Kakar, F; Akbarian, Z; Leslie, T; Mustafa, ML; Watson, J; van Egmond, HP; Omar, MF; Mofleh, J (2010) An outbreak of hepatic veno-occlusive disease in Western Afghanistan associated with exposure to wheat flour contaminated with pyrrolizidine alkaloids. Journal of toxicology, 2010. p. 313280. ISSN 1687-8191 DOI: https://doi.org/10.1155/2010/313280

Downloaded from: http://researchonline.lshtm.ac.uk/1732/

DOI: 10.1155/2010/313280

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/
Research Article

An Outbreak of Hepatic Veno-Occlusive Disease in Western Afghanistan Associated with Exposure to Wheat Flour Contaminated with Pyrrolizidine Alkaloids

Faizullah Kakar,1 Zarif Akbarian,1 Toby Leslie,2 Mir Lais Mustafa,1 John Watson,3 Hans P. van Egmond,4 Mohammad Fahim Omar,1 and Jawad Mofleh1

1 Ministry of Public Health, Kabul, Afghanistan
2 London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
3 World Health Organisation, Geneva, Switzerland
4 National Institute for Public Health & the Environment, RIVM, 3720 BA Bilthoven, The Netherlands

Correspondence should be addressed to Toby Leslie, toby.leslie@lshtm.ac.uk

Received 16 November 2009; Revised 19 February 2010; Accepted 16 May 2010

Pyrrolizidine alkaloids (PAs) are known to cause hepatic veno-occlusive disease (VOD). Outbreaks have occurred in Western Afghanistan since 1974, the latest in February 2008. We conducted an outbreak investigation using a case-control design. Sixty-seven cases of VOD were compared with 199 community controls. Consumption of bread was strongly associated with disease (adjusted odds ratio: 35.8 [95%CI: 7.6–168.2]). Toxic doses of PA were found in plant extracts and in samples of wheat flour taken from the study area. Compared to wheat flour there was 1000 times less PA in milk and whey and in water samples the PA content was zero. Although direct analysis was not possible, contaminated wheat flour used to make bread was the likely source of PA causing the outbreak. Eating a more varied diet including meat and fruit may be protective. Prevention and control measures will rely on community awareness and agricultural interventions to ensure safety of the food supply.

1. Introduction

Hepatic veno-occlusive disease (VOD), where toxic exposure causes rapid onset of massive ascites, has historically been called Gulran Disease in Afghanistan because it has consistently occurred in Gulran district of Herat Province, Western Afghanistan. While first reported as “bread poisoning” in 80 cases in South Africa in 1920 [1] and then as “camel belly” in about 1500 cases in Uzbekistan starting in 1931 and 1945 [2], the largest outbreak ever reported was from 1974 to 1976 in Gulran District affecting an estimated 7800 people with about 1600 deaths. “Gulran Disease” was attributed to consumption of bread made from wheat contaminated with seeds of a weed, locally called charmac [3], and hepatic veno-occlusive disease was diagnosed on liver biopsy [4]. The weed plant species was identified as Heliotropium popovii H. Riedl subsp. gillianum H. Riedl and was shown to contain pyrrolizidine alkaloids (PAs), primarily heliotrine [5].

Numerous PAs have also been found to cause VOD and as many as 3% of the world’s flowering plants (6000 species) contain PAs [6]. PAs are not toxic per se but undergo metabolic oxidation by hepatic multifunction oxidases to pyrrole derivatives, which then undergo hydrolysis to strongly alkylating metabolites [7]. The dose and duration of exposure to heliotrine required to produce liver damage in humans has been previously estimated as 4–10 mg/kg per day for 3–7 weeks [8]. WHO has indicated that the lowest intake causing disease may be 1 mg total PAs per day for a 70 kg adult [9], and German regulations for herbal remedies establish a maximum oral intake of 1 microgram per day [10].

Without effective action in the interim, a second outbreak occurred from 1999 to 2001 with estimated 400 cases and over 100 deaths [11], and on 19 February 2008, Afghanistan’s outbreak and disease surveillance system, the Disease Early Warning System (DEWS) team responded to
rumors of a further outbreak of Gulran Disease in the same
district. They identified 38 cases of massive ascites and four
deaths which appeared to be associated with consumption of
contaminated wheat flour [12].

The DEWS Team noted that farmers were not convinced
of the cause of disease pointing out that the charmac weed
is present every year throughout Gulran District, but the
disease was reported from only five out of 230 villages.
Furthermore, in large households, only one or two persons
had the disease yet they all ate the same bread made from
the same flour. In response to the outbreak, we conducted a
case-control study amongst the population of Gulran District
in order to better understand specific risk factors and to help
guide control measures.

2. Methods

2.1. Study Area. Gulran district has an area of approximately
150 km^2 with a population estimated at 110,000 people
[13]. It consists of undulating hills with scanty vegetation
serving as pasturelands. Water is scarce, salty in some places,
and obtained from shallow wells and small springs. During
winter the villages are snowbound and totally isolated. The
inhabitants are illiterate, mostly wheat farmers who also may
raise legumes, and many keep sheep and goats. Their diet
consists of wheat bread and occasionally meat. In 2007-2008
the level of rain was normal and there were no reports of
water shortages.

2.2. Selection of Cases and Controls. Active case detection was
conducted, starting with cases from the District Hospital and
then going house-to-house in villages of the cases. Cases were
defined as having all three of the following: (1) residence
in Gulran district; (2) acute appearance of massive ascites
occurring in the last 6 months; and (3) no edema on face
and arms. Two controls were matched by age-group and sex
with each case and systematically selected, from neighboring
households in the same village, and from other nearby
villages which had not reported cases. One additional control
was selected from within affected households, although it
was not possible to match these controls for age group.
Sample size for analysis included all cases identified during
the active case detection.

2.3. Procedures and Questionnaire. All activities were con-
ducted under the auspices of the Ministry of Public Health of
Afghanistan. The case-control study was conducted as part of
an outbreak investigation, and verbal consent was obtained
from cases and controls prior to interview. Interviews were
conducted in April and May 2008.

Cases and controls were interviewed in local language
(Persian Dari) by trained Afghan surveyors using a struc-
tured questionnaire format. The questionnaire consisted of
six sections: Demographic and socioeconomic details includ-
ing farm size, number of animals, and water availability;
clinical and treatment history; food consumption history;
food and wheat preparation; knowledge of VOD; and a
mortality report to ascertain if any household members had
died of suspected VOD in the last six months.

Because food consumption differs considerably between
seasons, cases and controls were asked about frequency of
consumption of 33 food items commonly consumed in
Afghanistan during a typical week in the winter and in the
summer. Assuming flat-bread (naan) consumption to be
ubiquitous, we asked how often bread was consumed as the
only food in a meal.

Serum was collected from both cases and controls and
analyzed for levels of aspartate aminotransferase (SGOT),
alanine aminotransferase (SGPT), bilirubin, Hepatitis B, and
Hepatitis C.

Samples of flour, grain, and plant materials were col-
lected where it was available (as a convenience sample) from
the houses of cases and controls and stored for later analysis
for PA content. As goats graze on the charmac weed, we
also collected samples of goat’s milk, the dried whey product
called qurut, and water to examine if PAs are present [14].

2.4. Laboratory Methods. PA content was assessed by means
of liquid chromatography/mass-spectrometry. Test portions
(flour, qurut, and milk) were weighed and extracted with a
solvent mixture of 30% water and 70% methanol, containing
5% acetic acid (flour and qurut) or with 100% methanol
containing 0.1% acetic acid (milk). After centrifugation,
an aliquot was taken from the clear supernatant and
evaporated to dryness. The residue was resuspended in water,
containing 0.1% acetic acid. An aliquot of the extract was
filtered and analysed using LC/MS/MS (Acquity UPLC BEH
C18 column, water containing 0.1% acetic acid/acetoni-trile
gradient, Ultima Pt). Standards of lycopsamine, heliotrine,
heliotrine N-oxide, retorsine, seneconine, echimidine,
jacobine, jacobine N-oxide, trichodesmine—and at a later
stage also lasiocarpine—were available. PAs for which no
standards were available were quantified using standards
of the above-mentioned PAs having a similar structure.
During the analytical sessions, duplicate determinations were
performed at regular intervals. Method recovery percentages
were close to 100%. Therefore, the results were not corrected
for recovery. The results of the duplicate determinations
were within the expected variability, associated with possible
inhomogeneity of samples and analytical methodology. In
the blanks no PAs were found.

2.5. Statistical Issues. We assessed different exposure factors
using univariate and multivariate analysis. Potential con-
founders were identified on an a priori basis and included
in multivariate logistic regression analysis. A restricted
analysis was also conducted which separately examined the
different categories of controls. Secondarily, an analysis was
conducted which compared exposure factors between cases
and cohabiting controls in order to assess intrahousehold
differences, if any.

To assess food consumption, we first reviewed the fre-
cuency of consumption of each food item. Then, removing
those items rarely eaten, we developed index scores for five
different food groups, summing the number of times each
food item was reportedly eaten weekly in summer and in
winter, and totaling food items in each of five food groups.
Components of each food group were as follows. Protein: meat (beef, lamb, and goat), liver, chicken, goat milk, cow milk, qurut, yogurt, egg, chickpeas, lentil, and beans; Dairy: goat milk, cow milk, egg, yogurt, and qurut; Pulse: peas, lentils, and beans; Fruit: apple, melon, and watermelon; and Vegetables: carrot, and tomato. The food group scores were then divided into ordinal categorical variables. Protein consumption was categorized into quartiles, while other food groups were categorized into binary variables, either above or below the median score or classified as “ever” or “never” consumed. Frequency of sole bread consumption was similarly summed across seasons and categorized by quartiles. In addition, an overall food consumption level was assessed using the sum of all index scores divided into quartiles.

Socioeconomic status was assessed using principle components analysis [15] with household assets, employment, and education of head of household serving as variables in the model to define socioeconomic quartiles.

3. Results

3.1. Epidemiological Assessment.

In total, 67 residents of Gulran district met the case definition and were included in the study. Cases were identified from among 28,443 individuals surveyed, including 3,700 households, the district and provincial hospital, and affected clinics in Gulran district. Point prevalence was 0.24% [95%CI: 0.18–0.3%]). Table 1 shows enrollment characteristics of cases and controls. Self-reported onset of symptoms was reported progressively from October 2007, with a peak of 14 cases in February 2008. All cases reported exposures in Gulran district and enhanced surveillance in surrounding districts revealed no additional cases. By local report, a small number of cases sought care in neighboring Iran and are not included here.

One-hundred and ninety-nine controls met the inclusion criteria and were included in the study. Nineteen of these (9.5%) were from the households of cases, 99 (47.7%) were from the same village as cases, and 81 (40.7%) were from villages in unaffected areas. The study was designed as a frequency matched study for age group and sex so there were no differences in proportion of each of these variables

<table>
<thead>
<tr>
<th>N</th>
<th>Case</th>
<th>All Controls</th>
<th>Household Controls</th>
<th>Villages controls</th>
<th>District controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (% male)</td>
<td>39/67 (58.2%)</td>
<td>117/199 (58.8%)</td>
<td>7/19 (36.8%)</td>
<td>62/99 (62.6%)</td>
<td>48/81 (59.3%)</td>
</tr>
<tr>
<td>Mean Age, years (SD)</td>
<td>24.6 (16.0)</td>
<td>24.7 (16.1)</td>
<td>21.9 (11.6)</td>
<td>24.8 (16.5)</td>
<td>25.3 (16.7)</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–10</td>
<td>14/67 (20.9)</td>
<td>40/199 (20.1)</td>
<td>2/19 (10.5)</td>
<td>20/99 (20.2)</td>
<td>18/81 (22.2)</td>
</tr>
<tr>
<td>11–20</td>
<td>20/67 (29.9)</td>
<td>62/199 (31.2)</td>
<td>8/19 (42.1)</td>
<td>34/99 (34.3)</td>
<td>20/81 (24.7)</td>
</tr>
<tr>
<td>21–30</td>
<td>13/67 (19.0)</td>
<td>38/199 (19.1)</td>
<td>6/19 (31.6)</td>
<td>14/99 (14.1)</td>
<td>18/81 (22.2)</td>
</tr>
<tr>
<td>>30</td>
<td>20/67 (29.9)</td>
<td>59/199 (29.6)</td>
<td>3/19 (15.8)</td>
<td>31/99 (31.3)</td>
<td>25/81 (30.9)</td>
</tr>
<tr>
<td>Median number people per household (inter-quartile range)</td>
<td>7 (5–9)</td>
<td>9 (7–13)</td>
<td>9 (8–18)</td>
<td>10 (7–15)</td>
<td>9 (6–12)</td>
</tr>
</tbody>
</table>

Table 2 shows results from risk factor analysis. Those who frequently consumed bread as the sole item in a meal had higher odds of disease; (adjusted odds ratio (AOR) 35.8 [95%CI: 7.6–168.2]) and those who had relatively high protein consumption were at decreased risk of disease (AOR: 0.1 [95%CI: 0.02–0.9]). High rice consumption (suggestive of high carbohydrate diet) was associated with disease (AOR: 2.6 [95%CI: 1.1–5.9]). High fruit consumption was negatively associated (AOR: 0.2 [95%CI: 0.06–0.6]). The magnitude of the association with carbohydrate and fruit intake compared to that for bread and protein consumption suggests that these are minor contributory factors. Water source other than a spring (well, pump, or other source of water) was associated with disease. There was no clear trend in the association of socioeconomic status to odds of disease. Having *charrmac* growing on the household’s land was associated with disease (AOR: 8.5 [95%CI: 2.1–33.1]). The level of consumption of individual food stuffs was also examined individually, but no single item appeared to be associated with disease. Amongst these were *qurut* and other dairy products (goats and cows milk, yogurt).

Controls (n = 19) who cohabited with cases (n = 19) were assessed using Mantel-Heintz test for trend. Within households, frequent consumption of bread as the sole food item was associated with disease, controlling for protein level (MH-OR 2.7 [95%CI: 1.3–5.5]). By this analysis, none of age, sex, or other food intake levels were associated with disease on univariate analysis.

Liver function was also measured amongst cases and controls. Analysis shows that cases more frequently had elevated levels of aspartate aminotransferase (SGOT), alanine aminotransferase (SGPT), bilirubin, and mean (and geometric mean) levels differed between cases and controls (Table 3). Tests for hepatitis B antigen and hepatitis C were also conducted to be assessed as risk factors for disease, but difference in prevalence between cases (Hep B: 7.6%; Hep C: 1.5%) and controls (Hep B: 2.6%; Hep C: 1.0%) was not significant.
Table 2: Univariate and multivariate analysis of potential exposure factors for hepatic veno-occlusive disease in Gulran District, Afghanistan, 2008. Odds ratios presented with 95% confidence intervals in parentheses.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate Odd Ratio</th>
<th>Multivariate Odd Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socioeconomic quartile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Poorest)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.3 (0.1–0.7)</td>
<td>0.4 (0.1–1.1)</td>
</tr>
<tr>
<td>3</td>
<td>0.2 (0.06–0.4)</td>
<td>0.3 (0.1–1.0)</td>
</tr>
<tr>
<td>Least poor</td>
<td>0.3 (0.2–0.7)</td>
<td>0.8 (0.3–2.1)</td>
</tr>
<tr>
<td>Wheat source (not home grown)</td>
<td>2.3 (1.4–3.9)</td>
<td>1.8 (0.9–3.9)</td>
</tr>
<tr>
<td>Remove charmac seeds</td>
<td>0.5 (0.3–0.9)</td>
<td>Removed due to missing data</td>
</tr>
<tr>
<td>Charmac Grows on land</td>
<td>5.0 (1.7–14.5)</td>
<td>8.5 (2.1–33.1)</td>
</tr>
<tr>
<td>Bread consumed (alone)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrequent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.0 (0.7–5.6)</td>
<td>6.3 (1.6–24.8)</td>
</tr>
<tr>
<td>2</td>
<td>1.6 (0.6–4.2)</td>
<td>3.6 (1.0–13.3)</td>
</tr>
<tr>
<td>Frequent—3</td>
<td>10.3 (3.3–32.1)</td>
<td>35.8 (7.6–168.2)</td>
</tr>
<tr>
<td>Protein Level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.4 (0.2–0.8)</td>
<td>0.6 (0.2–2.0)</td>
</tr>
<tr>
<td>High-2</td>
<td>0.2 (0.1–0.5)</td>
<td>0.1 (0.02–0.9)</td>
</tr>
<tr>
<td>High Dairy Level</td>
<td>0.5 (0.3–0.9)</td>
<td>1.2 (0.4–3.7)</td>
</tr>
<tr>
<td>High Pulse Level</td>
<td>0.5 (0.3–0.9)</td>
<td>0.7 (0.3–1.9)</td>
</tr>
<tr>
<td>High Fruit Level</td>
<td>0.3 (0.2–0.7)</td>
<td>0.2 (0.06–0.6)</td>
</tr>
<tr>
<td>High Rice Level</td>
<td>0.9 (0.5–1.7)</td>
<td>2.6 (1.1–5.9)</td>
</tr>
<tr>
<td>High Food Level</td>
<td>0.4 (0.2–0.7)</td>
<td>2.1 (0.6–6.8)</td>
</tr>
</tbody>
</table>

Table 3: Comparison of liver function between cases and controls, Gulran District, Afghanistan, 2008.

<table>
<thead>
<tr>
<th>Test</th>
<th>n/N (%) with elevated levels</th>
<th>Mean/Geometric mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cases</td>
<td>Controls</td>
</tr>
<tr>
<td>SGOT (IU/l)</td>
<td>32/66 (48.5)</td>
<td>25/194 (12.9)</td>
</tr>
<tr>
<td>SGPT (IU/l)</td>
<td>30/66 (45.5)</td>
<td>25/194 (12.9)</td>
</tr>
<tr>
<td>Alk Phos (IU/l)</td>
<td>2/66 (3.0)</td>
<td>2/194 (1.0)</td>
</tr>
<tr>
<td>Bilirubin (mmol/l)</td>
<td>29/66 (44.0)</td>
<td>21/194 (10.8)</td>
</tr>
<tr>
<td>Hep B Antigen</td>
<td>5/66 (7.6)</td>
<td>5/194 (2.6)</td>
</tr>
<tr>
<td>Hep C Antigen</td>
<td>1/66 (1.5)</td>
<td>2/194 (1.0)</td>
</tr>
</tbody>
</table>

1Chi Sq, P < .001

2StudentsT-test (log data if skewed); P < .001.

3.2. Laboratory Analysis for PAs. During the survey samples of flour, grain, qurut, and plant matter were collected. Thirty-two samples of flour were collected from a convenience sample of 17 households and analysed for PA by LC/MS/MS. Median total concentration of PA in these flour samples was 4.0 mg/kg. Amongst samples taken from the houses of cases (n = 12), median concentration of total PA was 5.6 mg/kg (95%CI: 0.4–38.38), whereas amongst controls (n = 20) the median concentration was 2.7 mg/kg (95%CI: 0.4–4.0) (Wilcoxon rank-sum test: z = 1.6, P = .1). Heliotrine, lasiocarpine and heliotrine-N-oxide were detected in all flour samples with higher levels of heliotrine found in samples
from the houses of cases (Wilcoxon rank-sum test: \(z = 2.0, P = .05 \)) (Table 4). A chromatogram of a sample of wheat grain collected in a suspected area is given in Figure 1. Samples of stems and leaves \((n = 2)\), roots \((n = 1)\) and seeds \((n = 1)\) of the *charmac* plant also contained PAs (Table 5).

<table>
<thead>
<tr>
<th>Plant Matter Sample (mg/g)</th>
<th>Stems and leaves</th>
<th>Stems and leaves</th>
<th>Fresh roots</th>
<th>Seeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heliotrine</td>
<td>343</td>
<td>112</td>
<td>67</td>
<td>262</td>
</tr>
<tr>
<td>Lasiocarpine</td>
<td>459</td>
<td>252</td>
<td>81</td>
<td>698</td>
</tr>
<tr>
<td>Jacobine</td>
<td>158</td>
<td>98</td>
<td>60</td>
<td>95</td>
</tr>
<tr>
<td>TOTAL PA</td>
<td>960</td>
<td>462</td>
<td>208</td>
<td>1055</td>
</tr>
</tbody>
</table>

Table 4: PA content of thirty-two flour samples collected from affected villages, Gulran District, Afghanistan, 2008.

<table>
<thead>
<tr>
<th></th>
<th>Flour Samples median, (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cases (n = 12)</td>
</tr>
<tr>
<td>Heliotrine(^a)</td>
<td>0.16</td>
</tr>
<tr>
<td>Heliotrine-N-oxide</td>
<td>5.4</td>
</tr>
<tr>
<td>Lasiocarpine(^b)</td>
<td>0.045</td>
</tr>
<tr>
<td>(quantified against echemidine)</td>
<td></td>
</tr>
<tr>
<td>TOTAL PA</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Mann-Whitney rank-sum test between cases and controls for flour samples: \(^a z = 2.0, P = .050\) \(^b z = 1.9, P = .057\).

Table 5: PA content of four specimens of *charmac* plant matter collected from affected villages, Gulran District, Afghanistan, 2008.

Identified cases were significantly more likely than controls to report frequent consumption of bread and samples of flour were found to be contaminated with high levels of PA. The principle source of PA appears to be wheat flour contaminated with the seeds of the *Heliotropium* plant which commonly grows with wheat in this area. A secondary, though minority, source is likely to be *qurut* (whey) from the milk of goats which have ingested plants containing PAs while grazing. Consumption of a high ratio of bread to other food-item consumption was strongly associated with disease, while a diet high in protein appeared to be protective. This association was also seen within households, using a matched analysis which may result from different behavioral factors related to diet within the household. It seems likely, therefore, that a combination of prolonged, regular exposure to contaminated wheat in the presence of a low-protein diet is chiefly responsible for clinical presentation. Those with a more varied diet were also less likely to be cases.

The primary analysis is partly based on an index measure of self-reported food intake over two seasons which recorded the number of times an individual food item was eaten per week. The sum of the frequencies provided an intake score for each food group. This provided an indirect measure of food intake which may be subject to recall and other biases of self-reported dietary intake assessments [16].

Numerous PAs have been identified which have been shown to be hepatotoxic in human and animal models. The mechanism of action of PA is well established [17]. PAs are not toxic per se but require metabolic oxidation by hepatic multifuncion oxidases to pyrrole derivatives, which then undergo hydrolysis to strongly alkylating metabolites [17]. In general, the diester PAs are more toxic than the monoesters; thus, the diester lasiocarpine is more hepatotoxic than the monoester, heliotrine.

Some PAs in the *qurut* are not present in *charmac* (i.e., trichodesmine), suggesting that the animals are grazing on other plants that contain PA and indicating potentially that *charmac* is not the only plant responsible for the human exposure to PAs. Although the amount of PAs in the *qurut* is in general much less than in wheat samples tested, this route of exposure may also be a contributory factor.

The amount of PA contained in the *charmac* is consistent with other *Heliotropium* species. A total alkaloid content of 0.76% for whole plant and 1.7% for seed has been found in other heliotropic plants, and thus a level of 1.9% for the Afghanistan samples is not unreasonable. Estimated dose and duration of exposure to PA required to produce liver damage in humans has been previously noted [18]. For heliotrine, an intake of 4–10 mg/kg per day for 3–7 weeks...
could lead to necrosis and VOD. The WHO has indicated a lowest intake rate of 1 mg total PAs per day (for a 70 kg adult) [4] with German regulations for herbal remedies establish a maximum oral intake of 1 microgram per day [19]. The high PA levels in the Afghanistan samples could certainly result in toxic exposure.

Sustained action is required to ensure the long-term safety of food. Amongst these is to identify appropriate technologies for elimination of the contamination, development of in-country capacity to assess PA content in samples, and implementation of routine testing in historically affected areas.

Global food shortages, changes in local ecology due to climate change, and ongoing lack of development in agricultural sectors make food safety an important public health issue. As food prices increase, it is likely that the proportion of the rural poor who rely on subsistence farming and locally traded produce will increase. If adequate food-safety practices are not employed at this level of society, incidents such as this outbreak are likely to become more common.

Acknowledgments

The authors are grateful to the Herat provincial and Gulran district health staff, Italian Army, Afghan National Police, and World Health Organization for assistance in conducting the study. In particular, the authors appreciate the collaboration by the people of Gulran district and sufferers of the disease. This study was funded by the World Health Organisation and the US Office of Disaster Assistance and Coordination of Humanitarian Aid through the US Naval Medical Research Unit #3. Many other stakeholders in Herat Province took part in the surveillance and case management of the Gulran Disease cases. The authors acknowledge the valuable support and coordination inputs of (i) Dr. Bernadette Abela-Ridder, Food Safety, Zoonoses and Foodborne Diseases, Health Security and Environment, World Health Organization, Geneva, Switzerland; (ii) Ms. Joanna Tempowski, Scientist, International Programme on Chemical Safety, Evidence & Policy for Environmental Health (EPE), World Health Organization, Geneva, Switzerland; (iii) Dr. Francis Williams, Combined Security Transition Command, Kabul, Afghanistan; (iv) Dr. Bashir Noormal, Director, Afghan Public Health Institute, Ministry of Public Health, Kabul, Afghanistan; (v) Dr. Said Abobakr Rasooli, National Health Coordinator, WHO, Herat, Afghanistan; and (vi) Dr. Suzette “Rana” Kakar, Technical Officer, World Health Organization, Kabul, Afghanistan. The authors acknowledge the support of analytical knowledge and laboratory testing provided by Russell J Molyneux (Western Regional Research Center, Albany, CA, USA) and by Ronald C. Schotthorst and Hester J. van den Top (National Institute for Public Health & the Environment, RIVM, Bilthoven, The Netherlands). The authors acknowledge with appreciation Dr. Binay Kumar (Indian Institute of Health Management Research, Kabul, Afghanistan), Dr. Samad Hami, Dr. Edris Ayazi, Dr. Palwasha Anwari, Dr. Zakhmi Barakzai, and Dr. Gulam Farouq for their contributions to the data analysis. The views expressed herein are solely those of the authors and do not necessarily reflect the views of donors or affiliated organisations.

References

