models with cross-regulation of both

responses enabled the greatest number of different antigen and

target combinations to reproduce field patterns at least once

(figure 9E,F). Models with approximately Gaussian-distributed

worm survival were able to replicate field patterns for a greater

number of antigen:target combinations than equivalent models

with exponential worm survival.

Models with cross-regulation of the more rapidly decaying

response (A1) were able to reproduce patterns seen in the field over

the greatest proportion of parameter space (figure 9C,D), with

0.69 parameter sets per 1000 tested able to meet all of the criteria

for models with exponentially distributed worm survival, and 3.6

per 1000 tested for approximately Gaussian distributed worm

survival. Similarly, for both models with cross-regulation of the

more slowly decaying response (A2) and models with cross-

regulation of both responses, using approximately Gaussian

distributed worm survival increased the range of parameters for

which it was possible to pass all of the criteria when compared with

exponentially distributed worm survival.

Memory models with cross-regulation. Similar overall

patterns were seen for memory models with cross-regulation

Figure 6. Changes in co-distributions between antibodies for
which a switch is seen, by age group, for (A) Kaswa and (B)
Valhalla. Grey circles: 0–14 year olds, black circles: 15–34 year olds.
doi:10.1371/journal.pcbi.1002237.g006
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(figure 10). Inclusion of cross-regulation increased the number of

antigen:target combinations which could meet the criteria. Across

all of the cross-regulation models tested, 87/144 (60%) of the

different antigen:target combinations tested were ever able to

reproduce all of the field patterns. For the models that were able to

reproduce these field patterns, one of the antibody responses

always fell into one of the three following broad groupings: (i)

antigen cercariae/live worms/dying worms, target fecundity; (ii)

antigen cercariae/dying worms, target re-infection; or (iii) antigen

dying worms; target worm survival (unique to the memory

models). Models with cross-regulation of both responses enabled

the greatest number of different antigen and target combinations

Figure 7. Relative success of plasma cell models without cross-regulation or thresholds in reproducing infection and antibody
profiles seen in field data. Individual entries give the number of parameter sets per 1000 tested for which all of the criteria (as laid out in table 2)
were met, for each different antigen:target combination for the two antibody responses. The total number of parameter combinations tested for
each antigen:target combination was 11,025. Antigens and targets for A2 (which has equal or slower decay than A1) are given along the x-axis of the
table, antigens and targets for A1 are given along the y-axis. Targets: c = cercariae (reduced re-infection); w = worms (increased worm death); e = eggs
(reduced fecundity). Red squares indicate that no parameter combinations were ever found for which all criteria were met; orange that fewer than 1
in 1000 parameter combinations were found that could meet all criteria, and yellow that more than 1 in 1000 parameter combinations were able to
meet all criteria. No cross-regulation or thresholds were included in these models. In panel (A) models used exponentially-distributed worm survival
(n = 1). In panel (B) models used approximately Gaussian-distributed worm survival (n = 9).
doi:10.1371/journal.pcbi.1002237.g007

Figure 8. Relative success of memory models without cross-regulation or thresholds in reproducing infection and antibody-profiles
seen in field data. See legend for figure 7. In this model, it is the memory cell populations for each antibody response which differ in their decay
rates – M2 has equal or slower decay than M1.
doi:10.1371/journal.pcbi.1002237.g008
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Figure 9. Relative success of plasma cell models with cross-regulation in reproducing infection and antibody profiles seen in field
data. See legend for figure 7. For panels (A) and (B), there is one-way down-regulation of the less rapidly decaying antibody response (A2) in panels
(C) and (D) there is one-way down-regulation of the more rapidly decaying antibody response (A1) and in panels (E) and (F) there is two-way cross-
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to reproduce field patterns at least once (figure 10E,F). Models

with approximately Gaussian-distributed worm survival were

again able to replicate field patterns for a greater number of

antigen:target combinations than equivalent models with

exponential worm survival.

Models with cross-regulation of the more rapidly decaying

response (M1) were able to reproduce patterns seen in the field

over the greatest proportion of parameter space (figure 10C,D),

with 1.1 parameter sets per 1000 tested able to meet all of the

criteria for models with exponentially distributed worm survival,

and 4.9 per 1000 tested for approximately Gaussian distributed

worm survival. Similarly, for both models with cross-regulation of

the more slowly decaying response (M2) and models with cross-

regulation of both responses, using approximately Gaussian

distributed worm survival increased the range of parameters for

which it was possible to pass all of the criteria when compared with

exponentially distributed worm survival.

Memory models were able to reproduce field patterns for a

greater number of possible antigen:target combinations and over a

greater overall portion of parameter space than were equivalent

plasma cell models (figure 10 cf. figure 9).

Plasma cell models with an antigen threshold. The

inclusion of an antigen threshold also influenced whether models

could reproduce field patterns. For plasma cell models, inclusion of

an antigen threshold on the more gradually decaying response (A2)

increased the number of antigen:target combinations which could

meet the criteria (figure 11). The number of antigen:target

combinations which were able to reproduce all of the patterns

for any part of the parameter space tested was increased to 23/144

(17%) for both n = 1 and n = 9. For the models that were able to

reproduce these field patterns, one of the antibody responses

always fell into one of the two following broad groupings: (i)

antigen cercariae/live worms/dying worms/eggs, target fecundity;

or (ii) antigen cercariae, target re-infection. Note that the anti-

fecundity response stimulated by egg antigens is unique to the

threshold models.

For the antigen:target combinations which were ever able to

reproduce the required field patterns, up to 20% of the parameter

combinations tested now gave results which passed all of the

criteria. Using approximately Gaussian distributed worm survival

(figure 11B) slightly increased the range of parameters for which it

was possible to pass all of the criteria when compared with

exponentially distributed worm survival (figure 11A). Across the

whole parameter space tested, 8 parameter sets per 1000 tested

were able to meet all of the criteria for models with exponentially

distributed worm survival, compared with 9.5 per 1000 tested for

approximately Gaussian distributed worm survival.

Memory cell models with an antigen threshold. Similar

patterns were seen for memory models with an antigen threshold

on the more gradually decaying response (M2) (figure 12). The

number of antigen:target combinations which were able to

reproduce all of the patterns for any part of the parameter space

tested was increased to 31/144 (22%) for n = 1 and 32/144 (22%)

for n = 9. For the models that were able to reproduce these field

patterns, one of the antibody responses always fell into one of the

three following broad groupings: (i) antigen cercariae/live worms/

dying worms/eggs, target fecundity; (ii) antigen cercariae, target

re-infection; or (iii) antigen dying worms, target worm survival

(unique to the memory models). The anti-fecundity response

stimulated by egg antigens is unique to the threshold models.

For the antigen:target combinations which were ever able to

reproduce the required field patterns, up to 23% of parameter

combinations tested now gave results which passed all of the

criteria. Using approximately Gaussian distributed worm survival

(figure 12B) slightly increased the range of parameters for which it

was possible to pass all of the criteria when compared with

exponentially distributed worm survival (figure 12A). Across the

whole parameter space tested, 10 parameter sets per 1000 tested

were able to meet all of the criteria for models with exponentially

distributed worm survival, compared with 11.6 per 1000 tested for

approximately Gaussian distributed worm survival.

For models including an antigen threshold, memory models

(figure 12) were able to reproduce field patterns for a greater

number of possible antigen:target combinations and over a greater

overall portion of parameter space than were equivalent plasma

cell models (figure 11).

Models which never meet all criteria. Analysing the

results by antigen:target combination, it was found that some of

these were never able to reproduce all of the field patterns in any

of the different models tested. Altogether, 54 of the 144 different

antigen:target combinations tested failed to ever pass all of the

criteria simultaneously. These combinations are listed in table 4.

These models are ordered by the A2 response, which tended to be

the stronger determinant of model success. Within this set of

antigen:target combinations, dying worms were less likely to be the

antigenic stimulus for either response than other stages of the life

cycle, and for more than half of them, the target of the longer-lived

A2 response was reduced worm survival.

Immune cell decay rates in successful models. Due to

the balanced study design, which used every potential parameter

combination, it was possible to identify preferred parameter values

from their relative frequencies in models which met all of the

criteria. Results are presented for the decay rates for the immune

cells (plasma cells and memory B cells), which are estimable (at

least in principle). The relative rates of decay for the two antibody

responses are of interest as well as absolute values.

For plasma cell-only models with exponential worm life span

and without cross-regulation or an antigen threshold, distinct

combinations of antibody survival were found to work (figure 13A).

For these models to meet all of criteria, it was necessary to have

one antibody response with very slow decay (A2 decay of 0.008 or

0.08 year21, equivalent to a half-life of 9–90 years) with very rapid

decay of the other response (A1 decay of at least 0.8 year21, or a

half-life of 10 months or less), with at least a 100-fold difference

between decay rates for the two responses. Inclusion of one or

more of Gaussian-distributed worm survival (figure 13B,D,F),

cross-regulation (figure 13C,D) or an antigen threshold

(figure 13E,F) in the plasma cell-only models increased the range

of survival rates which were seen for the ‘longer-lived’ A2 response,

and allowed field patterns to be reproduced when the two

antibody responses had equal decay rates. In all of these models

there was still an overall preference for having a disparity between

the decay rates of the two plasma cell populations.

For the memory models, plasma cell decay rates were kept

constant at 80 year21 (half-life of 3 days) for both responses, and

decay rates for memory cell populations were varied. Less clear

regulation of both antibody responses. The total number of parameter combinations tested for each antigen:target combination was 33,075 for
models with one-way regulation (A–D) and 99,225 for models with two-way cross-regulation (E,F). The left-hand set of panels are for models with
exponentially-distributed worm life span (n = 1) (A,C,E), the right-hand set are for models with approximately Gaussian-distributed worm life span
(n = 9) (B,D,F).
doi:10.1371/journal.pcbi.1002237.g009
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Figure 10. Relative success of memory models with cross-regulation in reproducing infection and antibody profiles seen in field
data. See legends for figures 4 and 6. In this model, it is the memory cell populations for each antibody response which differ in their decay rates –
M2 has equal or slower decay than M1.
doi:10.1371/journal.pcbi.1002237.g010
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patterns were seen in memory decay rates (figure S1). There was a

consistent preference for slower decay rates of M2, but preferred

values for M1 varied widely by model. For all of the models, it was

possible to reproduce all of the field patterns when the two

memory responses had equal decay rates.

Natural mean worm life span in successful models. The

distribution of natural mean worm life span (not taking into

account anti-worm immunity) was also investigated in successful

models, to see what influence this had upon the ability of the

models to reproduce field patterns. These results are shown in

figures S2 and S3. The preferred worm life span varied with the

antigen stimulating A2, the worm survival distribution and whether

or not an antigen threshold was included. For example, in models

with cross-regulation, if live or dying worms stimulated A2, there

was a preference for longer-lived worms, but with cercarial

antigen, there was a preference for a short worm life span if worm

survival was exponentially distributed. Since all of these models

were able to pass all of the criteria, it is not possible to conclude

from this that any particular value for worm life span is more

consistent with patterns seen in field data.

Importance of different criteria. The relative importance

of the different criteria used was assessed by looking at how

Figure 11. Relative success of plasma cell models with an antigen threshold in reproducing infection and antibody profiles seen in
field data. See legend for figure 7. A threshold is included for the less rapidly decaying antibody response (A2). The total number of parameter
combinations tested for each antigen:target combination was 22,050.
doi:10.1371/journal.pcbi.1002237.g011

Figure 12. Relative success of memory models with an antigen threshold in reproducing infection and antibody profiles seen in
field data. See legend for figure 11. In this model, it is the memory cell populations for each antibody response which differ in their decay rates – M2

has equal or slower decay than M1.
doi:10.1371/journal.pcbi.1002237.g012
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frequently they were passed, singly or in pairs, and at how often

they were responsible for excluding parameter combinations. This

was done by summing up the number of times each criterion was

the only one to be failed by any of the parameter sets tested. Only

0.21% of all of the parameter sets tested passed all six criteria over

a two-fold change in maximum infection rate. Numbers passing

the different criteria (singly or in pairs) were assessed prior to

applying the two-fold infection rate change condition. Overall, the

antibody switch after the infection peak was the criterion passed

least often (passed by 4% of all parameter sets tested); several

antigen:target combinations never reproduced the antibody switch

after the peak. Next came the infection level in adults relative to

the peak (passed by 28% of parameter sets) and the age of the peak

(29%). These figures varied considerably by model structure. The

worm lifespan criterion was only failed by models with anti-worm

immunity (in either antibody response). The different criteria were

not independent of one another. In particular, the antibody switch

occurring after the peak was dependent upon an antibody switch

occurring at all, meaning high levels of association between these

two criteria, although in models with cross-regulation the criterion

for the antibody switch occurring after the infection peak excluded

a large number of models which were able to reproduce the

antibody switch. Additionally, parameter sets passing the criterion

relating to reduced infection intensity in adults were consistently

more likely to give an antibody switch after the infection peak than

would be expected if these criteria were independent. A less

marked, but consistently positive, association was also seen

between passing the peak age and peak shift criteria.

Conversely, a negative association was seen between the

following criteria: between peak age and reduction of infection

in adults (except in the two-way cross-regulation models), and

between the peak age and antibody switch after the peak criteria.

This trade-off between the peak age and antibody switch after the

peak criteria, which were two of the most-frequently failed criteria,

led to only 0.54% of parameter sets passing both of these criteria

simultaneously. It was found that most parameter combinations

failed on multiple criteria, with only 6.4% of those that failed

failing to pass only a single criterion. Each of the six criteria

excluded some parameter sets single-handedly, demonstrating that

they were all discriminatory in this analysis.

Discussion

It was shown that testing models for their ability to

simultaneously reproduce multiple patterns seen in both infection

and antibody data enabled a large number of potential model

Table 4. Combinations of life cycle stage providing the main
source of antigens for, and life cycle stage targeted by, each
antibody response, for which the model criteria were never
met for any parameter combination.

Life cycle stage

Antigen for A2 Targeted by A2 Antigen for A1 Targeted by A1

cercariae cercariae cercariae cercariae

cercariae cercariae cercariae worm survival

cercariae cercariae cercariae eggs

cercariae worm survival cercariae cercariae

cercariae worm survival cercariae worm survival

cercariae worm survival cercariae eggs

cercariae worm survival live worms cercariae

cercariae worm survival live worms worm survival

cercariae worm survival eggs cercariae

cercariae worm survival eggs worm survival

cercariae worm survival eggs eggs

cercariae eggs cercariae cercariae

cercariae eggs cercariae worm survival

cercariae eggs cercariae eggs

cercariae eggs live worms cercariae

cercariae eggs live worms worm survival

live worms cercariae cercariae worm survival

live worms cercariae cercariae eggs

live worms cercariae live worms cercariae

live worms cercariae live worms worm survival

live worms cercariae eggs cercariae

live worms cercariae eggs worm survival

live worms cercariae eggs eggs

live worms worm survival cercariae worm survival

live worms worm survival cercariae eggs

live worms worm survival live worms cercariae

live worms worm survival live worms worm survival

live worms worm survival dying worms cercariae

live worms worm survival eggs cercariae

live worms worm survival eggs worm survival

live worms worm survival eggs eggs

dying worms worm survival cercariae eggs

dying worms worm survival live worms cercariae

dying worms worm survival live worms worm survival

dying worms worm survival eggs cercariae

dying worms worm survival eggs worm survival

dying worms worm survival eggs eggs

eggs cercariae cercariae worm survival

eggs cercariae live worms cercariae

eggs cercariae live worms worm survival

eggs cercariae eggs cercariae

eggs cercariae eggs worm survival

eggs cercariae eggs eggs

eggs worm survival cercariae worm survival

eggs worm survival live worms cercariae

eggs worm survival live worms worm survival

Life cycle stage

Antigen for A2 Targeted by A2 Antigen for A1 Targeted by A1

eggs worm survival dying worms cercariae

eggs worm survival eggs cercariae

eggs worm survival eggs worm survival

eggs worm survival eggs eggs

eggs eggs cercariae worm survival

eggs eggs live worms cercariae

eggs eggs live worms worm survival

eggs eggs dying worms worm survival

doi:10.1371/journal.pcbi.1002237.t004

Table 4. Cont.
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structures and parameter combinations to be rejected. These

results give insight into the likely mechanisms giving rise to these

patterns. It was found that both the stage of the life cycle which

provided the main antigenic stimulus for each antibody response,

and the stage of the life cycle which was targeted by a protective

antibody response were critical in determining whether the models

could reproduce infection and antibody profiles consistent with

field data. Some of the models which had dying worms as the main

source of protective antigen were able to reproduce all of the

required patterns. However, some models which had other stages

of the life cycle acting as the principal antigen source could also

meet all of the criteria, suggesting that it is not necessary for dying

worms to provide the main source of protective antigen to explain

the patterns explored here. Inclusion of cross-regulation, an

antigen threshold or using approximately Gaussian-distributed

worm survival each increased the number of antibody antigen-

target combinations, and the range of parameter space for which it

was possible to reproduce patterns seen in the field, but none of

these were essential for enabling all of the field patterns to be

replicated. Other authors fitting models to data ranges using

intensive Latin hypercube sampling of the parameter space suggest

that the number of successful parameter sets gives an indication of

how good a fit the model is [47]. Since we sampled the parameter

space in a less intensive way here, this relationship may not be as

robust, but nonetheless suggests that threshold models, models

with down-regulation of the longer-lived antibody response, and

models with dying worm antigens (in tandem with non-

exponential worm survival) are in better agreement with the data

Figure 13. Antibody decay rates for plasma cell models which pass all criteria. Plots show the total number of times parameter
combinations including the different possible combinations of decay rates for the two plasma cell populations pass all criteria. (A,B) Models without
cross-regulation or thresholds, (C,D) cross-regulation models (total frequencies summed over all of them), (E,F) models with a threshold on A2. The
left-hand panels are for models with exponentially-distributed worm life span (n = 1) (A,C,E), the right-hand ones are for models with approximately
Gaussian-distributed worm life span (n = 9) (B,D,F). All of the different combinations of decay rates that were used have a bar on the chart; black bars
indicate that no successful parameter combination had this combination of antibody decay rates, blue bars that at least one successful parameter
combination had this combination of antibody decay rates. Note that different maximum values are used on the z (frequency)-axis.
doi:10.1371/journal.pcbi.1002237.g013
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than other models. From this analysis it is possible to exclude some

combinations of life cycle stage providing the main antigenic

stimulus for, and life cycle stage targeted by, each antibody

response, and these combinations are listed in table 4. While

previous modelling had demonstrated that different combinations

of the stage acting as stimulus and target could give rise to

qualitatively different population infection profiles [11], the main

differences identified there related to relative levels of infection in

older age groups across different areas of varying transmission,

which there is still insufficient data to test. It was interesting to see

that, here, many combinations with immune-induced worm death

were excluded, mainly on the basis of a very short resulting worm

lifespan, and that many of the models with dying worms as the

main source of protective antigen were retained, adding support

for this hypothesis.

The approach used here was a type of pattern-oriented

modelling, testing a range of different model structures and

parameter values for their ability to simultaneously reproduce

multiple patterns seen in population data [23]. Previous modelling

studies have shown that individual patterns in macroparasite

infection data can frequently be reproduced by more than one

mechanism or combinations of mechanisms, particularly the

peaked age-intensity curve and the peak shift [11,21,22]. In this

study, ‘successful’ models had to simultaneously pass six different

criteria for infection and antibody profiles, including the peaked

age-intensity curve (within limits identified from field data), the

peak shift, an antibody ‘switch’ and realistic mean worm survival,

making it much more likely that these models incorporate the

‘true’ mechanisms determining field patterns. It was shown that all

of the criteria used were informative, as they were all able to

exclude some parameter combinations single-handedly. Thorough

sensitivity analysis, using a balanced design where all possible

combinations of levels of different parameters were investigated,

increases confidence that all of the model structures which can

possibly reproduce these patterns have been identified here.

Although the immune responses are represented in a simplistic

fashion in these models, they should capture the important

features of the antibody response, being based upon well

characterised B cell maturation pathways [48], and covering the

main alternative theories for the persistence of antibody: (i)

antigen-independent mechanisms either through persistence of

long-lived plasma cells or continual non-specific activation of

memory cells to form short-lived plasma cells (both represented by

the plasma cell-only models), and (ii) antigen-dependent mecha-

nisms, with specific antigenic activation of memory cells to form

short-lived plasma cells (memory models) [49,50].

This approach was intended to identify the essential mecha-

nisms underlying universal patterns of schistosome infection and

antibody, by selecting models that give outputs consistent with a

wide range of studies of endemic S. haematobium, rather than trying

to accurately replicate patterns seen in individual studies. To this

end, patterns were chosen that were seen across multiple different

studies. However, some of these patterns are more robust than

others; the age of the infection peak and the peak shift have been

well characterised across numerous different studies, but fewer

studies have reported specific antibody responses by age. The

antibody switch has been clearly identified in three Zimbabwean

populations [12,13,16], but was not seen in data from a fourth

study [36]. This pattern has not been specifically looked for in

other published studies, meaning that it may not be universal. This

would prevent the generalisability of the findings to populations

where an antibody switch is not seen. However, the antibody

switch was seen across a number of different isotypes in all three of

these populations, making it a robust and striking pattern within

these populations which deserves exploration. The use of semi-

quantitative criteria drawn from different studies also precluded

the use of more statistical or likelihood-based model fitting

techniques, which may be used when trying to replicate a

particular data series [51], but are not suitable in this instance,

where we draw on evidence from numerous distinct data sets.

It was of interest to note that many of the models required a

large difference in decay rates between the two immune responses.

The maximum estimated half-life of 9–90 years for the late

response (A2 or M2) is in line with estimates for the half-life of long-

lived plasma cells (23 years; [52]) and the half-life of vaccinia-

specific antibody responses in the absence of re-exposure (92 years;

[53]). The minimum estimated half-life of 5–46 days for the early

antibody response (A1 or M1) fits with estimates for short-lived

plasma cell half-life (3–10 days, [50]).

A potential limitation of these models is that they describe

population averages without taking into account distributions of

infection or antibody. The assumption that all individuals within a

certain population are exposed at the same rate is unlikely to be

true, as most studies of water contact (a good proxy for infection

rate) show highly over-dispersed contact patterns between

individuals over set periods of time [54,55]. While the assumption

of homogeneous contact rates is not likely to affect the conclusions

drawn about the factors underlying the antibody switch and other

qualitative population level patterns, it may affect the precise

quantitative conclusions drawn, and also prevents patterns in the

distribution of infection or antibody from being used as additional

criteria. A good way to look at the effects of heterogeneous contact

rates for these types of models is through the use of fully stochastic

individual based models (IBMs) [39,56], which would also allow

patterns of aggregation of infection (and antibody) to be simulated

and compared to field data, providing additional criteria against

which to test the models. However, it was not feasible in this study

to cover the same breadth of model structures and parameter

ranges with IBMs, which take longer to run and need to be

repeated many times to account for stochastic variation in

individual simulations. A further pattern which could also be used

to differentiate between different model structures is the

observation that praziquantel treatment leads to a sustained

antibody ‘switch’ in younger children similar to that seen

occurring naturally with age [12].

The models used here assumed that each antibody response was

stimulated by a single stage of the schistosome life cycle and

targeted a single stage. In reality, overlapping antigen expression

between different stages [57] means that antibody responses to a

specific antigen could be stimulated by more than one stage of the

life cycle and could have damaging effects upon multiple life

stages. The models described here could easily be extended to test

this, although the number of potential combinations to be tested

would vastly increase. A more feasible first step might be to model

responses to particular antigens for which the antigen-specific

antibody responses have been measured and the stage-specific

expression is known, such as Sm22.6 [58].

These results suggest that gradual accumulation of exposure to

protective antigens is sufficient to explain the slow development of

protective immunity, without it being necessary to invoke a major

role for dying worms or an antigen threshold, but do suggest that

high levels of exposure to the relevant antigen throughout life are

most likely to induce such a protective response. These models

have suggested that protective immunity could primarily target

worm fecundity, which was not routinely considered in earlier

immuno-epidemiological models. They have also shown that the

assumed worm survival curve can make a considerable difference

to the outcome, challenging the usual assumption of exponential
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worm survival, which is mathematically convenient but has not

been empirically demonstrated. This analysis has highlighted the

importance of the combination of the stage of the life-cycle

stimulating and targeted by protective antibody responses in

determining age infection and antibody profiles, and has excluded

a large number of potential combinations as being incompatible

with field data. We have shown that pattern-oriented modelling

can be a useful approach to use to distinguish between different

hypotheses and conceptual models for immune development in

human schistosome infection.

Supporting Information

Figure S1 Memory decay rates for memory models which pass

all criteria. Plots show the total number of times parameter

combinations including the different possible combinations of

decay rates for the two memory cell populations pass all criteria.

(A,B) Models without cross-regulation or thresholds, (C,D) cross-

regulation models (total frequencies summed over all of them),

(E,F) models with a threshold on M2. The left-hand panels are for

models with exponentially-distributed worm life span (n = 1)

(A,C,E), the right-hand ones are for models with approximately

Gaussian-distributed worm life span (n = 9) (B,D,F). All of the

different combinations of decay rates that were used have a bar on

the chart; black bars indicate that no successful parameter

combination had this combination of memory decay rates, blue

bars that at least one successful parameter combination had this

combination of memory decay rates. Note that different maximum

values are used on the z (frequency)-axis.

(TIF)

Figure S2 Mean natural worm life span for plasma cell models

which pass all criteria. Plots show the total number of times

parameter combinations including the different possible values for

natural worm life span are able to meet all criteria for plasma cell

models, with results broken down by the life cycle stage providing

the antigenic stimulus for A2. Yellow bars: mean natural life span 3

years; light green bars: mean natural worm lifespan 6.5 years; dark

green bars: mean natural worm lifespan 10 years. (A,B) Plasma cell

models without cross-regulation or thresholds, (C,D) total

frequencies summed over all of the cross-regulation models and

(E,F) models with a threshold on A2. The left-hand panels are for

models with exponentially-distributed worm life span (n = 1)

(A,C,E), the right-hand ones are for models with approximately

Gaussian-distributed worm life span (n = 9) (B,D,F). Note that

different maximum values are used on the y-axis.

(TIF)

Figure S3 Mean natural worm life span for memory models

which pass all criteria. See legend for figure S2.

(TIF)
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