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Adjustment for the Propensity Score
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Abstract

McCandless, Gustafson and Austin (2009) describe a Bayesian approach to regression
adjustment for the propensity score to reduce confounding. A unique property of the method is
that the treatment and outcome models are combined via Bayes theorem. However, this estimation
procedure can be problematic if the outcome model is misspecified. We observe feedback that can
bias propensity score estimates. Building on new innovation in Bayesian computation, we propose
a technique for cutting feedback in a Bayesian propensity analysis. We use the posterior
distribution of the propensity scores as an input in the regression model for the outcome. The
method is approximately Bayesian in the sense that it does not use the full likelihood for
estimation. Nonetheless, it severs feedback between the treatment and outcome giving propensity
score estimates that are free from bias but modeled with uncertainty. We illustrate the method in a
matched cohort study investigating the effect of statins on primary stroke prevention.
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1. Introduction

Propensity score (PS) techniques are a class of statistical methods that can
be used to reduce confounding in observational studies. They have seen
widespread application in recent years, particularly in epidemiologic inves-
tigations of the effects of treatments or exposures. The methods involve first
estimating the PS for each study subject, defined as the probability of treat-
ment given measured confounders. Then the estimated PS is used to build
comparisons of treated and untreated subjects that are balanced with respect
to the distribution of confounders. Analysis techniques include stratification
on the PS, matching on the PS, inverse probability weighting and other tech-
niques (Lunceford and Davidian, 2004).

PS techniques have seen only modest development from a Bayesian per-
spective. Estimators that use the PS are typically calculated from estimating
equations or likelihood functions. There has been little research on the role of
Bayes theorem when using the PS for causal inference. One reason is because
there is no consensus on how the PS should be incorporated into a Bayesian
analysis. Some scientists argue that when constructing a model for the out-
come variable in an observational study, the likelihood function should not
depend on the PS (Robins and Ritov, 1997; Tan, 2006). Others argue the PS
may play a practical role in building robust Bayesian procedures that have
good frequentist properties (Rubin, 1985).

McCandless, Gustafson and Austin (2009) describe a Bayesian approach
to regression adjustment for the PS. Their methodology mimics the popular
technique of stratifying on quintiles of the estimated PS. Markov chain Monte
Carlo (MCMC) is used to sample from the posterior distribution of model pa-
rameters. However, a curious finding is that the Bayesian approach allows the
models for outcome variable and treatment assignment be estimated simul-
taneously rather than sequentially. Standard PS techniques proceed in two
stages. We first estimate the PS and then substitute it in place of the true PS
in an outcome regression model. In contrast, a Bayesian propensity analysis
calculates the posterior distribution for the PS and the treatment effect at the
same time.

A consequence of the Bayesian approach is that the outcome variable can
produce feedback that influences the estimated PS. The method makes a trade-
off between fitting the outcome model and the treatment assignment model.
Provided that all models are been correctly specified, then this can greatly
increase the efficiency of the estimated PS compared to standard frequentist
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techniques (McCandless et al. 2009). However, if the regression model for
the relationship between the outcome and the PS is misspecified, then the
Bayesian approach results in contamination between models that biases the
PS estimates. See McCandless et al. (2009) for detailed simulation results
comparing the performance of different methods.

In a recent paper, Lunn et al. (2009a) introduce techniques for cutting
feedback when fitting complex Bayesian models. They describe an example
from pharmacokinetics that involves the joint analysis of multiple datasets
where there is uncertainty in the model specification. To limit feedback be-
tween models, the authors propose an approximate Bayesian technique that
uses the posterior distribution from one fitted model as an input when fitting
the remaining models. This restricts the flow of information between models
during MCMC computation. A similar Bayesian estimation procedure called
modularization is proposed by Liu, Bayarri and Berger (2009) in the context
of analyzing computer models.

The idea of cutting feedback is natural in regression adjustment for the
PS because may be desirable to estimate the outcome and treatment models
separately. PS techniques allows us to generate unconfounded comparisons
between treatment groups. An outcome model is ultimately required for es-
timating the treatment effect. However, it is typically viewed as a nuisance
model and handled with minimal parametric assumptions (e.g. in conditional
logistic regression when matching on the PS). Consequently, it may be inap-
propriate to allow the outcome model to influence the estimated PS. In fact,
Rubin (2008) argues that PS estimation should occur without any reference
to outcome data. From a purist Bayesian perspective, the best solution is to
use a more flexible nonparametric model for the mean response. But a sim-
pler approach is to restrict the flow of information between model components
altogether.

In this article we introduce a technique for cutting feedback in Bayesian
regression adjustment for the PS. We consider observational studies with a
time-fixed dichotomous treatment and several potential confounders. We mo-
tivate the methodology using a data example from pharmacoepidemiology. We
describe a matched cohort study of the relationship between statin therapy and
risk of stroke using data from the United Kingdom Health Improvement Net-
work (THIN) database (Smeeth et al., 2008). To limit feedback in a Bayesian
propensity analysis, we use the posterior distribution for the PS as a covariate
input in the regression model for the outcome variable. The method is only
approximately Bayesian because it does not involve joint estimation of the
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treatment and outcome models. However, we illustrate that the resulting PS
estimates are free of feedback from the outcome model and they are compati-
ble with estimates produced in standard frequentist propensity analysis.

2. THIN Data for Studying the Health
Effects of Statin Among Elderly UK Pa-
tients

Statins have emerged as the most widely prescribed cholesterol lowering medi-
cation (Rutishauser, 2006). Their effectiveness in primary prevention of cardio-
vascular disease has been well documented in several large randomized trials
dating back to the 1990’s. However there has been renewed interest in the
health effects of statins that are unrelated to cardiovascular disease, such as
risk of infection, cancer, dementia and other chronic illnesses. In a recent pa-
per, Smeeth et al. (2008) used PS techniques to study the impact statins on
a variety of health outcomes in a matched cohort study of UK patients. They
used data from the Health Improvement Network database (THIN) database,
which contains computerized medical records from general practices in the UK.

In this article we replicate the analysis of Smeeth et al. (2008), but focus
on using PS techniques to estimate the effect of statins on risk of stroke in the
elderly. Previous research has already demonstrated that statins reduce the
risk of stroke. However, we can use this knowledge in the present investigation
in order to validate competing PS analyses.

Our target population is UK patients aged 65 or older and registered at
one of 303 general practices that contributed data to the THIN database dur-
ing the period January 1995 and December 2006. Following Smeeth et al.
(2008), the treated group of statin users was defined as all patients initiating a
statin after 1995 and who had one year of continuous registration at a general
practice. We identified a total of 23306 such individuals, of whom 19274 had
complete information on important potential confounders such as smoking,
alcohol consumption and body mass index. For each treated patient we set an
index date for initiation of follow-up, which was the date of first receiving a
statin.

To limit the size of the untreated group, we followed Smeeth et al. (2008)
and used a matched cohort design. Each treated subject was matched with
up to five untreated subjects that were randomly sampled from the THIN
database. Matching variables included age and gender, and additionally, in-
dex date and general practice in order to limit confounding from prescribing
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practice and temporal trends. A total of 71050 untreated subjects were select-
ing giving a total sample size of n = 19274 + 71050 = 90324, with an median
of 4 untreated subjects in each matched set. The median follow-up time for
all patients was 5.3 years.

Let X be an indicator variable for statin treatment for a patient in the
study, coded 1 if the subject initiated a statin and 0 otherwise. We conducted a
time-to-event analysis of time to stroke following the index date, with censoring
occurring at the end of follow-up. Subjects were excluded if they had stroke
prior to the index date. Let T denote the time of observation and let δ denote
a censoring indicator. If δ = 0 then the subject was censored and T is the
time of censoring. If δ = 1 then the subject had a stroke and T is the time of
stroke. Following convention in survival analysis, we assume that the censoring
mechanism is uninformative (Ibrahim, Chen and Sinha, 2004).

A total of 3713 strokes occurred over the course of follow-up. Of those, 814
occurred in the treated group during 86943 persons-years of follow-up, whereas
2899 strokes occurred in the untreated group during 382217 person-years of
follow-up. The crude relative risk of stroke for treated versus untreated is
814/86943

2899/382217
= 1.23 with 95% confidence interval (1.14, 1.33), suggesting that

statins are dangerous and increase stroke risk.
In fact, the reverse is true (Rutishauser, 2006) and the association between

statins and stroke is likely to be confounded. Table 1 describes the charac-
teristics of the treatment groups upon entry into the study. While the age
and gender distributions are roughly balanced between groups owing to the
matched sampling, we see that that the statin users are a much sicker group
of patients. They have higher rates of cardiovascular related illness such as
diabetes and hypertension. Consequently, the statin user group was at greater
risk of stroke prior to initiating treatment. While the matching process re-
duces some of the systematic difference between treatment groups, it is clear
that valid comparison cannot be drawn without further adjustment for con-
founding. See Smeeth et al. (2008) for further discussion of the cohort.

3 Frequentist versus Bayesian Propen-
sity Analysis of the THIN Data

3.1 Estimation of the Propensity Scores

The THIN data contain rich information on potential confounders. We let
C denote at 40×1 vector of potential confounders, including the 23 variables
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Table 1: Characteristics of statin users versus non-users on the index date.
Each column gives totals with percentages in brackets.

Statin User Non-user
n=19274 n=71050

Demographics
Age

65− 74 12296 (64) 47646 (67)
75− 84 5776 (30) 19935 (28)
> 85 1202 (6) 3469 (5)

Female Sex 10997 (57) 40202 (57)
BMI < 25 6632 (34) 29709 (42)
BMI 25-30 8800 (46) 28601 (40)
BMI > 30 3842 (20) 12740 (18)
Low SES 3734 (19) 13428 (19)
Current smoker 6023 (31) 21863 (31)
Heavy drinker 278 (1) 573 (1)

Comorbid conditions
Diabetes 4867 (25) 8953 (13)
Coronary heart disease 10569 (55) 9227 (13)
Athereosclerosis 12046 (62) 13088 (18)
Hepatic disease 38 (0) 256 (0)
Renal disease 286 (1) 564 (1)
Hyperlipidemia 6409 (33) 2467 (3)
Hypertension 10772 (56) 27713 (39)

Medications
Hormone replacement therapy 513 (3) 2366 (3)
Antidepressent 1750 (9) 5746 (8)
Lipid lowering agent 1084 (6) 713 (1)
Aspirin 11296 (59) 12650 (18)
Beta blocker 9906 (51) 17250 (24)
Calcium channel blocker 8994 (47) 14514 (20)
Antihypertensive 7869 (41) 13149 (19)
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listed in Table 1, plus an additional 17 unlisted variables that are measures of
illness, medication use and access to health services.

Smeeth at al. (2008) used regression adjustment for the PS to reduce
confounding. In the present analysis, we also use PS techniques. We estimate
the PS for each patient using a logistic regression model for the association
between X and C, given by

logit{Pr(X = 1|C)} = γTC. (1)

The regression coefficients γ model the association between the covariates and
probability of treatment. We write C = (C0, C1, . . . , Cp), with p = 40 and
fix C0 = 1 as a regression intercept term. Table 2, under the heading MLE,
gives maximum likelihood estimates for selected components of the regression
parameter γ computed from the THIN data.

In our analysis, the covariate vector C includes age and gender (see Tables
1 and 2), however it does not include the matching variables for patient index
date and primary practice that are described in Section 2. The reason is
because these covariates are high dimensional with no ordering. Handling
these covariates in a propensity model requires conditional logistic regression
or other methods to handle multiple nuisance parameters. But conditional
likelihood models have no straightforward interpretation within the Bayesian
analysis framework (Rice, 2004). By ignoring these matching variables in a
propensity analysis, it is possible that we may induce residual confounding.
However, because of the matched sampling on exposure, we expect that most
of the association between the matching variables and treatment assignment
will be modest. Further details on this point are given in the Discussion of
Section 5.

Following Rubin and Thomas (1996), we call Z = logit{Pr(X = 1|C)} the
propensity score, which we define as the log odds of treatment given measured
covariates. If γ̂ is an estimate for γ, then a patient with covariate vector
C will have an estimated PS equal to γ̂TC. Figure 1 illustrates the balance
of selected covariates with respect to treatment status, as a function of the
estimated PS. The figure gives loess kernel density estimates of the quantities
P (Cj = 1|X = 1, Z = z) (solid curve) and P (Cj = 1|X = 0, Z = z) (dashed
curve), for selected covariate Cj, as a function of z. If the curves lie on top
of one another, then this indicates good balance. For example, the bottom
right figure shows the prevalence of aspirin use as a function of the estimated
PS. In Table 1, we see that statin users are far more likely to take aspirin
than non-user (59% versus 18%). However, Figure 1 shows that conditioning
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Table 2: Log odds ratios (standard errors) for regression coefficients γ in the
treatment assignment model of equation (1).

Log Odds Ratio (Standard Error)
SEQUENTIAL

Covariate MLE BAYES BAYES

Demographics
Age

65− 74∗ 0 0 0
75− 84 -0.156 (0.024) -0.132 (0.024) -0.157 (0.024)
> 85 -0.094 (0.044) -0.066 (0.044) -0.095 (0.044)

Female Sex 0.458 (0.024) 0.440 (0.023) 0.458 (0.024)
BMI < 25∗ 0 0 0
BMI 25-30 0.182 (0.023) 0.183 (0.023) 0.182 (0.024)
BMI > 30 0.008 (0.030) 0.006 (0.030) 0.007 (0.030)
Low SES -0.108 (0.026) -0.101 (0.026) -0.109 (0.026)
Current smoker 0.147 (0.027) 0.155 (0.026) 0.148 (0.026)
Heavy drinker 0.799 (0.097) 0.801 (0.095) 0.796 (0.098)

Comorbid conditions
Diabetes 0.753 (0.026) 0.761 (0.025) 0.754 (0.026)
Coronary heart disease 0.880 (0.055) 0.881 (0.053) 0.880 (0.055)
Athereosclerosis 0.553 (0.056) 0.545 (0.053) 0.554 (0.055)
Hepatic disease -0.883 (0.208) -0.877 (0.208) -0.899 (0.210)
Renal disease 0.204 (0.092) 0.202 (0.092) 0.201 (0.091)
Hyperlipidemia 2.523 (0.031) 2.515 (0.031) 2.525 (0.031)
Hypertension -0.169 (0.024) -0.159 (0.024) -0.169 (0.024)

Medications
Hormone therapy -0.185 (0.062) -0.191 (0.063) -0.184 (0.063)
Antidepressent -0.070 (0.036) -0.060 (0.036) -0.071 (0.037)
Lipid lowering agent 0.138 (0.064) 0.138 (0.064) 0.139 (0.064)
Aspirin 1.090 (0.024) 1.087 (0.024) 1.090 (0.024)
Beta blocker 0.214 (0.024) 0.216 (0.024) 0.214 (0.024)
Calcium channel blocker 0.127 (0.024) 0.128 (0.024) 0.127 (0.024)
Antihypertensive 0.494 (0.025) 0.485 (0.025) 0.494 (0.024)

∗ Reference category
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Figure 1: Balance with respect to treatment status. The plots give kernel
density estimates of the prevalence of selected covariates, among treated (solid
curve) or untreated (dashed curve), as a function of the estimated PS.
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on Z forces the distribution of aspirin use to be roughly balanced between
treatment groups because the solid line and curved line are close together.
This implies that if we condition on the estimated PS, then aspirin use is no
longer a powerful confounder. In the THIN data, the estimated PS ranges
from -5.5 to 4.4. To create Figure 1, we truncated the scores at the 10th and
90th percentiles in order to ensure that there were adequate patients within
each treatment group so as to give precise estimates of the distribution of Cj.

Figure 1 indicates that we can use the estimated PS to reduce confounding
in the THIN data. Possible analytic strategies include stratifying on quintiles
of the PS, matching on the PS, including the PS as a covariate in a regression
model, or inverse probability weighting. See Luncefore and Davidian (2004)
for a review of analytic techniques.

3.2 Regression Adjustment for the Propensity
Score

To adjust for confounding from C, we include Z as a covariate in a Weibull
proportional hazards regression model for stroke risk. The hazard function is
given by

h(T |X,C) = exp{α + βX + ξZ}λT λ−1 (2)

with corresponding survivor function

S(T |X,C) = exp
[
− exp{α + βX + ξZ}T λ−1}

]
(Ibrahim et al., 2004). Equation (2) models the time to stroke as a Weibull
distribution with scale parameter exp{α+ βX + ξZ} and shape parameter λ.
The linear predictor α+ βX + ξZ defines the relationship between stroke risk
and both treatment and covariates. It includes an intercept α, treatment effect
parameter β, and a linear contribution ξZ, which governs the relationship
between the Z and risk of stroke. Note that from equation (1) that the quantity
Z is a deterministic function of the covariates C (McCandless et al., 2009).

In typical applications, the relationship between the PS and the outcome
variable is non-linear and poorly understood. Nonetheless, provided that the
outcome model in equation (2) is correct, then the regression parameter β will
have a causal interpretation. See Rosenbaum and Rubin (1983) and Lunceford
and Davidian (2004) for further discussion of regression adjustment for the PS.
A linear relationship between the log hazard and Z may seem overly simplistic
in the THIN data. However, it has the advantage that it straightforward to
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Table 3: Log odds ratios (standard errors) for the treatment effect β and the
association between the propensity score and outcome ξ given in equation (2).

Log Hazard Ratio (Standard Error)
Analysis method Treatment effect β Propensity slope ξ

MLE -0.127 (0.049) 0.126 (0.011)
BAYES -0.149 (0.051) 0.135 (0.012)
SEQUENTIAL BAYES -0.137 (0.051) 0.131 (0.011)
UADJUSTED 0.209 (0.039) ∗
∗ The unadjusted analysis does not include ξ in the model.

understand and highlights the distinction between Bayesian and frequentist
PS techniques. In the discussion that follows, we show that the regression
coefficient ξ acts as a throttle that controls feedback between the outcome and
PS during estimation. In principle, it is straightforward to modify equation
(2) to accommodate more complicated forms of nonparametric dependence,
such as regression splines.

Table 3, under row heading “MLE” gives point estimates and standard
errors for the treatment effect β and slope parameter ξ when fitting equation
(2) by maximum likelihood, while substituting the estimated PS in place of
the true PS. For comparison, the row with heading “UNADJUSTED” gives
the results from fitting the Weibull proportional hazards model while forcing
ξ = 0 (i.e. ignoring confounding). In the unadjusted analysis, the hazard
ratio is exp(0.209) = 1.23, which suggests that statins increase risk of stroke.
The MLE analysis gives a hazard ratio of exp(−0.127) = 0.90 and correctly
indicates that statins reduce the risk of stroke (Rutishauser, 2006).

An interesting feature of Table 3 is the MLE estimate of ξ, which is 0.126.
Patients with a high propensity score are at greater risk of stroke. This makes
sense intuitively. As illustrated in Table 1, statin users are at greater risk of
cardiovascular disease upon study entry. Hence ξ is greater than zero. The
relationship between the the outcome and propensity score normally receives
little attention in data analysis (Kurth et al., 2006) because it is a nuisance
parameter with no biological meaning. Nonetheless, the parameter ξ plays
an important role in Bayesian analysis because it dictates how the outcome
influences the estimation of the PS.
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3.3 A Bayesian Approach

McCandless et al. (2009) recently proposed a Bayesian approach to regression
adjustment for the propensity score. The method uses standard models (e.g.
equations (1) and (2)). However, it’s uniqueness stems from the property
that the models for treatment and outcome are fit simultaneously rather than
sequentially. To illustrate, write data = {(Ti, δi, Xi, Ci); i ∈ 1 : n} to denote
the THIN dataset. The posterior density for model parameters (α, β, ξ, λ, γ)
is

p(α, β, ξ, λ, γ|data) ∝ L(α, β, ξ, λ, γ)p(α, β, ξ, λ, γ), (3)

with prior density p(α, β, ξ, λ, γ) and likelihood function

L(α, β, ξ, λ, γ) =
n∏
i=1

p(Ti|Xi, Ci, δi, α, β, ξ, λ, γ)p(Xi|Ci, γ)

=
n∏
i=1

h(Ti|Xi, Ci)
δiS(Ti|Xi, Ci)× p(Xi|Ci, γ)

=
n∏
i=1

[
exp{α + βXi + ξZi}λT λ−1

i

]δi
×

exp
[
− exp{α + βXi + ξZi}T λi

]exp{Xi(γ
TCi)}

1 + exp{γTCi}
,

which is the product of the likelihood functions for the outcome and treatment
assignment model.

To estimate the treatment effect, we sample from the posterior distribution
for model parameters using MCMC. The calculation proceeds in two iterative
stages: First, we impute the PS by updating from the conditional distribution
of γ, denoted as p(γ|α, β, ξ, λ, data). Second, given the imputed PS, we fit the
survival analysis model by updating from the conditional distribution of the
outcome model parameters p(α, β, ξ, λ|γ, data). The procedure is conceptually
similar to the Monte Carlo EM algorithm for maximum likelihood estimation.

Feedback from the outcome model is a consequence of the conditional dis-
tribution for γ, which is given by

p(γ|α, β, ξ, λ, data) ∝
n∏
i=1

p(Ti|Xi, Ci, δi, α, β, ξ, λ, γ)p(Xi|Ci, γ)p(γ). (4)

Stroke risk depends on the PS via the linear predictor ξZ. Therefore, Metropo-
lis updates of γ will to some extent be influenced by the estimated value of
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ξ. If ξ is large in magnitude, then this increases feedback. Whereas if ξ → 0
then feedback vanishes, and equation (4) becomes

p(γ|α, β, ξ, λ, data) ∝
n∏
i=1

p(Xi|Ci, γ)p(γ), (5)

which is just the usual posterior distribution used to calculate PS estimates
from Bayesian logistic regression of X on C. Full computational details are
given in McCandless et al. (2009) for the case of a dichotomous response
variable.

We apply the Bayesian propensity analysis to the THIN data. We assign
independent diffuse Gaussian priors for the regression coefficients

α, β, ξ, γ0, γ1, . . . , γp ∼ N(0, 103),

and we assign a diffuse Gamma prior for the shape parameter λ (Ibrahim et
al, 2004). Using flat priors raises the possibility that the posterior distribu-
tion will be improper. In fact, we see from the likelihood function that if the
components of γ are equal to zero, meaning that Zi = 0, then the likelihood
function does not depend on ξ and the model is nonidentifiable. Assigning
proper priors to model parameters ensures that the posterior is proper, but
does not necessarily prevent the sampler from escaping into regions of non-
identifiability. Thus care is needed to check for satisfactory MCMC mixing.

We draw a sample from the posterior distribution using an MCMC chain of
length 100 000 after burn-in. We assessed sampler convergence by repeating
the analysis using different overdispersed starting values and the diagnostic
tools in the R CODA package (Plummer et al., 2006). The analysis results
are given in Tables 2 and 3 under the headings “BAYES”. Table 2 reveals
clear albeit small differences between MLE and BAYES estimates of γ. For
example, the log odds ratios for the effect of age and gender on statin use are
slightly attenuated towards zero in the Bayesian analysis.

In fact, we can easily exaggerate the feedback using sensitivity analysis.
Rather than letting the data guide the fitted value for ξ, we can hold ξ fixed
during MCMC. This is accomplished by not updating ξ. Figure 2 shows the
results of such a sensitivity analysis. The plots on the left under the heading
“BAYES” are derived from a Bayesian analysis with ξ held fixed at values
ranging between 0.0 and 2.0 (horizontal axis) in a sensitivity analysis. The
dashed curves in each plot describes the posterior mean of a component of γ as
a function of ξ. For example, in the top left panel the dashed curve describes
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Figure 2: Sensitivity analysis results from applying BAYES or SEQUENTIAL
BAYES with the parameter ξ held fixed during MCMC computation. The
dashed curves plot the posterior mean of a component of γ as a function of ξ.
The solid horizontal lines indicate the MLE of the same component of γ taken
from Table 2.
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E[γFemaleSex|data, ξ] as a function of ξ. To caracterize the magnitude of feed-
back, we also plot the solid horizontal curve, which is the MLE for γFemaleSex

and is equal to 0.458 (Table 2). The extent to which the solid and dashed
curves depart from one another indicates the extent that BAYES and MLE
give different inferences when ξ is large in magnitude. Large values of ξ boost
feedback, whereas when ξ → 0 the feedback vanishes, and BAYES and MLE
are equivalent.

4. Cutting Feedback in Bayesian Propensity
Analysis

4.1 Review: Cutting Feedback in Bayesian Com-
putation

In a recent paper, Lunn et al. (2009a) introduce a method for cutting feedback
when fitting complex Bayesian models using MCMC. The approach is similar
in spirit to two-stage estimation. We express the posterior distribution as a
correct decomposition of conditional distributions for model parameters, but
during posterior updating we do not update from the full conditionals. The
procedure discounts the likelihood contribution from different data sources to
ensure that the model components are fitted separately. Cutting feedback
approach has been implemented in the BUGS language (Lunn et al., 2009b)
through “cut” command. A related Bayesian computational procedure is pro-
posed by Liu et al. (2009).

The work of Lunn et al. (2009a) is motivated by applications in phar-
macokinetics, whereas Liu et al. (2009) describe examples in the analysis of
computer models. Each case involves combining inferences from multiple data
sources using different models. A full Bayesian approach fits the models si-
multaneously via Bayes theorem. But this can have undesirable consequences.
The datasets may be incompatible with one another in the sense that separate
analyses lead to different inferences about the same parameters. The com-
bined fit for any specific model will be poor because of contamination between
data sources. Liu et al. (2009) argue that improved modelling is the best
solution, however this may not be straightforward in some settings if the data
generating mechanism is complex and poorly understood.

Furthermore, simultaneous model fitting may be unappealing based on
subject area considerations. For example, the analysis of computer models
involves fitting a computer model emulator using simulation runs. Field ob-
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servations are often available, but should not be used to inform the emulator.
Joint fitting of all data sources at once is counterintuitive to subject matter
experts. Cutting feedback ensures that the flow of information during impu-
tation moves in one direction. See Liu et al. (2009) for further discussion of
applications to computer models.

Lunn et al. (2009a) are careful to point out that the resulting inferences
does not arise from an underlying probability model. But nor do inferences
from other sequential analyses. Further discussion on this point is given in
Section 6.

4.2 Application to the THIN data

Following Lunn et al. (2009a) and Liu et al. (2009) we cut feedback between
the treatment and outcome models by not updating from the full conditional
distribution for γ. The correct conditional densities for p(γ|α, β, ξ, λ, data)
is given in equation (4). To cut feedback, we update from the approximate
conditional distribution

p̃(γ|α, β, ξ, λ, data) ∝
n∏
i=1

p(Xi|Ci, γ)p(γ),

which ignores the likelihood contribution from the outcome. Note that this
density is exactly equivalent to the posterior distribution from Bayesian logis-
tic regression of X on C given in equation (5). The procedure is trivial to
implement in Bayesian computation because it involves only a small modifi-
cation of the MCMC algorithm. At iteration t, of a random walk Metropolis
Hasting algorithm with proposal γ∗, we assign γt ← γ∗ with probability

min

[
p̃(γ∗|α, β, ξ, λ, data)

p̃(γt−1|α, β, ξ, λ, data)
, 1

]
.

Tables 2 and 3 under heading “SEQUENTIAL BAYES” give estimates for
γ, β and ξ when cutting feedback in the Bayesian propensity analysis. As
in Section 3.3, the estimates are obtained using an MCMC chain of length
100 000 after burn-in, and we apply convergence diagnostics in the software
R (Plummer et al., 2006). Table 2 reveals that the sequential Bayes estimates
of γ are in close agreement with the MLE. Thus feedback from the outcome
has been eliminated. In fact, the point estimates for γ from MLE and SE-
QUENTIAL BAYES must be asymptotically equivalent because of the well
known large sample frequency matching properties of Bayesian and maximum
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likelihood estimates. MLE and SEQUENTIAL BAYES are computed using
the same likelihood function for γ.

Table 3 illustrates that the estimated treatment effect β is similar for all
analyses, but BAYES and SEQUENTIAL BAYES give a small increase in the
standard error of β. This increase in posterior uncertainty for the treatment
effect reflects the propagation of the (modest) uncertainty in the PS through
the analysis. MLE ignores this uncertainty because it substitutes the estimated
PS in place of the true PS.

Figure 2 (right hand side) illustrates the effect of cutting feedback on esti-
mation of γ as part of a sensitivity analysis that holds the parameter ξ fixed
during MCMC computation. Dashed curves, which are nearly invisible, give
the posterior mean of a selected component of γ as a function of ξ. For ex-
ample, in the top right we plot E[γFemale Sex|data, ξ] as a function of ξ. The
solid curves give the MLE of the relevant component of γ taken from Table
2. For SEQUENTIAL BAYES, we see that the dashed and solid curves are
overlapping for all values of ξ. This illustrates that the magnitude of ξ (i.e. the
association between the outcome and the PS) does not influence feedback on
γ. Inferences for γ are driven entirely from the treatment assignment model.

Figure 2 reveals that by not updating from the full conditional distribution
of γ we are able to block feedback from the outcome variables when estimat-
ing the PS. The resulting estimated PS are in close agreement with those
obtained from the standard frequentist approach, but with the commensurate
propagation of uncertainty in the PS through the analysis.

Table 4: The effective sample size for MCMC chain segments of length 10 000.

Effective Sample Size
BAYES SEQUENTIAL BAYES

γFemaleSex 283 656
γLowSES 239 681
γSmoker 253 661
γHeavyDrinker 303 669
γHyperlipidemia 278 724
γAspirinUse 293 623

A useful byproduct of cutting feedback is improved MCMC computation.
Fitting the combined likelihood can hinder sampler convergence because the
chain must move so as to fit the treatment and outcome models simultane-
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ously. Table 4 reports the effective sample size (ESS) of the posterior samples
for selected components of γ based on a chain segment of length 10 000. The
ESS measures the amount of information in the chains, while taking into con-
sideration the autocorrelations. The ESS equals the length of the chain if the
autocorrelation is zero, and is calculated by estimating the spectral density
from an autoregressive model (Plummer et al. 2006). In Table 4, the ESS
are generally low (� 10000), as is typical for the random walk Metropolis
Hastings algorithm. However, in each case the ESS is increased by a factor of
2 for the sequential Bayesian analysis. Cutting feedback improves convergence
of the sampler.

5. Simulation Study of the Effect of Cutting
Feedback

We present brief simulation results to illustrate the consequences of cutting
feedback between the PS and outcome variable. Building on McCandless et al.
(2009), we consider the scenario of a dichotomous outcome Y , a dichotomous
treatment X, and two continuous covariates (C1, C2) that are independent
Gaussian distributed with mean zero and variance one. We simulate ensembles
of 1000 synthetic datasets of sample size n = 100, using the data generating
mechanism

logit{Pr(Y = 1|X,C1, C2)} = βX + ξ̃1C1 + ξ̃2C2

logit{Pr(X = 1|C1, C2)} = γ1C1 + γ2C2,

which have y-intercepts equal to zero. When generating the data, we fixed
the parameters to be equal to (β, ξ̃1, ξ̃2, γ1, γ2) = (0, 1, 1, .5, .5), which we call
Design A, or (β, ξ̃1, ξ̃2, γ1, γ2) = (0, .5, .5, 1, 1), which we call Design B. In either
case, the treatment effect β is equal to zero, but the unadjusted association
between X and Y is confounded because (C1, C2) are associated with X and
Y .

We analyze the synthetic data using five different methods: MLE, BAYES,
and SEQUENTIAL BAYES, each of which are fit using the regression models

logit{Pr(Y = 1|X,C1, C2)} = α + βX + ξZ

logit{Pr(X = 1|C1, C2)} = Z = γ0 + γ1C1 + γ2C2,

and additionally, method GOLD, which we define as fitting

logit{Pr(Y = 1|X,C)} = α + βX + ξ̃1C1 + ξ̃2C2,
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Table 5: Simulation results that describe the performance of point and 80%
interval estimates for the treatment effect β = 0.

Design A

(β, ξ̃1, ξ̃2, γ1, γ2) = (0, 1, 1, .5, .5)

Method Bias SD† Coverage Length

GOLD 0.003 0.555 77.2% 1.306
MLE 0.002 0.531 77.4% 1.270
BAYES -0.006 0.571 76.3% 1.303
SEQUENTIAL BAYES 0.097 0.527 76.7% 1.261
UNADJUSTED 0.686 0.437 35.4% 1.058

Design B

(β, ξ̃1, ξ̃2, γ1, γ2) = (0, .5, .5, 1, 1)

Method Bias SD† Coverage Length

GOLD -0.004 0.518 79.4% 1.291
MLE -0.004 0.510 79.6% 1.281
BAYES -0.016 0.540 78.4% 1.289
SEQUENTIAL BAYES 0.018 0.524 79.0% 1.280
UNADJUSTED 0.693 0.422 34.3% 1.058
† Standard Deviation (SD)

and method UNADJUSTED, which we define as logistic regression of Y on X
ignoring (C1, C2) altogether.

Table 5 summarizes the performance of point and 80% interval estimates
for the treatment effect parameter β = 0 when data are simulated using De-
signs A and B. The columns entitled Bias and Standard Deviation (SD) give
the empirical average bias and sample standard deviation of the 1000 point es-
timates for β calculated using each method. Coverage probability and average
length summarize the distribution of 80% interval estimates for β.

As expected, UNADJUSTED performs badly with large bias and poor
coverage because it ignores the confounders altogether, whereas GOLD suc-
ceeds in eliminating confounding. MLE, BAYES and SEQUENTIAL BAYES
all succeed in reducing bias. In terms of efficiency as measured by SD, the
performance of MLE is excellent. Note that in large samples, GOLD point
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estimates have the highest possible efficiency because they are maximum like-
lihood estimates calculated using the correct model for the data. BAYES point
estimates of β have lower efficiency than MLE amd GOLD. BAYES interval
estimates are wider on average than MLE, but confer no noticeable improve-
ment in coverage probability. These findings are echoed by McCandless et
al. (2009) who conducted detailed simulations comparing MLE and BAYES
under various data generating scenarios. The bottom of Table 5 summarizes
the performance of SEQUENTIAL BAYES and shows an improvement in ef-
ficiency of point estimates compared to BAYES. The interval estimates have
smaller average width and match more closely with those from MLE.

6 Discussion

In Bayesian analysis, different sources of information are combined via Bayes
theorem. If one of the sources of information is incorrect, for example through
model misspecification, then this can adversely affect the fitting of other com-
ponents of the model. We illustrate this reasoning in the context of Bayesian
regression adjustment for the PS. Joint estimation of the treatment and out-
come models produces feedback that can bias the PS estimates. We note
that the feedback is not inherently Bayesian and would also emerge from any
analysis that uses the combined likelihood.

If we are confident about modelling assumptions, then the likelihood prin-
ciple dictates that we ought to combine the likelihoods for the treatment and
outcome when calculating inferences (Robins and Ritov, 1997; Tan, 2006).
Consequently, the best analytic approach to reducing feedback in the PS is
improved modelling of the outcome variable. For example, we could use a
more flexible specification for the relationship between the PS and stroke risk
in equation (2).

However this is can be a challenging exercise. In the THIN data, the PS
for each patients is to some extent an artifact of the matching process. The
relationship between the outcome and PS has little biological meaning and can
vary from one study to the next. It can also be argued that careful modelling of
the outcome is not in the spirit PS techniques. The outcome model is of lesser
importance, and PS techniques focus on careful modelling of the treatment
assignment mechanism. Thus cutting feedback seems like a sensible strategy
for obtaining robust inferences that restrict the flow of information between
models during estimation. It also incorporate stochastic uncertainty in the PS

while simplifying Bayesian computation.
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A difficulty with cutting feedback in a Bayesian propensity analysis is that
there is no guarantee that the Markov chain is converging to a sensible equilib-
rium distribution. By not updating from the full conditional distribution for
γ in equation (4) it means that there is no underlying full probability model
for the data and parameters. Note however that, as argued in Section 4.2, the
MCMC chain for γ is guaranteed to converge to the posterior distribution for
γ from Bayesian logistic regression of X on C. See Lunn et al. (2009a) for
further discussion of sampler convergence in sequential Bayesian analysis.

A possible remedy is to build an MCMC chain that updates from the full
conditionals of the desired target distribution. To illustrate how one might ac-
complish this, first suppose that the parameter γ is known. Then the posterior
distribution for the outcome model parameters under a Weibull proportional
hazards regression is

p(α, β, ξ, λ|data, γ) =
[ n∏
i=1

p(Ti|Xi, Ci, δi, α, β, ξ, λ, γ)
]
p(α, β, ξ, λ)/Q(γ)

where Q(γ) =
∫ [∏n

i=1 p(Ti|Xi, Ci, δi, α, β, ξ, λ, γ)
]
p(α, β, ξ, λ)d(α, β, ξ, λ) is

the constant of normalization. To prevent feedback from the outcome when
fitting a Bayesian propensity analysis, we can construct the desired target
density as

p(α, β, ξ, λ, γ|data) = p(α, β, ξ, λ|data, γ)× p(γ|data)

∝
{∏n

i=1 p(Ti|Xi, Ci, δi, α, β, ξ, λ, γ)p(Xi|Ci, γ)

Q(γ)

}
p(α, β, ξ, λ, γ).

This posterior distribution is identical to the posterior density used by BAYES
in equation (3), except that it reweights the density using the normalizing
constant Q(γ). This formulation incorporates the posterior distribution for γ
from Bayesian logistic regression of X on C into the analysis, but without joint
fitting of the treatment and outcome model. Unfortunately, MCMC compu-
tation requires knowledge of Q(γ). For Gaussian response models, one could
work out Q(γ) analytically. Chen et al. (1999) describes computation of nor-
malizing constants for logistic regression. Other more general computational
strategies are discussed by Robert and Casella (2004).
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