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Abstract

Antibodies constitute a critical component of the naturally acquired immunity that develops following frequent exposure to
malaria. However, specific antibody titres have been reported to decline rapidly in the absence of reinfection, supporting
the widely perceived notion that malaria infections fail to induce durable immunological memory responses. Currently,
direct evidence for the presence or absence of immune memory to malaria is limited. In this study, we analysed the
longevity of both antibody and B cell memory responses to malaria antigens among individuals who were living in an area
of extremely low malaria transmission in northern Thailand, and who were known either to be malaria naı̈ve or to have had
a documented clinical attack of P. falciparum and/or P. vivax in the past 6 years. We found that exposure to malaria results in
the generation of relatively avid antigen-specific antibodies and the establishment of populations of antigen-specific
memory B cells in a significant proportion of malaria-exposed individuals. Both antibody and memory B cell responses to
malaria antigens were stably maintained over time in the absence of reinfection. In a number of cases where antigen-
specific antibodies were not detected in plasma, stable frequencies of antigen-specific memory B cells were nonetheless
observed, suggesting that circulating memory B cells may be maintained independently of long-lived plasma cells. We
conclude that infrequent malaria infections are capable of inducing long-lived antibody and memory B cell responses.
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Introduction

Malaria, a parasitic disease of humans caused predominantly by

two species of Plasmodium, P. falciparum and P. vivax, remains an

important cause of mortality and morbidity in many parts of the

world. Development of a vaccine against malaria has proven

challenging due to the complex nature of the parasite and to the

difficulty in correlating naturally-acquired immune responses with

clinical immunity. While immunity against some of the severe

clinical symptoms may be achieved quite rapidly, following

perhaps as few as one or two infections [1], immune effector

mechanisms capable of controlling parasite growth develop only

after repeated infections over a number of years. Even with

repeated infections, protective immunity to malaria is not

complete, and asymptomatic infections may exist throughout life.

Understanding the causes of this continuing susceptibility to

infection and, in particular, understanding the development and

maintenance of immunological memory, is essential for rational

development of malaria vaccines.

Antibodies are a crucial component of naturally acquired

protective immunity against blood stage malaria with roles that

may include inhibition of merozoite invasion into new red blood

cells (RBCs), blocking cytoadherence of infected RBCs (iRBCs) to

endothelial cells, and enhancing phagocytic activity of monocytes

and macrophages (reviewed in [2,3]). It is widely believed that

periodic reinfection is required to maintain acquired immunity to

malaria and that antimalarial antibodies are short-lived in the

absence of reinfection (reviewed in [4]); implying that B cell

memory to malaria may be defective or suboptimal. However, the

development and persistence of B cell memory following malaria

infection has long been a matter of debate (reviewed in [5]). Some

studies in animal models have shown that memory B cells do

develop and are maintained normally after malaria infection [6,7];

whereas others have found that malaria infection interferes with

the development of memory B cells and long-lived plasma cells

[8,9]. In humans, several studies have demonstrated stable

antibody responses to malaria antigens [10,11,12], however,

short-lived antibody responses have also been observed [13,14],

especially in young children [10,15]. To date, very few studies

have examined the induction and maintenance of malaria-specific

memory B cells in humans. Dorfman et al [14] were frequently

unable to detect circulating malaria-specific B cells in antibody

seropositive children, but it is unclear whether this reflects an

absence of such cells or a lack of sensitivity in the assays used to
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detect them. Conversely, Asito et al [16] observed an increase in

both the total CD38+IgD2 memory B cell population and the

transitional CD10+CD19+ B cell population, following an episode

of acute malaria in African children but this study lacked any

analysis of the specificity of B cell responses as well as any long

term follow up to ascertain the duration of the response.

The aim of this study was to investigate the longevity of the

human B cell memory response to malaria in individuals with one

or more known malaria infections. To do this, we identified

individuals living in an area of very low malaria endemicity in

Northern Thailand who were either malaria naı̈ve or who had had

recorded (and parasitologically confirmed) clinical episodes of P.

falciparum or P vivax infection some years previously and

characterised the antibody and memory B cell response to a

variety of discrete P. falciparum and P. vivax antigens under

conditions of infrequent re-exposure/boosting of the immune

response.

Results

Characteristics of the study subjects at recruitment
Malaria-specific humoral immune responses of 93, HIV

negative Thai adults were studied (Table 1). Individuals were

assigned to one of three groups according to their place of

residence and their prior malaria history. Subjects from Chiang

Mai were designated ‘‘City Naı̈ve’’ (n = 17). Subjects from Muang

Na (Chiang Dao) were designated ‘‘Rural with no clinical malaria

episode (Rural 1; n = 30)’’ if they reported no prior episodes of

malaria infection and/or if no record of malaria infection was

found in the past 6 years.

Muang Na residents who had had one or more fully

documented episodes of infection with P. falciparum, P. vivax or

both parasite species, as well as those who recalled a previous

infection and were seropositive to P. falciparum schizont extract

(PfSE) but for whom hospital records could not be found, were

designated as ‘‘previously malaria infected’’ (Rural 2; n = 46). In

this group, 21 subjects (45.7%) reported at least one episode of

infection with P. falciparum, 14 (30.4%) reported at least one

episode of infection with P. vivax and 6 (13.0%) reported infection

with both species in the past 6 years. The frequency of malaria

infections within the six years prior to recruitment varied from 1–3

episodes (mean 1.2560.56 episodes for P. falciparum and

1.1060.26 for P. vivax). Five Rural 2 subjects (10.9%) were

strongly seropositive to PfSE and recalled prior malaria episodes,

but no documentary evidence of these malaria episodes was found.

The time since last documented malaria infections prior to

recruitment varied from 4–58 (21.2612.9) months for those

known to have been infected with P. falciparum and 7–39

(20.6610.1) months for those known to have been infected with

P. vivax.

Of the 76 rural subjects included at enrolment, 49 (64.5%) were

seen again at 3 months, 44 (57.9%) at 6 months and 51 (67.1%) at

12 months. All city individuals were re-sampled 3 months later.

None of the subjects were infected with P. falciparum or P. vivax -

as determined by blood film examination and PCR - at any visit.

However, one of 76 rural subjects demonstrated a significant

increase in antibody titre during the study (but only to one antigen,

PfSE) suggesting that this individual may have experienced a

Table 1. Characteristics of study subjects at recruitment.

City Rural 1 Rural 2

Total (at recruitment) - no. 17 31 46

Sex - no. (%)

Male 8 (47.1) 11 (35.5) 25 (54.3)

Female 9 (53.9) 20 (64.5) 21 (46.7)

Age - yr.

Mean 6 SD 34.768.1 32.668.5 33.767.3

Range 23–46 19–46 19–48

Recorded malaria episodes[a] - no. (%)

P. falciparum only 21 (45.7)

P. vivax only 14 (30.4)

Both P. falciparum and P. vivax 6 (13.0)

Unknown 5 (10.9)

Frequency of recorded malaria episodes[a,b] - no.

Mean P. falciparum 6 SD 1.2560.56

Range P. falciparum 1–3

Mean P. vivax 6 SD 1.1060.26

Range P. vivax 1–2

Time since last malaria episode[b] - mo.

Mean P. falciparum 6 SD 21.2612.9

Range P. falciparum 4–58

Mean P. vivax 6 SD 20.6610.1

Range P. vivax 7–39

[a]Malaria episodes that were within 45 days apart were considered as a single
episode.

[b]Malaria episodes based on records from the Office of Vector Borne Disease
Control, Department of Communicable Diseases Control, the Ministry of
Public Health, Thailand.

doi:10.1371/journal.ppat.1000770.t001

Author Summary

It is widely perceived that immunity to malaria is short-
lived, rendering people susceptible to repeated malaria
infections. However, there have been very few studies on
‘‘memory’’ responses, how the human immune system
recognizes previously encountered malaria parasites. In
particular, very little is known about the durability of
malaria-specific B cells and antibodies. The aim of this
study was to investigate the induction and maintenance of
B cell memory responses to malaria parasites in a region of
Thailand where people become infected with malaria, but
where the levels of malaria transmission are so low that
repeated infection is uncommon. From hospital records
we were able to identify people who either had been
infected with malaria over the past 6 years and/or had
never been infected. Blood samples were collected on four
separate occasions over a period of one year and analysed
by microscopy and PCR for presence of malaria parasites
and by ELISA and ELISPOT for anti malarial antibodies and
malaria-specific memory B cells. We found that, in a
significant proportion of individuals, malaria infection
results in the generation of antibodies and the establish-
ment of populations of memory B cells against malaria
parasites, which were very stably maintained over time
despite the lack of any evidence of malaria reinfection.
Contrary to the widely held idea that memory to malaria is
suboptimally induced, our data demonstrate that B cell
responses to malaria can be maintained for many years
after a malaria infection and indicate that there is no
inherent reason why malaria vaccines should not also
induce long-lasting protection against malaria.

B Cell Memory Responses to Plasmodium
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recent malaria infection, even though they did not report being ill.

The three groups did not differ significantly by age or sex.

Antibody levels against tetanus toxoid (TT) were measured by

indirect ELISA. There was no significant difference among the

groups in the overall levels of antibodies to TT (Fig. 1A) but only

23.7% of the rural subjects (Rural 1 + Rural 2, n = 76) were

seropositive for TT at the time of recruitment. Among the rural

individuals (Rural 1 + Rural 2) who had blood collected at

recruitment and 12 months later (n = 51), the seropositivity rate

for TT (19.6%) did not differ between the two time points

(Fig. 1G). The individual data for the rural subjects who were

seropositive for TT at the time of recruitment and had blood

collected more than one time point (n = 17) are shown in

Figure 1M.

Antibody responses to PfSE
Relative antibody titres to PfSE were measured, at the time of

enrolment and at subsequent follow-up. Among the Rural 1

population, 4 (13.3%) individuals had antibody responses above

the cut-off, indicating that they had, in fact, been exposed to

malaria (Fig. 1B). Among Rural 2 subjects, 25 (54.4%) individuals

were seropositive for PfSE. The proportion of seropositives in the

Rural 2 group was significantly higher than in the Rural 1 group

(p = 0.0003; Fisher’s exact test).

There was no difference in the levels of anti-PfSE antibodies

between subjects who had been infected with P. falciparum only or

infected with P. vivax only (Fig. S1). Overall, the Rural 2 group had

levels of anti-PfSE antibodies that were significantly higher than

the Rural 1 group (p = 0.0005; Mann Whitney U test). There was

no correlation between the levels of anti-PfSE antibodies and age

of the subjects or the number of previous malaria episodes they

had experienced (data not shown).

Among the rural subjects (Rural 1 + Rural 2) who had blood

collected at the beginning and at the end of the study (n = 51), 19

(37.3%) were seropositive for PfSE at the time of recruitment and

all of these remained positive 12 months later (Fig. 1H). The

individual data for the rural subjects who were seropositive at the

time of recruitment and had blood collected at more than one time

point (n = 25) are shown in Figure 1N.

Antibody responses to defined P. falciparum antigens
Antibody responses to recombinant malaria antigens PfAMA-1,

PfMSP-119, PfMSP-2 and PfCSP were examined by indirect

ELISA. PfAMA-1, PfMSP-119 and PfMSP-2 are antigens of blood

stage merozoites. PfCSP is the major surface protein on the surface

of sporozoites, the infective stage of the malaria parasite. All of

these antigens are key P. falciparum vaccine candidates. City naive

subjects were seronegative to all P. falciparum antigens tested

(Fig. 1C–1F). Among the thirty rural individuals with no known

episodes of malaria infection in the past 6 years (Rural 1), 7 (23%),

4 (13%), 1 (3%) and 3 (10%) subjects had positive antibody titres

against PfAMA-1, PfMSP-119, PfMSP-2 and PfCSP, respectively

(Fig. 1C–1F). Seropositivity to individual malaria antigens, and to

PfSE, was not significantly correlated (data not shown) and,

overall, 10 (33%) Rural 1 subjects were seropositive to one or more

P. falciparum antigens.

The frequencies of antibody responses to PfAMA-1, PfMSP-119,

PfMSP-2 and PfCSP in the previously infected (Rural 2) group

were 17 (37%), 22 (48%), 7 (15%) and 4 (9%), respectively. Again,

seropositivity to individual malaria antigens was not significantly

correlated (data not shown) and, overall, 30 (65%) Rural 2 subjects

were seropositive to one or more P. falciparum antigens (schizont

extract and/or recombinant proteins). The proportion of individ-

uals in the Rural 2 and Rural 1 groups who were seropositive for

recombinant malaria antigens was not significantly different,

except that a higher proportion of Rural 2 were seropositive for

PfMSP-119 (p = 0.003; Fisher’s exact test).

The titres of antibodies to PfMSP-119 and PfMSP-2 were

significantly higher among Rural 2 subjects than among Rural 1

subjects but among the Rural 2 group the levels of antibodies to

individual P. falciparum antigens were not different between

previously P. falciparum- and P. vivax- infected subjects (data not

shown). Moreover, the titres of antibodies against P. falciparum

antigens in some Rural 2 subjects were at least as high as those of

the positive control of pooled adult African sera. There was no

detectable antibody response to the carrier proteins used in the

production of recombinant antigens (data not shown).

Several subjects reporting prior infection only with P. vivax had

antibodies to P. falciparum antigens. Of the 14 individuals with

recorded P. vivax infections but no recorded P. falciparum infections,

8 (57%) had antibodies to at least one P. falciparum antigen. This is

consistent with results of previous studies [17,18,19] and may

reflect an undiagnosed prior infection with P. falciparum or cross-

reactivity of antibodies to the two parasite species [17,20,21,22].

As shown in Fig. 1I–1L, most of the subjects who were

seropositive at recruitment and who were tested again 12 months

later remained seropositive. The individual data for the rural

subjects who were seropositive for the different malaria antigens at

the time of recruitment and had blood collected at more than one

time point are shown in Fig. 1O–1R. At an individual level, titres

of antibodies against PfAMA-1, PfMSP-119 and PfMSP-2 were

significantly correlated with titres of anti-PfSE Abs (data not

shown). No correlations between age and the antibody titres

against individual malaria antigens were found (data not shown).

Antibody responses to P. vivax antigens
We also investigated the antibody responses to P. vivax antigens,

PvAMA-1, PvMSP119 and PvDBP by ELISA, all of which are P.

vivax blood stage antigens and are key vaccine candidates. City

naı̈ve subjects were seronegative to all P. vivax antigens (Fig. 2A–

2C). Among Rural 1 subjects, none were seropositive to PvAMA-1

(Fig. 2A), one (3%) had a borderline positive titre to PvMSP-119

(Fig. 2B) and two (6.7%) were seropositive to PvDBP (Fig. 2C). Of

the Rural 2 subjects, 5 (11%), 5 (11%) and 3 (6.5%) were

seropositive to PvAMA-1, PvMSP-119 and PvDBP, respectively.

Overall, 8 (17.4%) Rural 2 subjects were seropositive to one or

more P. vivax recombinant antigens. Of the 20 subjects known to

have been previously infected with P. vivax (P. vivax only or both P.

vivax and P. falciparum), 5 (25%) were seropositive to one or more P.

vivax antigens and 15 (75%) were seronegative. The proportion of

subjects who were seropositive to P. vivax antigens did not differ

significantly between the Rural 1 and Rural 2 groups. Similarly,

no significant differences in anti-P. vivax antibody titres were

observed between the Rural 1 and Rural 2 groups, although the

power of this analysis was poor due to the very low numbers of

seropositive subjects. Antibody responses to P. vivax antigens were

not different between subjects known to have been infected with P.

falciparum- and those known to have been infected with P. vivax

(data not shown). Most of the subjects who were seropositive to P.

vivax antigens at the time of recruitment and who had samples

collected at more than one time point remained seropositive over

the course of the study and there was no evidence of declining

titres (Fig. 2D–2F).

Avidity of antibodies to PfAMA-1 and PfMSP-119

Antibody avidity tends to increase over time as a result of

somatic mutation in the immunoglobulin-encoding genes of

germinal centre B cells and in response to increasing competition

B Cell Memory Responses to Plasmodium

PLoS Pathogens | www.plospathogens.org 3 February 2010 | Volume 6 | Issue 2 | e1000770



Figure 1. Antibody responses to P. falciparum antigens and tetanus toxoid. Antibody titres against tetanus toxoid (A) and P. falciparum
antigens (B–F) among City naı̈ve (circle), Rural 1 (triangle) or Rural 2 (inverted triangle) subjects at the time of recruitment were determined by indirect
ELISA. Each symbol represents the antibody titre of one individual. Solid lines show the median antibody titres in each group. The Mann Whitney U
test was used to analyse differences in the levels of antibodies or memory B cells among groups. Figures G–L show the percentages of all rural (i.e.
Rural 1 plus Rural 2) subjects who had antibody titres above the cut-off for each antigen at the time of recruitment and 12 months later. Fischer’s
exact test was used to analyse differences in the proportion of seropositives at recruitment compared to 12 months later but no significant
differences were observed. The antibody titres for each seropositive subject over the 12 months of the study are shown in figures M–R. Dotted lines
show cut-off values calculated from a mixture model as described in materials and methods.
doi:10.1371/journal.ppat.1000770.g001

B Cell Memory Responses to Plasmodium
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between B cell clones for diminishing amounts of antigen [23,24].

To determine whether the avidity of the anti-malarial antibody

response changed over time, or whether antibody avidity was

associated with durability of antibody responses, the avidity indices

of anti-PfAMA-1 and anti-PfMSP-119 antibodies were determined

for all those individuals (as defined in Figure 1) who were

seropositive to one or other antigen at the time of recruitment.

Overall, avidity indices for antibodies to both antigens were higher

in Rural 2 group than in Rural 1 group (Fig. 3A and 3B), and this

difference was statistically significant for antibodies to PfMSP-119.

However, there was no detectable change in the avidity of

antibodies to either antigen in either group over the 12 months of

the study (Fig. 3C–3F).

Longevity of antimalarial antibodies
To determine the longevity of the antimalarial antibody

responses, we analysed the change in concentrations of antibodies

to PfSE, PfAMA-1 and PfMSP-119 in relation to time (in months)

since the last documented malaria episode (Figure 4). The half-life

of the antibody response was analysed separately for each antigen

using data from Rural 2 subjects who were seropositive at the time

of enrolment and for whom follow-up samples were obtained

(PfSE n = 14; PfAMA1 n = 8; and PfMSP-119 n = 12) in a repeated

measurements analysis including multiple data points from the

same subjects. Subjects known to be infected with P. vivax but not

known to have been infected with P. falciparum were not included

in this analysis in order to ensure specificity to P. falciparum.

Mixed-effects regression models revealed very low rates of

decline (converted to years) in anti- PfSE, PfAMA-1 and PfMSP-

119 antibody concentrations over time and statistically, these rates

could not be distinguished from zero (Table 2). The best estimates

of half-lives were: 5.5 years for PfSE, 10.4 years for PfAMA-1 and

7.6 years for PfMSP-119, respectively but, in each case, the 95%

CI included infinity. Pooled regression analysis of data for

antibodies to PfAMA-1 and PfMSP-119 also yielded a rate of

decline that was not statistically significant from zero. Inclusion of

anti-PfSE antibody data in the pooled regression analysis resulted

in a marginally significant rate of decline equivalent to a half-life of

6.4 years (95% CI = 3.22, 650.48; p = 0.048). These analyses

suggest that antibody responses to malaria are stably maintained in

this population.

B cell memory responses to P. falciparum and P. vivax
antigens

We next enumerated memory B cells to malaria antigens and to

TT using a highly sensitive ELISPOT protocol [25]. The number of

subjects available for analysis was limited by availability of

cryopreserved PBMCs. Antigen-specific memory B cell frequencies

are presented as a percentage of the total number of IgG-secreting

cells. Frequencies of TT-specific memory B cells were similar among

the three study groups (Fig. 5I). No spots were detected for any

individual when cells were tested against the irrelevant control protein

(keyhole limpet hemocyanin) and no malaria-specific spots were

observed in samples from the City naı̈ve group (data not shown).

Figure 2. Antibody responses to P. vivax antigens. A–C show antibody titres against P. vivax antigens among City naı̈ve (circle), Rural 1 (triangle)
or Rural 2 (inverted triangle) subjects at the time of recruitment. Each symbol represents the antibody titre of one individual. Solid lines show the
median antibody titres in each group. The titres of antibodies of seropositive rural (i.e. Rural 1 plus Rural 2) subjects at the time of recruitment and at
each time point during the 12 months of study are shown in figures D–F. Dotted lines show cut-off values calculated from a mixture model as
described in materials and methods.
doi:10.1371/journal.ppat.1000770.g002
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At the time of recruitment, of the 21 Rural 1 subjects whose

PBMCs were available, 3 (14.2%), 3 (14.2%), and 1 (4.8%) subjects

had memory B cells specific to PfAMA-1 (Fig. 5A), PfMSP-119

(Fig. 5B), and PfMSP-2 (Fig. 5C), respectively. No memory B cells

specific to PfCSP were found in the Rural 1 group (Fig. 5D). A

much higher proportion of Rural 2 individuals had detectable

memory B cells: of the 33 tested, 16 (48%), 11 (33%), 6 (18%) and

1 (3%) gave spots to PfAMA-1, PfMSP-119, PfMSP-2 and PfCSP,

respectively. Overall, 19 (58%) Rural 2 subjects had memory B

cells to one or more P. falciparum recombinant antigens.

None of the 14 Rural 1 subjects tested had detectable memory B

cells against PvAMA-1, and only one individual (7%) had

detectable memory B cells to PvMSP-119 (Fig. 5E and 5F).

However, among the 26 Rural 2 individuals tested, 6 (23%) and 7

(27%) had memory B cells specific to PvAMA-1 and PvMSP-119,

respectively. Nine Rural 2 subjects (35%) had memory B cells

specific to one or more P. vivax antigens.

Stability of PfAMA-1- and PfMSP-119-specific memory B cells
For the Rural 2 individuals, we then characterised the frequency

of PfAMA-1- and PfMSP-119-specific memory B cells in relation to

time since their last documented malaria infection, using mixed-

effects regression analysis (allowing for repeated measurements

from individual subjects) as described above. We found that

PfAMA-1- and PfMSP-119 specific memory B cells were stably

maintained over time (Fig. 5G and 5H). The best estimate of the

rate of change in AMA-1-specific memory B cell numbers

indicated no decline during follow-up, whereas the best estimate

for the half-life of MSP-119-specific memory B cells was 10 years

(Table 2). Single and pooled regression analysis of data resulted in

rates of decline that, statistically, could not be distinguished from

zero. Similar observations were made for memory B cells to TT

(data not shown). These results indicate that memory B cell

responses to malaria antigens are stably maintained in this very

low transmission area.

Correlation between antibody titres and memory B cell
frequencies

It was immediately evident from the TT data that circulating

memory B cells could be detected in many (,47%) seronegative

individuals (Figure 6G). We therefore carried out a systematic

analysis of the association between circulating memory B cells and

plasma antibody titres at the individual level.

Figure 3. Avidity indices for anti-PfAMA-1 and PfMSP-119

antibodies. Avidity indices for PfAMA-1 (A) and PfMSP-119 (B) at the
time of recruitment were compared between Rural 1 and Rural 2 groups.
Avidity indices for antibodies to both antigens were compared at the
time of recruitment and at 12 months later for Rural 1 (C and D) and Rural
2 (E and F) subjects. Lines show the mean (95% CI) for each group. An
unpaired Student’s t-test test was used to analyse differences between
rural groups. A paired t-test was used to confirm that there are no
differences between indices at time of recruitment and 12 months later.
doi:10.1371/journal.ppat.1000770.g003

Figure 4. Longevity of anti-malarial antibody responses. The
titres of antibodies specific to PfSE (A), PfAMA-1 (B) and PfMSP-119 (C) in
relation to time since last clinical infection in P. falciparum exposed
individuals (Rural 2 only) were determined by analyzing longitudinal
data with a mixed-effects model. Each symbol represents the antibody
level at each time point of one individual. The regression analysis was
adjusted for inclusion of multiple data points from the same individual.
Solid lines represent best fit regression lines estimating the rates of
decline of antibody concentrations over time and the dashed lines
represent the 95% CI. Horizontal dotted lines indicate the cut-off as
defined in Materials and Methods and Figure 1.
doi:10.1371/journal.ppat.1000770.g004
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No correlation was observed between specific antibody titres

and frequencies of memory B cells (data not shown). Among the 33

Rural 2 subjects for whom we had both antibody data and

memory B cell responses to P. falciparum antigens at the time of

recruitment, 7 (21%), 8 (24%) 2 (6%) and 0 (0%) had both

circulating antibody and memory B cells to PfAMA-1, PfMSP-119,

PfMSP-2 and PfCSP respectively (Fig. 6A–6D). Four (12%), 7

(21%), 2 (6%) and 3 (9%) individuals were seropositive to the

respective antigens but no B cell spots were observed whereas 9

(27%), 3 (9%), 4 (12%), and 1 (3%) were seronegative but had

memory B cells to PfAMA-1, PfMSP-119, PfMSP-2 and PfCSP

respectively.

Of the 26 Rural 2 subjects for whom we had data on both

antibody and memory B cell responses against P. vivax antigens at

the time of recruitment, 1 (4%) and 2 (8%) individuals had both

antibody and memory B cells against PvAMA-1 and PvMSP-119

respectively (Fig. 6E and 6F), 3 (12%) and 2 (8%) gave positive

results in ELISA but not in ELISPOT, and 5 (19%) and 5 (19%)

had memory B cells but not antibodies to PvAMA-1 and PvMSP-

119, respectively. These results suggest that serum antibody levels

alone or memory B cell frequencies alone may not fully represent

the humoral immune response to malaria parasites.

Different individuals had different patterns of antibody and

memory B cell responses to the various malaria antigens. Table 3

shows the heterogeneity of such responses in all Rural 2 subjects at

recruitment. In a number of cases where antigen-specific

antibodies were detected, the frequencies of memory B cells were

below the limit of detection (Subjects 16, 17 and 29). Likewise, in

several subjects where antigen-specific antibodies were not

detected, stable frequencies of antigen-specific memory B cells

were observed (e.g. Subjects 27, 31 and 33).

Discussion

Antibodies are critical in protection against blood stage malaria

infection through numerous, diverse mechanisms [2,3]. In murine

malaria infections, B cells are required not only for the production

of protective Abs, but also for the development of T cell helper

function [26]. However, the development and persistence of B cell

memory responses following malaria infection has repeatedly been

called into question [27]. It is widely perceived that antibody titres

rapidly decline in the absence of re-infection or when individuals

leave an endemic area. It is notable that most of the studies

reporting short-lived antibody responses have been conducted at

or following the time of acute infection, and these infections were

terminated by effective antimalarial drug therapy and that these

were often observations in children [13–16,28]. It is not clear,

from these studies, whether the rapid decline of antibody

concentrations observed in children is related to removal of

antigen by chemotherapy, by consumption of antibodies and

formation of antigen-antibody complexes during parasite clear-

ance or due to limitations in the ability of the bone marrow

compartment to support differentiation and/or survival of plasma

cells [29,30]. However, the results of a recently published study in

healthy, Gambian children in which antibody titres were found to

decline more slowly both in older children and in children with

persistent asymptomatic malaria infection suggests that both

antigen persistence and immunologic maturity may be important

in determining the longevity of the serum antibody responses [15].

One explanation for these observations might be that short-lived

antibody responses are the result of induction of short-lived, but

not long-lived, plasma cells following acute malaria infection. In

murine models of malaria infection, primary P. chabaudi infection

leads to expansion of short-lived, immature B220+ splenic plasma

cells however secondary infection is accompanied by apparently

normal emergence of a larger population of fully mature (Ighi,

CD138hi, CD9+, B2202), terminally-differentiated B220- plasma

cells in the bone marrow [31], indicating that memory B cells are

efficiently induced by primary infection and are fully able to

differentiate into long-lived plasma cells on secondary exposure to

antigen. Similar studies have not been reported, to date, in

humans but we were able to take advantage of a very particular

epidemiological situation in rural Northern Thailand to examine

the natural history of the anti-malarial B cell memory response.

In our study area, both P. falciparum and P. vivax are endemic but

transmission is kept at extremely low levels by an assiduous

malaria surveillance and control programme in which all detected

infections are recorded and effectively treated [32]. We have thus

been able to recruit a cohort of individuals whose malaria infection

history over the previous 6 years are known in considerable detail

and have been able to follow these individuals for a period of 12

months to observe both long- and short-term changes in their

adaptive immune response to malaria. Furthermore, we were able

to recruit a cohort of individuals from the same community with

Table 2. Longevity of antibody and memory B cell responses to P. falciparum antigens*.

ANTIBODY

Antigen No. of subjects No. of observations Annual decline in log titre (95% CI) Antibody half-life (95% CI) p-value

PfSE 14 41 20.1264 (20.2809, 0.0282) 5.49 (2.47, ‘) 0.109

PfAMA1 8 23 20.0669 (20.2009, 0.0671) 10.36 (3.45, ‘) 0.328

PfMSP119 12 37 20.0916 (20.1959, 0.0126) 7.56 (3.54, ‘) 0.085

PfMSP1 + PfAMA1 14 60 20.0426 (20.1672, 0.082) 16.27 (4.15, ‘) 0.503

All 17 101 20.1082 (20.2153, 20.0011) 6.41 (3.22, 650.48) 0.048

B CELL MEMORY

Antigen No. of subjects No. of observations Annual decline in log titre (95% CI) Antibody half-life (95% CI) p-value

PfAMA1 13 26 0.0194 (20.3858, 0.4245) ‘ (1.8, ‘) 0.925

PfMSP119 10 19 20.0689 (20.5872, 0.4494) 10.06 (1.18, ‘) 0.794

Both 15 45 20.0928 (20.3959, 0.2102) 7.47 (1.75, ‘) 0.548

*Results from a multilevel model allowing for random patient effects.
doi:10.1371/journal.ppat.1000770.t002

B Cell Memory Responses to Plasmodium

PLoS Pathogens | www.plospathogens.org 7 February 2010 | Volume 6 | Issue 2 | e1000770



Figure 5. B cell memory responses to malaria antigens and tetanus toxoid. B cell memory responses to P. falciparum antigens (A–D), P. vivax
antigens (E and F) and tetanus toxoid (I) at the time of recruitment were determined by ELISPOT assay and are presented as the percentage of all IgG-
secreting cells that are specific for each malaria antigen. Each symbol represents the memory B cell numbers for one individual. The longevity of the
memory B cell responses specific to PfAMA-1 (G) and PfMSP-119 (H) were determined by analyzing longitudinal data with a mixed-effects model. Solid
lines represent best fit regression lines estimating the rates of decline of memory B cell numbers over time and the dashed lines represent the 95% CI.
doi:10.1371/journal.ppat.1000770.g005
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no evidence of malaria infection in the past 6 years , and a cohort

of known malaria naives from the city of Chiang Mai, where

malaria transmission was eliminated more than 30 years ago

(Suwonkerd W; The Ministry of Public Health; personal

communication). The very low levels of malaria transmission

reported in the Muang Na area [33] are confirmed by our finding

that none of the study subjects were found to be infected with

malaria parasites (detectable by blood film or PCR) at any point

during the study, none of them showed any clinical signs of

malaria infection and only one individual showed boosting of

antibody responses (and against only 1 malaria antigen) during the

study. In addition, anti-malarial antibody responses were not

correlated with age, indicating that there is likely to be little or no

effective acquired immunity to malaria in this population.

Nevertheless, some of the rural village residents with no record

or recollection of malaria infection in the past 6 years (Rural 1)

appeared to have experienced malaria infections at some time in

their lives as shown by seropositivity to malaria antigens in ELISA

and positive B cell ELISPOTs. Given the lack of evidence for

acquired protective immunity in this population, and since we

found no evidence of asymptomatic malaria infections, it is

unlikely that these individuals had experienced undiagnosed

malaria infections and thus the presence of antibodies and B cell

memory responses in this group suggests that anti-malarial

seropositivity can be maintained for many years in the absence

of reinfection.

Overall, the prevalence and magnitude of antimalarial antibody

and memory B cell responses compared favourably with the anti-

tetanus responses. Although the frequencies of tetanus-specific

memory B cells tended to be somewhat higher than the

frequencies of malaria-specific memory B cells, the prevalence of

antibodies to the P. falciparum schizont extract, PfMSP-119 and

PfAMA-1 was in fact higher than for tetanus. Thus, despite the

fact that the anti-tetanus response is likely induced by a very potent

vaccine and boosted by environmental exposure or revaccination

(which is routinely given during pregnancy), humoral immune

responses to tetanus do not appear to be particularly more robust

than those induced by infrequent natural exposure to malaria.

Moreover, frequencies of malaria-specific memory B cells in Thai

adults were similar to frequencies of diphtheria-specific memory B

cells in UK adults (J. Palomero-Gorrindo and J. Hafalla;

unpublished data). Therefore, frequencies of malaria-specific

memory B cells seem to be of the same order of magnitude as

responses to commonly used vaccine antigens [34,35]. Of note,

Buisman et al [35] also found rather higher frequencies of memory

B cells to tetanus toxoid than to other antigens.

As the time since last detected malaria infection was known for

the Rural 2 group we were able to obtain estimates of the rate of

Figure 6. Correlation between ELISA and ELISPOT responses for each antigen. For malaria antigens, data are shown for Rural 2 subjects: 33
tested against P. falciparum antigens (A–D) and 26 tested against P. vivax antigens (E and F). For TT (G), data are shown for all subjects (City naive,
Rural 1 and Rural 2) whose PBMC were available (n = 67). The number (and percentages) of subjects who were double positive (top left), ELISA
positive but ELISPOT negative (bottom left), ELISA negative but ELISPOT positive (top right), or double negative (bottom right) are shown.
doi:10.1371/journal.ppat.1000770.g006
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Table 3. Patterns of antibody and memory B cell responses to malaria antigens and tetanus toxoid in 46 Rural 2 subjects at
recruitment.

Subject PfSE[a] P.falciparum antigens P.vivax antigens Tetanus toxoid

PfAMA1 PfMSP119 PfMSP2 PfCSP PvAMA1 PvMSP119

ELISA ELISA[b] ELISPOT[c] ELISA ELISPOT ELISA ELISPOT ELISA ELISPOT ELISA ELISPOT ELISA ELISPOT ELISA ELISPOT

Tested against both P.falciparum and P. vivax antigens

1 x x x x x x

2 x x x x x x x x

3 x x x

4 x

5 x

6 x x x x x

7 x

8 x

9

10 x x x

11 x x x

12 x x

13 x x x x x

14 x x x x x

15 x x

16 x x x

17 x

18 x x x x x

19 x

20 x x x x x x x x x

21 x x

22 x x x x x x x x x

ELISPOT tested against P. falciparum antigens only

23 x x x x x x x N/D N/D x

24 x x N/D N/D x

25 N/D N/D

26 x x N/D N/D x

27 x x x x N/D N/D x x

28 x x x N/D N/D x

29 x x N/D N/D

30 x x x N/D N/D

31 x x x x N/D N/D x

32 x x x N/D N/D

33 x x x x x x N/D N/D

34 x x N/D N/D x x

35 N/D N/D

ELISPOT tested against P. vivax antigens only

36 x N/D N/D x N/D N/D

37 N/D N/D N/D N/D x x

38 x N/D x N/D N/D N/D x

39 x x N/D x N/D N/D N/D x x x

Tested for antibodies only

40 N/D N/D N/D N/D N/D N/D N/D

41 x x N/D x N/D x N/D x N/D x N/D x N/D x N/D

42 N/D x N/D N/D N/D N/D N/D N/D
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decline of both serum antibodies and circulating memory B cells.

Importantly, and in marked contrast to previously published data

from African children [14], there was no evidence of any

significant decline in either antibody titres or memory B cell

responses to PfSE, PfAMA-1 or PfMSP-119 over periods of more

than 5 years since the last known malaria infection. One reason for

this discrepancy may be that previous studies have characterised

the decay of the antibody response in the first few days or weeks

after resolution of an acute malaria infection [14,15] which is likely

to capture the initial very rapid decay in antibody titre associated

with contraction of the pool of short-lived plasma cells whereas in

this study, where the most recent malaria infection occurred many

months or years ago, we are capturing the long term ‘‘mainte-

nance’’ phase of the antibody response [36].

Our best estimates of the half-life of this maintenance phase of

antibody responses to malaria antigens ranged from ,5 to ,16

years, putting them in the same range as the half-lives recently

estimated for nonreplicating antigens such as tetanus or diptheria

toxoids [37]. However, the 95% confidence intervals for the half-

lives of these responses all included infinity, suggesting that

antibody responses to malaria may in fact be much more stable

than those to nonreplicating antigens and may be maintained in a

manner that is more similar to that of antiviral responses [37].

Similar estimates were obtained for the half lives of malaria-

specific memory B cell responses – indicating that the circulating

memory B cell pool is extremely stable - which is consistent with

data from the P. chabaudi mouse model that malaria infection

induces long-lived antibody responses as well as memory B cells

[31]. However, whilst these analyses are consistent with a long half

life for antimalarial antibody and memory cell responses, given the

very wide confidence intervals around the our estimates, data from

a larger cohort of study subjects is required to obtain definitive half

lives for these responses.

However, it is important to note that 11 subjects (24%) who

were known to have been infected with malaria had no detectable

circulating memory B cells and/or antibodies and less than 50% of

subjects tested had either antibodies or circulating memory B cells

to PfMSP-2, PfCSP, PvAMA-1 or PvMSP-119. Given that

everyone in the study had experienced their most recent malaria

infection at least 4 months before recruitment and that the

genotypes of their infecting parasites are unknown, we cannot tell

whether these seronegative individuals had completely failed to

make a humoral response to malaria, whether they had made

antibodies to polymorphic epitopes that did not cross-react with

the antigens used in our assays or whether they had developed

only very short-lived responses. In a previous study, in a higher

malaria transmission area, very short-lived antibody responses to

malaria were particularly associated with younger individuals who

(presumably) had had the fewest number of malaria infections [15]

suggesting that the long-lived responses seen in many of our study

subjects may develop only after they have experienced a number

of malaria infections. Nevertheless, given the very low levels of

malaria transmission in our study area, the number of infections

required to develop long-live antibody responses is likely to be

quite small.

Since the pharmacological half-life of a human IgG molecule is

around 21 days [38], long term maintenance of IgG titres indicates

either ongoing secretion of antibodies from plasma cells or

memory B cell differentiation in response to inflammatory stimuli;

there is still no clear consensus on whether persisting specific

antigen is required for this process [39] or not [40,41]. During

inflammation, IFN-c induces plasmablasts to express the chemo-

kine receptor CXCR3, promoting their migration into inflamed

tissues [42] and thereby maximising antibody production at sites of

infection. Resolution of inflammation leads to loss of survival

signals, and these short-lived plasma cells die in situ. However, in

the absence of prolonged antigenic stimulation, plasmablasts

express another chemokine receptor CXCR4 allowing them to

migrate to the bone marrow [43]. It is possible, therefore, that

short term fluctuations in serum antibody concentrations may

occur in response to infection with memory B cells being

stimulated to differentiate into short-lived plasma cells, secrete

immunoglobulins and then die. However, in the circumstances of

lack of frequent re-exposure to malaria infection (such as in this

study), a larger proportion of plasmablasts may differentiate into

long-lived plasma cells which maintain the level of antibodies over

time. Such a scenario does, of course, beg the question as what

would happen to long-lived plasma cells and memory B cells under

conditions of repeated or persistent malaria infection.

Immediately after malaria immunisation in humans the

frequency of antigen-specific memory B cells is positively

correlated with antibody titres [44], suggesting (not surprisingly)

that induction of antibody secreting cells and memory B cells is

linked. However, the lack of correlation that we observed between

antibody titres and memory B cell responses months or years after

exposure to malaria antigens confirms recent findings for anti-viral

responses [37] and is consistent with accumulating experimental

data from animals [45,46] and data from therapeutic B cell

depletion in humans [47,48] showing that depletion of circulating

memory B cells does not affect antibody titres, at least in the short-

Subject PfSE[a] P.falciparum antigens P.vivax antigens Tetanus toxoid

PfAMA1 PfMSP119 PfMSP2 PfCSP PvAMA1 PvMSP119

ELISA ELISA[b] ELISPOT[c] ELISA ELISPOT ELISA ELISPOT ELISA ELISPOT ELISA ELISPOT ELISA ELISPOT ELISA ELISPOT

43 x x N/D x N/D N/D N/D N/D N/D N/D

44 N/D N/D N/D N/D N/D N/D N/D

45 x x N/D x N/D x N/D N/D N/D N/D N/D

46 x N/D N/D N/D N/D N/D N/D N/D

[a]x indicates positive response to each antigen.
[b]Cut-off values were determined from a mixture model.
[c]A positive response was defined if the average number of spots from triplicate wells being greater than at least two times the average number of spots from the

media negative control.
N/D = Not done.
doi:10.1371/journal.ppat.1000770.t003
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term. Collectively, these data indicate that although both long-

lived plasma cells and memory B cells can be stably maintained the

two populations are independently regulated and that activation of

circulating memory B cells may not be required for maintenance

of serum antibody titres.

High affinity antibodies are expected to play an important role

in the humoral immune response. The avidity indices of antibodies

against PfAMA-1 and PfMSP-119 did not change during the 12

months of study; this is not surprising since there was no evidence

of reinfection of any of the subjects during the follow-up period

which might have driven further avidity maturation. However the

avidity of anti-PfMSP-119 antibodies was significantly higher

among Rural 2 subjects than among Rural 1 individuals,

supporting the notion that the Rural 2 population had had more

frequent exposure to malaria parasites than the Rural 1 group.

In summary, we conclude that B cell memory responses to

malaria are effectively induced and maintained – in a significant

proportion of individuals - in areas of low malaria transmission.

(This is, of course, an entirely separate issue from whether these

particular antibodies confer protective immunity to malaria; whilst

there is strong evidence to suggest that malaria-immune

individuals have very effective antimalarial antibody responses

[49] the antigenic targets of protective antibodies are still very

poorly defined. Whilst it is possible that the subjects in this study

with long-lived humoral responses to malaria antigens might be

protected from reinfection, this issue was not directly addressed in

this study). Although it remains possible that persistent and

repeated malaria infections in areas of very high endemicity may

eventually lead to B cell anergy or clonal exhaustion [50], the fact

that individuals in these areas develop high titres of antimalarial

antibodies and become resistant to high density malaria infections

and clinical symptoms argues against this as a major impediment

to the development of effective immune responses. Finally, our

results are highly encouraging for vaccine developers since they

imply that – once induced – anti-malarial immune responses are

likely to be long-lived even in the absence of frequent boosting.

Materials and Methods

Study area and subjects
Study subjects were either long-term adult residents of Muang Na,

a village in a low malaria transmission area in the Chiang Dao region

of northern Thailand, near the border with Myanmar, or were

permanent adult residents of the city of Chiang Mai where malaria

transmission does not occur. Ethical approval for the study was

obtained from the Research Institute for Health Sciences, Chiang Mai

University, from the Ministry of Public Health, Thailand and from

the London School of Hygiene and Tropical Medicine, UK. Written

informed consent was obtained prior to enrolment in the study.

Subjects were interviewed to ascertain their previous malaria

exposure. Residents of Chiang Mai were selected on the basis that

they had not travelled to, or lived in, malaria endemic areas. In

Muang Na, dates and species (P. falciparum, P. vivax or both) of

malaria infections were confirmed from the records of the Office of

Vector Borne Disease Control in the Department of Communi-

cable Diseases Control at the Ministry of Public Health, which

maintains detailed records of all malaria cases detected by active

or passive case detection and during periodic population surveys as

described in detail elsewhere [51].

Venous blood was collected in acid citrate dextrose on the day

of recruitment, and again 3 months later for City naı̈ve subjects

and 3, 6 and 12 months after recruitment for rural subjects.

Giemsa-stained blood films were examined for the presence of

malaria parasites. Blood samples from each subject were checked

for subpatent malaria parasitaemia by PCR. DNA was isolated

using FlexiGene DNA extraction kits (QiagenH) according to the

manufacturer’s protocol and subjected to nested PCR for P.

falciparum and P. vivax as described previously [52].

As HIV infection may have an effect on immunological

parameters, all subjects were tested for HIV infection (presence

of anti-HIV antibodies by gel particle agglutination assay) at the

time of recruitment and at the end of the study (3 months after

recruitment for city subjects and 12 months after recruitment for

other groups); subjects received pre- and post-test counselling from

trained HIV counsellors and HIV-infected individuals were given

access to the National Antiretroviral Programme. Data from HIV-

infected subjects were excluded from the analysis.

Antigens
P. falciparum circumsporozoite protein (PfCSP) [(NANP)4] and P.

falciparum merozoite surface protein-2 (PfMSP-2) were a gift from

J.E. Tongren (Centre for Disease Control and Prevention, Atlanta,

GA, USA). The 19kDa fragments of P. falciparum and P. vivax MSP-1

(PfMSP-119 and PvMSP-119) were gifts from A. Holder (National

Institute of Medical Research, London, UK) and the proteins were

expressed as described [53]. P. falciparum apical membrane antigen-

1 (PfAMA-1) was a gift from R.F. Anders (LaTrobe University,

Victoria, Australia); the equivalent P.vivax antigen (PvAMA-1) was a

gift from B. Farber and A. Thomas (Biomedical Primate Research

Centre, Rijswik, Netherlands). P. vivax duffy binding protein

(PvDBP) was a gift from L.H. Carvalho Centro de Pesquisas René

Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil).

Since Thai populations are routinely vaccinated with tetanus toxoid

(TT), antibody responses to TT were included as a positive control.

TT was obtained from the National Institute of Biological

Standards and Control (Health Protection Agency, Hertfordshire,

UK). Keyhole limpet haemocyanin (KLH) was from Thermos

Fisher Scientific (Northumberland, UK).

Continuous cultures of P. falciparum (3D7 strain were maintained

in the laboratory [54] and were periodically shown to be free from

Mycoplasma contamination by polymerase chain reaction (PCR)

(VenorH GeM, Minerva Biolabs). Mature schizonts were obtained

by gradient centrifugation over 60% Percoll (Amersham Biosci-

ences), adjusted to a concentration 16108 schizont-infected red

blood cells (iRBC)/ml and exposed to three freeze/thaw cycles to

obtain P. falciparum schizont extract (PfSE).

Enzyme-linked immunosorbent assay (ELISA)
Plasma antibody levels were detected by indirect ELISA, as

described [55]. Briefly, Immulon 4HB (Dynatech) or Maxisorb

(Nunc) plates were coated with antigen (at a concentration

equivalent to 105 iRBC/ml for PfSE, 0.5 mg/ml for Plasmodium-

derived antigens and TT) in bicarbonate buffer (pH 9.6) overnight

at 4uC. Plates were blocked with PBS containing 1% non-fat milk

powder. Diluted plasma samples (1:200 for PfCSP, 1:1000 for

PfSE, PfMSP-119, PfMSP-2, PvMSP-119 and PvDBP; 1:2000 for

PfAMA-1, PvAMA-1 and TT) were incubated in dubplicate.

Plates were subsequently developed with anti-human IgG

horseradish peroxidase conjugate (Caltag Laboratories, Invitro-

gen, Paisley, UK) followed by o-phenylenediamine substrate

(Sigma). The enzyme reaction was terminated with sulphuric acid

(2N) and absorbance was then read at 492 nm on a Spectra MR

plate reader (Dynex Technology).

Antibody levels were determined by comparison to a standard

curve (derived by serial dilution of a pool of hyperimmune plasma

collected in The Gambia, which was given an arbitrary value of

1,000 units/ml of anti-PfSE Abs) on each plate, as described

previously [12].
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Preparation of peripheral blood mononuclear cells
(PBMCs)

PBMCs were separated from citrated blood by gradient

centrifugation over Ficoll-Hypaque (Amersham Biosciences). Con-

taminating erythrocytes were removed by incubating with lysis

buffer (0.15 M NH4Cl, 10 mM KHCO3, 0.1 mM Na2EDTA) at

RT for 5 minutes. The cells were washed twice with RPMI,

resuspended in 10% human AB serum/RPMI (R10 culture

medium), counted, adjusted to the required concentration and

cryopreserved in 10% dimethylsulfoxide (DMSO)/foetal calf serum.

Stimulation of cryopreserved PBMC for B cell ELISPOT
assay

Cryopreserved PBMCs were quick thawed in a 37uC water

bath. The cells were washed twice with warm RPMI, resuspended

in R10 culture medium and added at a concentration of 16106

cells/ml to a 24 well culture plate. The cells were stimulated with

medium alone or with a mixture of Phytolacca americana pokeweed

mitogen (1/100,000 dilution; a gift from M. Causland and S.

Crotty, La Jolla Institute of Allergy and Immunology, CA, USA),

6 mg/ml CpG 2006 (Qiagen/Operon), and 1/10,000 dilution of

Staphylococcus Aureus Cowan (SAC) (Sigma), as previously

described [25]. The culture plates were incubated in 5% CO2 at

37uC for 5 days.

B cell ELISPOT assay
B cell ELISPOT assays were performed as described previously

[25]. Briefly, ELISPOT plates (Millipore) were coated with donkey

anti-human IgG (H+L) (Jackson ImmunoResearch), or with 1 mg/

ml recombinant malaria proteins overnight at 4uC. After washing

once with PBS-T and three times with PBS, 200 ml of 1% bovine

serum albumin in RPMI were added to each well and incubated

for 2 hours at 37uC, 5% CO2. Cultured PBMCs were recovered

from the 24 well culture plates, washed, transferred directly to

antigen-coated ELISPOT plates and incubated for 6 hours at

37uC, 5% CO2. After 4 washes with PBS and 4 washes with PBS-

T, 100 ml of Biotin-SP-conjugated donkey anti-human IgG

(Jackson Immunoresearch) were added to each well and the plates

were incubated overnight at 4uC. The plates were washed, 100 ml

of alkaline phosphatase-streptavidin (Vector Laboratories) was

added and incubated for one hour at room temperature. After

three washes with PBS-T and three washes with PBS, 100 ml of 5-

bromo-4-chloro-3-indolyl phosphate/ nitro blue tetrazolium -

alkaline phosphatase substrate solution (Vector Laboratories) were

added to each well and the reaction was allowed to proceed for

8 minutes before being stopped with distilled water. In vitro

restimulated PBMCs incubated overnight with an irrelevant

protein, KLH, as well as PBMCs cultured without stimulation

and then incubated overnight with malaria antigens were used as

negative controls. Since no malaria-specific spots were detected in

city naı̈ve individuals, this group was not be used to set a cut-off for

positivity. Rather, a positive ELISPOT response was defined when

spots were observed in 2 or more replicate wells and where the

total number of spots in the antigen-coated wells was at least twice

the number observed in the negative control wells.

Avidity assay
An enzyme immunoassay for determination of antibodies

against malaria antigens was carried out as described above.

Following the incubation step of sera with antigens, one duplicate

set of sera was treated with 4.0 M guanidine dissociating solution

(Guanidine Hydrochloride, Sigma) for 10 minutes prior to

washing with PBS-T. Avidity indices were calculated as the ratio

of the OD of guanidine -treated wells to the OD of the untreated

wells.

Statistical analysis
To determine whether an individual was seropositive for a

particular antigen (PfSE, Pf- or Pv-derived antigens, or TT), cut-

offs for positive antibody titres were calculated using a mixture

model, which assumes that untransformed titres for seropositive

and seronegative samples each follow a normal Gaussian

distribution [56,57]. Mann Whitney U test was used to analyse

differences in the levels of antibodies or memory B cells among

groups (GraphPad Prism software). Fischer’s exact test was used to

analyse differences in the proportion of positive individuals

between Rural 1 and Rural 2 groups, as well as differences in

the proportion of seropositives at recruitment compared to 12

months later. Decay rates for antibody titres and memory B cell

frequencies were calculated using logarithmically transformed data

from subjects who were seropositive or memory B cell positive,

respectively, at recruitment. The effect of time since malaria

infection was analysed using a log-linear mixed-effects regression

model incorporating Gaussian random intercepts. This resulted in

an estimate of the decay rate of antibody titres or memory B cell

frequencies, assuming a single-exponential decay model. Half-lives

were calculated from the estimated decay rate and the boundaries

at 95% confidence interval obtained from the mixed-effects model.

Where the decay rate is a positive value, the calculated half-life is

reported as infinity. All analyses were undertaken using Stata

(version 10, Statacorp LP).

Supporting Information

Figure S1 Antibody responses against PfSE in P. falciparum

(square) and P. vivax (diamond) exposed subjects. Each symbol

represents the antibody titre of one individual. Dotted lines show

cut-off values calculated from a mixture model as described in

materials and methods. Solid lines show the median antibody titres

in each group.

Found at: doi:10.1371/journal.ppat.1000770.s001 (0.03 MB

DOC)
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