Dockrell, H M; Black, G F; Weir, R E; Fine, P E (2000) Whole blood assays for interferon-gamma: practicalities and potential for use as diagnostic tests in the field. Leprosy review, 71 Sup. S60-2. ISSN 0305-7518

Downloaded from: http://researchonline.lshtm.ac.uk/20045/

DOI:
Whole blood assays for interferon-γ: practicalities and potential for use as diagnostic tests in the field

H. M. DOCKRELL*, G. F. BLACK**, R. E. WEIR* & P. E. M. FINE*
*Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK and **Karonga Prevention Study, Chilumba, Malawi

Summary Recent years have seen the introduction of a number of whole-blood assays, in which unseparated heparinized blood is stimulated with antigen either overnight or for as long as 6 days, and cytokine production is measured in the plasma or supernatant. These assays have potential for use in the field as immunodiagnostic assays, as they require only a small blood sample and basic laboratory facilities. Use of these assays in a large study of the immunological effects of BCG vaccination in Malawi has shown that the diluted blood, 6-day whole-blood assay is robust, and can be used to assess T-cell responses to both crude and recombinant antigens. If used with antigens specific to *Mycobacterium leprae*, these assays could be used to measure exposure to *M. leprae* within communities or populations, or to aid the early diagnosis of leprosy.

Whole blood assays, in which heparinized whole blood, rather than gradient-separated, peripheral blood mononuclear cells (PBMC), is used to study cell function, can be employed to measure both lymphocyte proliferation and cytokine production. As the blood is simply diluted and placed in culture with the appropriate stimulus, the assays are far simpler and quicker to set up than conventional assays using PBMC, and can be performed in laboratories with only basic facilities. This means that they can be used in a community, to study the immune response to exposure to *Mycobacterium leprae*.

Whole-blood assays are being used increasingly for research or diagnosis. In these assays, undiluted blood can be incubated with antigen overnight or blood, diluted 1:10 or 1:5, can be incubated for 5–6 days. We have been using heparinized blood diluted 1:10, which is incubated with antigens or mitogens at 37°C in an atmosphere of 5% CO₂; supernatants are collected after 5–6 days to measure T-cell-derived cytokines. Our initial studies in Nepal showed that the IFN-γ response to fractionated leprosy antigens correlated with position in the leprosy spectrum. We are now employing this method in a large, field-based study of the immune response to BCG vaccination in Malawi, where BCG has previously been shown to provide some protection against leprosy, but not against pulmonary tuberculosis; a parallel study is being performed in the United Kingdom. In Malawi, testing of skin-test sensitivity and cytokine production to mycobacterial antigens was performed in 635 individuals, who were then randomly allocated, so that two-thirds received BCG vaccination and one-third placebo. The results of pre-vaccination testing of the IFN-γ responses are now available, permitting us to
evaluate the practicalities of using such whole-blood assays on a broad scale, and to
determine whether they are sufficiently robust for field use.

One problem with performing such assays over time, and under field conditions, in which
the ambient temperature in the laboratory may vary considerably during the year, is to control
for the performance and reproducibility of the cytokine ELISAs. We have used aliquots of a
positive control supernatant, obtained by incubating bulk cultures of heparinized whole blood
diluted 1:10 with phytohaemagglutinin, a mitogen, for 3 days, as a biological control that is
included on each plate; this has produced a coefficient of variation of 18%. Such supernatants
also can be exchanged between laboratories, to ensure comparability of the quantities of
cytokine measured. Comparison of the standard curves run on each ELISA plate also reveals
changes in sensitivity of the assay. The reproducibility of whole-blood cytokine responses
over time within the same individual is also an issue. In a study in the UK and Nepal, the
responses of individual controls and patients tested monthly over 6 months proved
consistent.

Responses to a panel of purified protein derivatives (PPDs) from a range of mycobacterial
species have been used in the Malawi study to assess exposure to pathogenic and environ­
mental mycobacteria. Using the antigens at a concentration of 5 μg per ml, and a cut-off of
62 pg per ml of IFN-γ to define a responder, responders and non-responders were detected to
all of the antigens used. Overall, frequency distributions indicated that, in Malawi, exposure
to some of the environmental mycobacteria such as _M. avium_ may be greater than that to
M. tuberculosis (Black, Fine and Dockrell, unpublished results).

It was also important to assess whether assays performed on diluted whole blood are
sufficiently sensitive to allow detection of the responses to individual recombinant antigens,
particularly as cultures of blood diluted 1:10 contain only approximately one-quarter of the
mononuclear cells used in standard PBMC assays. A panel of recombinant antigens from
M. tuberculosis, _M. leprae_, and _M. bovis_ has been used. Results indicate that, although the
proportion of responders to individual antigens, and the median IFN-γ produced are lower
than those obtained with crude PPD preparations, the assays are sufficiently sensitive to
detect responses to the recombinant antigens, and to reveal varying responses to those derived
from the different mycobacteria (Black, Fine and Dockrell, unpublished results).

Another question of interest is whether the results of such IFN-γ assays parallel the results
obtained by skin testing; if so, these assays could be used to screen leprosy antigens or
fractions for those of diagnostic potential, prior to their formulation as skin-test reagents.
Alternatively, whole-blood assays could be used instead of a skin test; although a small blood
sample is required, a repeat visit to read the skin test is not required. Whole blood tests have
been proposed as an alternative to skin testing for the diagnosis of tuberculosis. When the
IFN-γ response induced _in vitro_ by PPD (RT48, Statens Serum Institut, Copenhagen) was
compared to the induration measured 48–72 h after skin testing with 2 TU of PPD RT23, a
very high correlation was obtained between the median IFN-γ-response and induration,
suggesting that these responses are correlated in the majority of individuals, although there
are exceptions—individuals who respond in one test or the other, but not in both.

In conclusion, whole blood assays, using heparinized blood diluted 1:10, and stimulated
with antigen for 6 days, allow measurement of cytokines such as IFN-γ in large-scale field
studies. The ELISA method for detection of cytokine is robust, and the inclusion of control
supernatants allows assay variability to be monitored. The responses in healthy individuals
appear stable over time. These assays allow responses to both crude antigens such as
PPDs and individual recombinant antigens to be evaluated. The 6-day IFN-γ response to
Workshop Proceedings

M. tuberculosis PPD shows a strong association with induration measured by skin testing to the same antigen. If used with *M. leprae*-specific antigens, such whole blood tests have potential as field tools with which to monitor exposure to *M. leprae* within communities, or as a diagnostic test to aid the early diagnosis of leprosy.

Acknowledgements

Development of the whole-blood method was funded by a PhD grant to Dr R. Weir from the Hospitals and Homes of St Giles, UK. The BCG vaccination study in Malawi is funded by the Wellcome Trust, and the parallel study in the UK by LEPRa. We thank Lifted Sichali and Lorren Mwangulu for collecting the blood samples, and Steven Chaguluka for technical support. We also thank the people of Karonga District for their co-operation.

References