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Most implementations of multiple imputation (MI) of missing data are designed for simple rectangular data
structures ignoring temporal ordering of data. Therefore, when applying MI to longitudinal data with intermit-
tent patterns of missing data, some alternative strategies must be considered. One approach is to divide data into
time blocks and implement MI independently at each block. An alternative approach is to include all time blocks
in the same MI model. With increasing numbers of time blocks, this approach is likely to break down because
of co-linearity and over-fitting. The new two-fold fully conditional specification (FCS) MI algorithm addresses
these issues, by only conditioning on measurements, which are local in time. We describe and report the results
of a novel simulation study to critically evaluate the two-fold FCS algorithm and its suitability for imputation of
longitudinal electronic health records. After generating a full data set, approximately 70% of selected continuous
and categorical variables were made missing completely at random in each of ten time blocks. Subsequently, we
applied a simple time-to-event model. We compared efficiency of estimated coefficients from a complete records
analysis, MI of data in the baseline time block and the two-fold FCS algorithm. The results show that the two-
fold FCS algorithm maximises the use of data available, with the gain relative to baseline MI depending on
the strength of correlations within and between variables. Using this approach also increases plausibility of the
missing at random assumption by using repeated measures over time of variables whose baseline values may be
missing. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.
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1. Introduction

Electronic health records of routinely collected clinical information are a valuable resource for
epidemiological investigations and health care research. They offer many opportunities to answer ques-
tions in populations, which are otherwise difficult and expensive to study using standard observational
studies and clinical trials. This includes research on individuals with severe mental illness, pregnant
women, children and the very elderly people [1–5]. The databases are a powerful data sources for
research into cardiovascular diseases including coronary heart disease (CHD) and stroke [6, 7]. One
example of electronic health records is the The Health Improvement Network (THIN) primary care
database. It consists of clinical records that capture information on medical diagnoses, symptoms and
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prescribed medication as well as information on health indicators through routine consultations with a
general practitioner or health care professionals. THIN includes electronic health records for more than
11 million patients registered with over 500 General Practices across the UK, some of which date back
to the early 1990s. Most patients have records of several consultations, from the point of registering with
the practice to the time they leave, providing a longitudinal record of health data (mean follow-up time
is 6.7 years) [8]. In the first year after registration with the practice, patients typically have a record of
past and current medical history and some have health indicators such as height, weight, blood pressure,
alcohol and smoking status measured [9]. Thereafter, this information is only recorded intermittently
and if directly relevant to the clinical management of the patient. For example, patients with previous
cardiovascular events, or those who are at risk of these, are much more likely to have several, regular
measurements of health indicators recorded compared with patients without such events. Indeed, since
2004, patients diagnosed with any one of a number of chronic conditions or diseases are monitored at
regular intervals as a part of the NHS care delivery plan for UK general practice (Quality Outcome
Framework) [10]. Despite this, previous research shows nearly 40% of patients are missing blood pres-
sure or weight measurements in the first year after registration [9]. Such patterns of clinical observations
are typical in databases of this kind and may be an obstacle to their use in epidemiological research,
which requires accurate records of key health indicators over time.

Within medical research, multiple imputation (MI) [11] is increasingly regarded as the standard
method to analyse missing data [12]. MI generates complete data sets. In each, missing values are appro-
priately imputed from the estimated distribution of the missing data given the observed data. Each of
these completed data sets is analysed in the standard way, that is, using the method that would have been
used if there were no missing data. The results are combined for final inference using Rubin’s rules (see,
for example, [13], Chapter 2).

Most implementations of MI are designed with a simple rectangular structure and do not take temporal
ordering of the data into account. Electronic health records often contain longitudinal and dynamic
records, with intermittent patterns of missing data and many variables recorded each time. This makes
the missing data problem more complex than other study settings such as clinical trials and standard
cohort studies. One approach is to divide the data into blocks of time and implement MI independently
at each time block. Consequently, correlations between measurements at different time blocks are dis-
torted in the imputed data, and longitudinal information in the observed data is ignored. In general, this
approach yields biassed parameter estimates, particularly if interest lays in the longitudinal evolution
of health indicators. An alternative approach is to include all of the time blocks in the same MI model,
with distinct variables for measurements of each health indicator at each time block. This approach may
work well for a few time blocks, but it does not exploit the temporal ordering of the measurements. As
variables and time blocks increase, this approach may break down because of problems of co-linearity
in predictors and over-fitting. This is likely to be a particular problem for categorical variables. Con-
versely, methods that take full account of the hierarchical and longitudinal structure ([13], Chapter 9) are
currently computationally intractable in these settings.

A number of studies have investigated MI in longitudinal records but in specific or simpler set-
tings. Liu and Zhan [14] considered data with a monotone missingness pattern; Vinogradova et al. and
Sarraceno et al. [15, 16] imputed missing data at a single time point; Grittner et al. [17] and Lewis et al.
[18] used small data sets with few time points and thus were able to include measurements at all time
points in the imputation model without any computational issues arising. Howard et al. [19] and Wood
et al. [20] focused on imputing only the outcome.

Nevalainen et al. [21] proposed a new implementation of MI, termed two-fold fully conditional
specification (FCS), which exploits the temporal relationship between variables in longitudinal data
with a potentially non-monotone missingness pattern. The two-fold FCS algorithm only conditions on
measurements local in time to address the problems raised. Specifically, it visits each time block in turn
and imputes data at this time block, say t; taking into account variables measured at times t; and adjacent
time blocks .t � 1/ and .t C 1/: The two-fold FCS algorithm iterates through all the time blocks many
times and thus carries information through the longitudinal records.

Nevalainen et al. illustrated the potential of this approach using data simulated from a case-control
study with measurements collected at just three time points with up to 40% of records missing. How-
ever, it is unclear how the two-fold FCS algorithm performs in the more complex setting of longitudinal
electronic health records with a substantially higher proportion of missing data and more than three
time points. Thus, in this paper, we describe and report the results of a novel simulation study to fur-
ther evaluate the two-fold FCS algorithm with the aim of investigating the suitability of the two-fold
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FCS algorithm for imputation of longitudinal electronic health records. We generated the data for the
simulation study on the basis of the dynamic patterns of data recording in UK primary care derived
from THIN. We focus on MI of a few variables that constitute a mixture of continuous and categorical
health indicators typically included in epidemiological studies as risk predictors or confounders. After
generating a full data set, we made approximately 70% of the data in selected variables missing com-
pletely at random (MCAR) in each of ten time blocks. We applied a substantive time-to-event model,
which mimics essential features of a cohort study, to examine risk for CHD. We compare efficiency and
coverage of confidence intervals for estimated coefficients from (i) a complete records analysis, (ii) MI
of data in the baseline time block alone and (iii) MI of the longitudinal data using the two-fold FCS
algorithm.

The plan for the article is as follows: Section 2 describes the two-fold FCS algorithm in detail,
whereas Section 3 gives details of the data generation and simulation process. The results are presented
in Section 4, and we conclude with a discussion in Section 5.

2. The two-fold fully conditional specification algorithm

2.1. Setup

We assume longitudinal records exist for i D 1; : : : ; N independent individuals with a time-to-event
outcome, Yi D .�i ; Ti /

T ; where �i indicates whether the individual experienced the event of interest
.�i D 1/ or was censored .�i D 0/ and Ti is the earlier of the time-to-event and time-to-censoring.

Let Y D
�
YT1 ; : : : ;Y

T
N

�T
denote the 2N � 1 vector of time-to-event data. We assume j D 1; : : : ; J

covariates exist with values at t D 1; : : : ; T (typically equally spaced) time blocks. Let Xi;j;t denote

the value of variable j for individual i at time t . Let Xj;t D
�
X1;j;t ; : : : ; XN;j;t

�T
be the N � 1 vector

of values of covariate j at time t and X D
�
XT1;1; : : : ;XJ;1; : : :X1;T ; : : :XJ;T

�T
denote the NJT � 1

vector of covariates. Lastly, let Xmis; Xobs denote the subvectors of X corresponding to the missing and
observed values, respectively. We assume that data are missing at random (MAR).

2.2. Joint model multiple imputation

At its heart, MI has a joint model for the data, which consists of Y, X and a vector of response variables
indicating which components of X are observed and which are missing. Assuming MAR and parameter
distinctiveness, there is no need to model this response indicator, and we can express the joint model as

f .X;Yj�/; (1)

where � is a parameter vector. In its original form, MI proceeds by drawing K independent realisations
from the posterior distribution f .Xmis;�jXobs;Y/ ; typically using MCMC, and then discarding the
draws of � to give K imputed data sets

˚
Xmis;k;Xobs;Y

�
kD1;:::;K

: The substantive model is fitted to
each imputed data set in turn, using the usual full data procedure, and the results are summarised for
final inference using Rubin’s rules (for details see [13], Chapter 2).

2.3. Full conditional specification multiple imputation

The FCS approach to MI [22] approximates the joint model MI procedure by, in turn for each variable
Xj 0;t 0 ; j 0 D 1; : : : ; J; t 0 D 1; : : : ; T; which constitutes an iteration

(1) regressing Xj 0;t 0;obs on all other variables
˚
Xj;t

�
.j;t/¤.j 0;t 0/

;Y; where missing values in the
covariates (of the imputation model) take their current imputed values. Note this is fitted to the
subset of individuals for whom Xj 0;t 0 was originally observed;

(2) using the regression model to generate one imputation of each missing value in Xj 0;t 0 .

Fully conditional specification is initiated by imputing missing values in each variable Xj;t by sampling
with replacement from observed values of Xj;t :

Starting from the initial values, FCS completes a few iterations, typically 20 [23], and the current
imputed and observed data become the first imputed data set. FCS completes a few further iterations
before taking the current imputed and observed values as the second imputed data set. The number of
imputation updates is chosen so that the imputed data sets are independent.

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3725–3737
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Similarities between MI using FCS and MI from a joint model are only established in certain cir-
cumstances for multivariate normal and multivariate categorical data ([13], Chapters 3, 4). However,
many simulation studies (e.g. [23]) indicate FCS performs well in practice. One reason FCS is popular
is because it is flexible, and different regression model types are used to impute different variable types.
FCS thus is a natural candidate to impute the longitudinal data described previously.

2.4. Imputing longitudinal data

As outlined in Section 1, several drawbacks exist to apply FCS so each health indicator/time block
combination is included as a separate covariate. This is evident when we consider the many covariates
..JT �1/C2/ included in each FCS regression model. With a few time blocks, it is a feasible approach,
but with many time blocks and variables, as mentioned previously, one may encounter co-linearity and
over-fitting issues, particularly for categorical variables [24].

An alternative option is to impute separately for each time block, that is, apply the standard FCS
separately for each t 0 D 1; : : : ; T , following which imputed data sets for each t 0 are attached. As men-
tioned previously, this approach generally leads to biassed estimates because the longitudinal correlation
structure is distorted. Moreover, typically values of health indicators are correlated over time so that
such an approach ignores the useful information in observed measurements available at other times. This
makes the imputation method less efficient than other imputation methods, which do use the information
observed at other times.

2.5. The two-fold fully conditional specification algorithm

As a compromise between the two approaches, Nevalainen et al. [21] proposed the two-fold FCS algo-
rithm. The key idea is the imputation model used to impute missing values at time t 0 only condition on
values at time t 0 and the preceding and following time blocks. This creates the following algorithm:

The two-fold FCS algorithm consists of the following steps. First, a time window width � (typically
1; 2 or 3) is chosen. Then, for t 0 D 1; : : : ; T W

Within-time:
Apply standard FCS imputation, with bW iterations, to the variables j 0 D 1; : : : ; J at time t 0, using
regressions

regress Xj 0;t 0;obs on
˚
Xj;t

�
t2Tt0 ;.j;t/¤.j 0;t 0/

;Y; (2)

imputing missing data in Xj 0;t 0 at each step, where Tt 0 D ft 0 � �; t 0 � � C 1; : : : ; t 0; : : : ; t 0C �g : This
means that, at time t 0; each of the J variables is imputed conditional on values of variables in the
window width Tt 0 : Thus, observed and previously imputed values before and after time t 0, which fall
within the specified window width, are predictors in the imputation model and not imputed at this
stage.

Among-time:
The within-time iteration is applied to each time block t 0 D 1; : : : ; T; typically (but not necessarily)
in time order. One among-time iteration is complete when all time blocks are visited. The algorithm
is repeated for bA among-time iterations.

Data are unavailable at all time blocks within the window width close to the beginning and end of the
follow-up, which extends below t 0 D 1 or above t 0 D T: In this case, we restrict to time blocks with
available observations within the window width.

In their proposal, Nevalainen et al. [21] only impute time-dependent variables. In our implementa-
tion of the algorithm, we included an additional step to impute missing values for time-independent
variable at the start of each among-time iteration, conditional on outcome Y and other fully observed
time-independent variables. Additionally, we chose to condition on time-dependent variables (either
with missing data or fully observed) at a particular ‘baseline’ time block, which can be different for each
individual. Fully observed time-dependent variables are also included as predictors in imputation models
of time-dependent variables, but only values within the window width are included. Similarly, we also
condition on fully observed time-independent variables, for example, sex.
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3. Data generation and simulation process

To evaluate the performance of the two-fold FCS algorithm, we designed a simulation study modelled
closely on THIN data. The details of the data generating process are described in the succeeding text.
For each of 1000 independent simulations, we

(1) generated a complete set of observations for 5000 patients;
(2) fitted our substantive model to this full data, recording parameter estimates and standard errors;
(3) made some of the health indicator measurements MCAR;
(4) imputed the missing data with the relevant algorithm under evaluation;
(5) fitted our substantive model to each imputed data set, before combining the results using Rubin’s

rules [11] and recording the resulting imputation-based parameter estimates and standard errors.

Data generation mechanisms

Each simulated data set consisted of a cohort of 5000 patients (slightly smaller than the average patient
list size in a UK primary care practice). Data were generated for ten time blocks, corresponding to
10 years (e.g. 2000–2009). For each patient in each data set, we simulated the following categorical
and continuous health indicator and patient characteristic variables: newly registered (in 1999) in the
general practice or registered earlier, smoking status, age at baseline, deprivation (quintiles of Townsend
score index), systolic blood pressure, weight and anti-hypertensive drug treatment. These variables were
chosen to illustrate key risk factors for CHD.

We used two different data generating mechanisms for smoking status. First, we used an approach
(data generation mechanism I) whereby smoking status was generated at the first time block and kept
constant over time. Second, we used an approach (data generation mechanism II) whereby approximately
half of the smoking status records were non-smoker in the first time block and kept constant over time.
For the remaining patients, smoking status records alternate between current smoker and ex-smoker over
the ten time blocks. The second data generating mechanisms purpose was to evaluate the feasibility of
imputing time-dependent longitudinal categorical data.

The outcome of interest was generated from an exponential time-to-event model, with hazard depend-
ing on the health indicator values at the first time point. Further details of the data generation mechanisms
are in the Appendix.

Parameters values used for the data generation mechanisms

Each of the data generation steps (Appendix) required values of associated model parameters. We derived
these values from a cohort of patients from THIN considered the ‘true’ values in the simulation study
(although we do not intend any clinical inference from the subsequent analyses). The data sample from
THIN used in this analysis consisted of male patients aged between 40 and 89 years in the first time block
(2000) and with no records of CHD events before the start of the second time block (1 January 2001).
Time-to-event was calculated as the time from 1 January 2001 to the date of the first CHD diagnosis.

In this sample data from THIN,some weight, systolic blood pressure and smoking status measure-
ments were missing. We therefore estimated the parameters of the models used to generate the simulated
data sets using those with complete records (i.e. patients with no missing data across all variables under
consideration).

Missingness mechanism

We imposed MCAR missingness for each simulated data set. Age, social deprivation and anti-
hypertensive drug treatment were fully observed. For the remaining variables, weight, systolic blood
pressure and smoking status, data were missing in any year unless (i) the patient ‘consulted’ and (ii)
given they consulted, the variable was ‘recorded’.

For each patient and year, we simulated a binary indicator ‘consulted’, with probability 0.3 of con-
sultation. Conditional on ‘consulted’ in a given year, systolic blood pressure, weight and smoking status
(for data generating mechanism II) were made (independently) missing with probability 0.05. For most
individuals, data are therefore either all missing or all observed for the time-dependent variables in a
given time block (i.e. consultation). However, for a small proportion of individuals, some (but not all)
of the variables are observed in a time block (i.e. consultation). Under this mechanism, for example,

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3725–3737
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the expected years between weight observations is 1=.0:3 � 0:95/ D 3:5 years. This seems high but is
broadly consistent with missing data in electronic health records such as THIN.

Estimation methods

We estimated the exponential time-to-event model parameters, which is the substantive model of interest
in many epidemiological studies. For each simulated data set, we first estimated the parameters of the
exponential time-to-event model using the full data, by maximum likelihood. Next, we fitted the model
using the complete records. This consisted of patients with no missing risk factor values at time t D 1
because the covariates in the time-to-event model were measurements of health indicators at t D 1.

We multiply the imputed missing data using three approaches. On the basis of the results of White and
Royston [25], the event indicator and an estimate of the baseline cumulative hazard function should be
included as covariates when imputing covariates in survival models. Because we generated times from
an exponential model, the cumulative hazard is proportional to time, and thus, we included the event
indicator and time-to-event or censoring as predictors in all imputation models. We implemented the
following three imputation approaches:

(1) Applied standard FCS imputation to data from all time blocks (2000–2009), conditioned on the
event indicator and time-to-event or censoring. Each imputation model conditioned on health indi-
cators measurements at all other time blocks, plus measurements of health indicators other than
the one being imputed at the current time block. We refer to this as ‘FCS’.

(2) Applied standard FCS imputation to the data recorded in the first time block, (the baseline year
2000), ignoring data from all other years. Thus, missing data in this time block were imputed
conditional only on other measurements recorded in this block and the CHD event indicator and
time-to-event or censoring. We refer to this as ‘baseline FCS imputation’.

(3) Applied the two-fold FCS algorithm to data from all time blocks (2000–2009), again conditioned
on the event indicator and time-to-event or censoring. For this study, we used bw D 5 within-time
iterations, ba D 20 among-time iterations and a � D 1 time window.

For each imputation approach, we generated five imputed data sets and combined the results using
Rubin’s rules. We applied all three imputation approaches to the data generated from data generating
mechanism I, with time-independent smoking status.

We applied the two-fold FCS algorithm to data generated from data generating mechanism II (non-
smokers remained non-smokers at all times, but smoking status for the remaining patients could vary
between current smokers and ex-smokers). We used a semi-deterministic approach to simplify the impu-
tation to a ‘binary’ problem. Hence, before we applied the two-fold FCS algorithm, we identified patients
only ever observed as a non-smoker (only had the non-smoker smoking status recorded, never ex-smoker
or current smoker) and deterministically imputed them as a non-smoker at all time blocks. The resulting
data set was imputed using the two-fold FCS algorithm, whereby missing values in the smoking status
variable were imputed only as current smokers or ex-smokers. We adopted this approach to overcome
the problem of a patient who is non-smoker at a later time block being imputed as a current smoker at
an earlier time block (Section 5).

To express gains and losses in relative efficiency (information), we calculated the ratio of the empirical
variance of the full data estimator to the empirical variance of each of the other (partial data) estimators,
also expressed as reductions in effective sample size, relative to analysis of the full data.

We performed analyses using Stata version 11.2 and 12.2 (StatCorp LP, Texas, USA) (www.stata.com)
, and we wrote a separate Stata command ‘twofold’ to perform the two-fold FCS algorithm [26]. This
is available from add http://www.ucl.ac.uk/pcph/research-groups-themes/thin-pub/missing_data. The
‘twofold’ command uses MI IMPUTE CHAINED, which is a part of the official Stata command library.

4. Results

The full FCS approach, conditioned on measurements of health indicators at all time blocks, failed to
run successfully on approximately 25% of data sets and so is not considered further.

Table I shows the log hazard ratios from fitting the model of interest to THIN cohort and the average
estimates (1000 replications) from the full data, complete records, baseline FCS imputation and two-fold
FCS algorithm, for data generating mechanism I and II. The parameter estimates from complete records,
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Table I. Log hazard ratios from fitting an exponential model to predict risk of coronary heart disease: esti-
mates from a data sample from The Health Improvement Network, followed by the average of estimates across
1000 simulations based on full data, complete records,‘baseline fully conditional specification (FCS) multiple
imputation’, and missing values imputed using the two-fold FCS algorithm.

THIN Complete Baseline FCS Two-fold FCS
Variables cohort Full data records imputation DGM I DGM II

Townsend 1 Reference
deprivation 2 0.1520 0.1503 0.1425 0.1497 0.1498 0.1588
score quintile 3 0.2377 0.2367 0.2431 0.2366 0.2366 0.2422

4 0.2433 0.2400 0.2279 0.2391 0.2401 0.2535
5 0.4034 0.4024 0.3935 0.4020 0.4023 0.4017

Weight (kg) 0.0019 0.0019 0.0015 0.0016 0.0019 0.0017
Systolic blood pressure (mmHg) 0.0048 0.0049 0.0051 0.0048 0.0051 0.0053
Anti-hypertensive drug treatment 0.2935 0.2868 0.2852 0.2897 0.2855 0.2915

Smoking status Non-smoker Reference
Ex-smoker 0.0679 0.0692 0.0633 0.0672 0.0579 0.0567
Current smoker 0.2386 0.2385 0.2307 0.2342 0.2325 0.2261

Age group (years) 40–44 �1.2820 �1.2872 �1.3167 �1.2869 �1.2880 �1.2890
45–49 �1.0632 �1.0652 �1.0892 �1.0655 �1.0662 �1.0623
50–54 �0.6402 �0.6392 �0.6467 �0.6398 �0.6408 �0.6330
55–59 �0.3589 �0.3597 �0.3700 �0.3598 �0.3605 �0.3536
60–64 �0.2485 �0.2473 �0.2545 �0.2480 �0.2481 �0.2423
65–69 �0.0396 �0.0416 �0.0470 �0.0418 �0.0409 �0.0348
70–74 Reference
75–79 0.1108 0.1039 0.1116 0.1043 0.1057 0.1129
80 + 0.1387 0.1421 0.1255 0.1383 0.1414 0.1368

Constant term �5.1993 �5.2297 �5.2550 �5.2098 �5.2552 �5.2833

DGM, data generation mechanism; FCS, fully conditional specification; THIN, The Health Improvement Network.

baseline FCS imputation and the two-fold FCS algorithm all had practically negligible bias (results not
shown). We expected the complete records analysis to be unbiassed because the data were MCAR. The
results from baseline FCS imputation and imputation using two-fold FCS algorithm were also unbiassed,
which suggests that the conditional imputation models were (at least approximately) correctly specified.

Table II shows the analytical and empirical standard errors from each method and shows good agree-
ment for all methods. Confidence interval coverage for all methods was approximately equal to its
nominal 95% level (not shown). As is typically seen in the absence of the inclusion of auxiliary variables,
baseline FCS imputation resulted in substantially smaller standard errors than complete records analysis
for the coefficients of the fully observed covariates but not for covariates with missing data. Two-fold
FCS algorithm gave improved efficiency compared with baseline MI for the coefficients of the time-
dependent covariates with missing data, with the largest gain for weight. This gain can be attributed
to the two-fold FCS algorithm using information in longitudinal measurements of the time-dependent
variables. The relatively large gain in efficiency for the weight coefficient is because this variable is most
strongly correlated over time (the correlation between weight in 2000 and weight in 2001 was 0.96,
whereas the correlation for systolic blood pressure in 2000 and systolic blood pressure in 2001 was only
0.65). In contrast, two-fold FCS algorithm did not gain efficiency (relative to baseline FCS imputation)
for the coefficient of the time-independent smoking status variable with missing data (data generating
mechanism I). However, when smoking status was time-dependent (data generating mechanism II), the
two-fold FCS algorithm gained substantial efficiency over both analysis of complete records and baseline
FCS imputation with a reduction in standard errors of around 35%

For the weight coefficient, the loss of information from the full data analysis to complete records,
baseline FCS imputation and imputation using the two-fold FCS algorithm is, respectively, 73%, 77%
and 39%. Thus, for the weight coefficient, complete records analysis was similar to baseline FCS impu-
tation, with both loosing about 3/4 of the information relative to the full data. In other words, a sample
of 1000 individuals is reduced to an effective sample size of around 230 for baseline FCS imputation

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3725–3737
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and 270 for complete records analysis, whereas it is reduced to 600 if we impute using the two-fold FCS
algorithm.

Our Stata implementation of the two-fold algorithm took (on average) 4 min to create each imputed
data set using 20 among-time and five within-time iterations. The baseline FCS approach took 6 s per
imputation using the default 10 iterations. The difference in speed can be attributed to the fact that the
two-fold algorithm fits many more imputation models than the ‘baseline FCS’ approach and that the
total number of iterations used per imputation was larger for two-fold.

5. Discussion

In this study, we evaluated the performance of the two-fold FCS algorithm first proposed by Nevalainen
et al. [21]. We simulated 1000 data sets of 5000 patients using parameter estimates from a THIN male
cohort. We chose variables representing ‘typical’ health indicators in many epidemiological and health
research settings. Some were continuous (blood pressure and weight), while others were categorical
(smoking status). We made approximately 70% of the values in weight, blood pressure and smoking
status MCAR at each time block and compared the bias and efficiency of the two-fold FCS algorithm
with complete records analysis and baseline FCS imputation in a simple time-to-event model.

A FCS imputation approach failed for approximately 25% of the simulated data sets, because of
co-linearity issues. In contrast, missing data imputed using the two-fold FCS algorithm gave essen-
tially unbiassed estimates and made use of the longitudinal information, resulting in material gains in
efficiency for the coefficients of time-dependent variables with missing data, relative to the baseline
FCS imputation. The efficiency gain was greatest for the weight variable, likely because of its high
within-subject correlation over time. In contrast, the systolic blood pressure coefficient was less highly
correlated over time so the gain in efficiency was smaller. When smoking status was time-dependent,
we again found large efficiency gains through using the two-fold FCS algorithm compared with baseline
FCS imputation.

There was good agreement between empirical and imputation standard errors (calculated using
Rubin’s rules) and provides further evidence in support of the arguments presented in [13], Chapter
2, in favour of the reliability of Rubin’s rules.

To impute longitudinal categorical data such as smoking status is particularly challenging. First, using
a multinomial imputation model at each time block may become unstable if a large amount of data is
missing. Second, some time-dependent categorical variables have restrictions on transitions over time.
Smoking status can not transition from ex-smoker or current smoker statuses to non-smoker status, and
it is not readily apparent how best to accommodate this restriction within the two-fold FCS algorithm.
In our second data generating mechanism, smoking status is time-dependent but assumed that those who
were initially non-smokers remained so throughout follow-up. This may be a reasonable assumption if
individuals are above a certain age, because most smokers start before the age of 30 years. However,
depending on the age range and duration of the study, non-smokers may become current smokers and
then subsequently ex-smokers, which contradicts our assumption. In some situations, it may be pos-
sible for the longitudinal MI model to account for these conditional changes over time. Further, we
made another simple assumption that all non-smokers would all have one or more non-smoker records.
However, we recognise that a minority of non-smokers were never observed as non-smokers, who we
(incorrectly) imputed as current smokers or ex-smokers throughout their follow-up.

We evaluated the two-fold FCS algorithm using a relatively simple substantive baseline model using
a cohort approach examining the associations between variables in the first time block (year 2000) and
subsequent CHD events. This mimics the common design in epidemiological research and derivation of
predictive models. Further investigation is warranted to examine the two-fold FCS algorithm for alterna-
tive substantive models, in particular those in which the longitudinal evolution of variables is of interest
and/or time-to-event models with time-dependent covariates.

We chose a scenario where approximately 70% of the records were missing in each time block. This
may seem a high proportion, and some investigators may feel uncomfortable imputing this proportion
of a variable. However, this is a similar situation to the analysis of electronic health records [9]. It is
thus reassuring that the two-fold FCS algorithm successfully runs even with such a large proportion of
missing data. However, it is important to recognise that with very high proportions of missingness, the
validity of inferences will be much more sensitive to misspecification of imputation models, and so we
urge researchers to be suitably cautious when attempting to impute such large fractions of variables.

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3725–3737
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In our simulations, our data generation mechanism created values, which were MCAR. In practice,
the MCAR assumption will often not hold. However, our focus in this paper was on the performance of
the two-fold algorithm in comparison with both complete case analysis and ‘baseline’ imputation. The
precise form of the missingness mechanism should not affect this comparison, provided it is ignorable.
Further, the advantage of MCAR in our context is that the complete records analysis is unbiassed, so we
can make direct comparisons with the efficiency of the complete records and various MI approaches. An
important consideration is that because the two-fold FCS algorithm uses repeated measures over time of
variables whose baseline values may be missing, the plausibility of the MAR assumption is arguably
greater when longitudinal information is conditioned on. In particular, this is the case if the ‘base-
line’ time for the substantive model is chosen at a time several years after a patient registered with the
general practice.

As described in the Abstract, previous applications of MI to longitudinal data have usually considered
somewhat simpler settings. Nevalainen et al. [21] who initially proposed the two-fold FCS algorithm
only had three time points and up to 40% missing data. Therefore, this study is the first to demonstrate
potential ways forward in MI of longitudinal records with a large number of time blocks and large pro-
portions of missing data. Not only does the two-fold FCS algorithm offer a potential solution to the key
issue of over-parameterisation of imputation models, which arises with this type of complex longitudinal
data (see also [13], Ch 8), it also recovers longitudinal information and thus increases the precision of
the estimates.

The major advantage of the two-fold FCS algorithm is it conditions on measurements local in time,
and measurements outside those local measurements are feeding into the local imputation indirectly via
the repeated among time imputations, which simplifies the imputation models. If measurements outside
the chosen time window are conditionally associated with the measurements being imputed, estimates
from imputations generated by two-fold FCS algorithm are expected to be biassed, in general. The data
generating mechanism used in our simulation study violated the conditional independence assumption
because it conditioned on measurements at all earlier time points when simulating values for weight and
systolic blood pressure. Despite this, estimates based on imputations from the two-fold algorithm were
essentially unbiassed for the survival substantive model used.

The plausibility of the conditional independence assumption made by the two-fold approach will
clearly vary considerably from study to study, with factors affecting its plausibility including the fre-
quency of longitudinal measurements, what quantities are being measured longitudinally and the disease
under study. A simple approach to assess the plausibility of the assumption made by the two-fold
approach is to fit, using complete case analyses, regression models, which include measurements out-
side of the selected time window. If these indicate that these measurements are independently associated
with values at a given time, this suggests that the assumption does not hold. In some cases, this might be
resolved by increasing the width of the time window, while in others, measurements at distant times may
have independent associations, suggesting the two-fold approach is not appropriate. Further research is
thus warranted to examine how realistic the conditional assumption is in practice.

When the number of within-time iterations is set to one, the two-fold algorithm is equivalent to a
standard FCS approach with a particular set of imputation equations. Whether the doubly-iterative algo-
rithm is beneficial (relative to using one within-time iteration), in respect of speed of convergence to the
stationary distribution, warrants further investigation.

Finally, throughout, we assumed the outcome Y is readily conditioned on in the imputation models
for time-dependent variables. For substantive models, which contain non-linear effects or interactions
between risk factors, it may be difficult or impossible to impute compatibly [27]. There is thus interest
in exploring whether methods recently developed for imputing covariates compatibly with a given
substantive model can be incorporated into the two-fold FCS algorithm.

6. Conclusion

Multiple imputation is increasingly considered a standard method to analyse missing data in medical
research. However, most implementations of MI cannot account for the temporal structure in large
longitudinal data. In this study, the two-fold FCS algorithm was successfully applied to simulated data
that mimic data observed in longitudinal health records. The method is potentially applicable to other
types of longitudinal records with intermittent missing data. The results show that the two-fold FCS
algorithm maximises the use of data available, with the gain relative to baseline MI depending on the
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strength of correlations within and between variables. Using this approach also increases plausibility
of the MAR assumption by using repeated measures over time of variables whose baseline values may
be missing.

Appendix A: Data generation mechanisms

Data generation mechanism I

We now describe the first data generation mechanism. For each patient i D 1; : : : ; N , we

(1) marked patients i as registering at the general practice in 1999 with probability p1 and denoted
this by setting a binary variable regi D 1; otherwise, they registered before 1999, and regi D 0;

(2) generated baseline age (i.e. age in 2000) and denoted agei with values a D 1; : : : ; 10,
corresponding to 5-year age categories from 40 to 89 years, using probabilities q0;a for patients
registered before 1999 (regi D 0) and probabilities q1;a otherwise;

(3) generated smoking status (time-independent) and denoted smokei , from a multinomial logistic
model conditional on age category in 2000:

logitfPr.smokei D b/g D ˇsmoke0;b C

10X
aD2

ˇsmokea;b Œagei D a�

where b D 1 (non-smoker - reference category); 2 (ex-smoker) and 3 (current smoker);
(4) generated social deprivation (Townsend score quintile, which takes values from 1 (least deprived)

to 5 (most deprived)) and denoted townsendi , from an ordinal logistic regression model
conditional on registration (1999 or earlier), age category in 2000 and smoking status:

logit fPr .townsendi D c/g D ˇ
town
0;c C ˇtown1 Œregi D 1�C

10X
aD2

ˇtown2;a Œagei D a�

C

3X
bD2

ˇtown3;b Œsmokei D b�

where c D 1; : : : ; 5, with c D 1 as the reference category;
(5) generated time-dependent systolic blood pressure and weight measurements and denoted

systolici and weighti , respectively, for calendar years 2000 to 2009 (denoted t D 1; : : : 10).
For time block t , we generated these by

systolici;t D ˇ
sys
0;t C ˇ

sys
1;t Œregi D 1�C

10X
aD2

ˇ
sys
2;t;aŒagei D a�C

3X
bD2

ˇ
sys

3;t;b
Œsmokei D b�

C

5X
cD2

ˇ
sys
4;t;c Œtownsendi D c�C

t�1X
lD0

ˇ
sys

5;t;l
systolici;l

C

t�1X
lD0

ˇ
sys

6;t;l
weighti;l C �1;i ; and

weighti;t D ˇ
weight
0;t C ˇ

weight
1;t Œregi D 1�C

10X
aD1

ˇ
weight
2;t;a Œagei D a�

C

3X
bD1

ˇ
weight

3;t;b
Œsmokei D b�

C

5X
cD1

ˇ
weight
4;t;c Œtownsendi D c�C

tX
lD0

ˇ
weight

5;t;l
systolici;l

C

t�1X
lD0

ˇ
weight

6;t;l
weighti;l C �2;i ;
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where �1;i
i id
� N

�
0; �2�1

�
and �2;i

i id
� N

�
0; �2�2

�
.

(6) we generated binary time-dependent anti-hypertensive drug treatment variables and denoted
drugi;t for time t , from logistic regression models:

logit fPr .drugi;t D 1/g D ˇ
drug
0;t C ˇ

drug
1;t Œregi D 1�C

10X
aD2

ˇ
drug
2;t;a Œagei D a�

C

3X
bD2

ˇ
drug

3;t;b
Œsmokei D b�

C

5X
cD1

ˇ
drug
4;t;c Œtownsendi D c�Cˇ

drug
5;t systolici;t Cˇ

drug
6;t weighti;t :

(7) we generated a time to CHD event outcome Ti from an exponential distribution (constant hazard)
with log hazard equal to

�0C

10X
aD2

�1;a Œagei D a�C

3X
bD2

�2;b Œsmokei D b�

5X
cD1

�3;c Œtownsendi D c�

C �5;1systolici;1C �6;1weighti;1C �7;1 Œdrugi;1 D 1�

Patients with a simulated value Ti greater than 10 were censored at time 10. Approximately, 10%
of the patients in the simulated data had a CHD event within the 10 time blocks. For the purpose
of this simulation study, transfer out of the practice and death from other causes were ignored.

Data generation mechanism II

We also used a second data generation mechanism, identical to the first except for the way smoking
status that was generated and conditioned on. Specifically, smoking status in the first time block (year
2000), smokei;1; was generated using step 3 as described previously. Patients who were non-smokers in
that time block were marked as non-smokers for each subsequent year of follow-up. For the remaining
patients (smokers or ex-smokers) for j D 2; : : : ; 10, we generated

Pr .smokei;t D 2jsmokei;1 ¤ 1/D

�
s2;t�1 if smokei;t�1 D 2 and
s3;t�1 if smokei;t�1 D 3:

The remaining steps continued as for data generating mechanism I, except that when generating the
values of the other time-dependent variables at time t , smoking status at time t; smokei;t was condi-
tioned on. Townsend score and the time to CHD were generated conditional on smoking status at time
t D 1.
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