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In rural Gambia season can strongly influence
the nutritional status of both children and
adults (Cole 1993). During the annual wet
season from July to November (the hungry
season), weight loss occurs in pregnant and
lactating women, and there is a reduction in
birth weight of 200–300 g compared with
that in other seasons; this difference can be
reduced by maternal dietary supplementation
(Ceesay et al. 1997). Season of birth has also
predicted infection-related mortality in adults
(Moore et al. 1997), suggesting the impor-
tance of intrauterine and early childhood
environment on health and disease in later
life (Moore et al. 1999).

In addition to frequent exposure to infec-
tious pathogens, Gambian populations have
some of the highest recorded levels of chronic
exposure to a family of fungal metabolites
known as aflatoxins. Aflatoxin contamination
is associated with the storage of groundnuts
and maize, dietary staples, colonized by
Aspergillus flavus and A. parasiticus (Hall and
Wild 1994). Aflatoxins are human carcino-
gens (IARC 1993), but also have an immuno-
suppressive effect in many species (Bondy and
Pestka 2000). A major effect has been sup-
pression of cell-mediated immunity (CMI),
most notably an impairment of delayed-type

hypersensitivity, which has been a consistent
observation at low-dose levels in different
species (Pier et al. 1977; Pier and McLoughlin
1985). Aflatoxin also increases susceptibility to
bacterial and parasitic infections and adversely
affects acquired immunity, as evidenced fol-
lowing experimental challenge with infectious
agents after vaccination (Denning 1987).

Despite data from animal studies,
evidence of the immunosuppressive action of
aflatoxins in humans is limited to in vitro
studies. Extremely low doses (0.05–0.1
pg/mL) of aflatoxin B1 (AFB1) decreased
phagocytosis and the microbiocidal activity
(against Candida albicans) of human mono-
cytes in vitro (Cusumano et al. 1996) and
decreased the secretion of interleukin-1, inter-
leukin-6, and tumor necrosis factor-α
(Rossano et al. 1999). These studies are strik-
ing when considered in the light of levels of
free AFB1 reported in sera in West Africa,
which range up to 3 ng/mL (Denning et al.
1988).

Aflatoxin exposure can be assessed accu-
rately by measuring aflatoxin-albumin (AF-
alb) adducts in peripheral blood (Chapot and
Wild 1991; Montesano et al. 1997). Using
this biomarker, we demonstrated previously
that rural Gambian populations are exposed

to aflatoxin throughout life, including in utero
(Allen et al., 1992; Groopman et al. 1992;
Turner et al. 2000; Wild et al. 1991, 1992,
1993, 2000). In this study we examined
whether aflatoxin exposure was associated
with several immune parameters in a cross-
sectional study of 478 Gambian children. We
reported previously the effects of season of
birth, birth size, and maternal supplementa-
tion on immune function in the same children
(Moore et al. 2001). A preliminary report on
the aflatoxin data in the latter manuscript used
incomplete statistical analysis and conse-
quently did not explore in detail the associa-
tions between aflatoxin exposure and various
immune parameters.

Materials and Methods

Recruitment. This study involved children
born during a 5-year maternal dietary supple-
mentation trial in 28 villages in the West Kiang
region of The Gambia, commencing in 1989
(Ceesay et al. 1997). The children recruited
into the current study were all those born dur-
ing the first 2 years of the supplementation
study, still living in West Kiang, and willing to
participate. Scientific approval for the study was
granted by the Medical Research Council
(MRC), Gambia Scientific Coordinating
Committee. Ethical permission was granted by
the joint Gambian Government and MRC
Ethical Committee. During the original study,
2,047 live infants were born, and the present
study recruited 472 of these children 6–9 years
of age (251 male, 221 female). The majority
ethnic group was Mandinka, with a few Fula.
Weight for age Z-score (WAZ), height for age
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Aflatoxins are immunotoxins that frequently contaminate staple foods in The Gambia and other
parts of sub-Saharan Africa, resulting in high exposure throughout life. Impaired infant immune
system development may be a key predictor of mortality from infectious disease. In this study we
aimed to determine the effect of dietary aflatoxin exposure on a number of immune parameters in
Gambian children. A cohort of 472 Gambian children 6–9 years of age was recruited. Serum afla-
toxin-albumin (AF-alb) adducts were analyzed to provide a measure of exposure. Immune parame-
ters included secretory IgA (sIgA) in saliva, cell-mediated immunity (CMI), determined using the
CMI multitest where test antigens are applied to the skin, and antibody responses to both rabies
and pneumococcal polysaccharide vaccines. Birth weight, current anthropometry, and micronutri-
ent status were also recorded. AF-alb adducts were detected in 93% of the children (geometric
mean level 22.3 pg/mg; range 5–456 pg/mg). AF-alb level was strongly influenced by month of
sampling. In a multivariable analysis, sIgA was markedly lower in children with detectable AF-alb
compared with those with nondetectable levels [50.4 µg/mg protein (95% confidence interval [CI]
48.0–52.8) and 70.2 µg/mg protein (95% CI 61.1–79.2), respectively; p < 0.0001]. Antibody
response to one of four pneumococcal serotypes, but not rabies vaccine, was weakly associated
with higher levels of AF-alb. There was no association between CMI responses to test antigens
and AF-alb. These data confirm that children in rural Gambia are frequently exposed to high lev-
els of aflatoxin. The study provides evidence that sIgA in saliva may be reduced because of dietary
levels of aflatoxin exposure. Given the high burden of infection-related mortality in West Africa,
further investigation of the immune effects of aflatoxin exposure in children is merited. Key words:
aflatoxin, children, diet, Gambia, immunity. Environ Health Perspect 111:217–220 (2003).
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Z-score (HAZ), and weight for height Z-score
(WHZ) were calculated according to the
median value of the international reference
population recommended by the National
Center for Health Statistics/World Health
Organization (WHO; 1986) using EpiInfo
2000 (U.S. Department of Health and
Human Services, Washington, DC). All mea-
surements and blood samples were obtained
between May 1998 and February 1999.

Study protocol. On day 0, a fasted venous
blood sample was collected for a) plasma
micronutrient status (zinc, vitamin C, vita-
min A, and related retinoids); b) prevaccina-
tion antibody titers; and c) serum AF-alb
analysis. At this time the CMI multitest was
applied (see “Immune Measurements”).
Forty-eight hours later the CMI test was
assessed, at which time both rabies and pneu-
mococcal vaccines were given. On day 16, a
finger-prick blood sample was obtained to
assess response to the first dose of rabies vac-
cine. On day 30, a second finger-prick blood
sample was obtained to assess the response to
pneumococcal vaccination, and the second
dose of rabies vaccine was given. On day 60,
a third blood sample was taken to assess
response to the second dose of rabies vaccine.
The vaccines used in the current study were
chosen to represent a primarily T-cell–depen-
dent response (rabies) and a primarily
T-cell–independent response (pneumococ-
cal). The protective effect of the pneumococ-
cal vaccine is related to the development of
antipneumococcal capsular polysaccharide
antibodies that enhance phagocytosis of the
bacteria. Although pneumococcal polysaccha-
rides directly trigger the activation of B cells,
T cells and other genetic factors influence the
immunoglobulin class and the magnitude of
the antibody response, so the response cannot
be considered entirely T-cell–independent.
The production of antibody to human
diploid-cell rabies vaccine, however, is pri-
marily T-cell–dependent. The use of the
rabies vaccine additionally allowed assessment
of antibody production against a naïve vac-
cine antigen.

Prevaccine blood sample analysis. Blood
samples were available for 466 of 472 chil-
dren. Serum was separated from the blood
sample obtained from each child before the
vaccination regimes began (day 0). The levels
of AF-alb adduct were determined by albu-
min extraction, digestion, and enzyme-linked
immunosorbent assay (ELISA), as previously
described (Chapot and Wild 1991). The
detection limit was 5 pg AF-lysine equiva-
lents/mg albumin. Three positive and one
negative control sample were analyzed with
each batch of samples. Samples were mea-
sured in quadruplicate on at least two occa-
sions on separate days; coefficients of
variation were less than 25%. Micronutrient

analysis has been detailed elsewhere (Moore
et al. 2001).

Immune measurements. Secretory IgA
(sIgA) in saliva was measured by modification
of an ELISA used to determine breast milk
antimicrobial factors (Prentice et al. 1984,
1991). The sIgA level was expressed as micro-
grams per milligram total salivary protein.
CMI was tested using the Merieux CMI mul-
titest kit (Marcel Merieux, Lyon, France)
according to the manufacturer’s instructions.
The CMI recall test antigens are tetanus,
diphtheria, streptococcus, tuberculin, can-
dida, tricophyton, proteus, and glycerin as a
control. The antigens were applied to the skin
of the forearm. The response was determined
48 hr after application, with an induration of
> 2 mm considered positive for each antigen.
Anergy is defined as a failure to respond to
any of the antigens.

Antibody responses to pneumococcal
serotypes 1, 5, 14, and 23 antigens were deter-
mined after administration of 23-valent pneu-
mococcal capsular polysaccharide vaccine
(Pneumovax 23; Merck and Co., Inc, West
Point, PA, USA) and after each of two doses of
rabies vaccine (Rabies Vaccine BP; Pasteur-
Merieux Connaught, Lyon, France). Antibody
titers against pneumococcal vaccine were mea-
sured at the Department of Immunology,
Institute of Child Health (London, UK).
Antibody titers were tested against three capsu-
lar polysaccharide components of the vaccine
that are usually immunogenic (serotypes 1, 5,
and 14) and one component that is less
immunogenic (serotype 23). Antirabies anti-
body titers were determined at the Central
Veterinary Laboratories (Surrey, UK), using
the rapid-focus fluorescence inhibition test of
the WHO (Smith et al. 1973).

Statistical analysis. The AF-alb level and
rabies and pneumococcal vaccine outcomes
were not normally distributed and were con-
sequently natural log transformed before sta-
tistical analysis. For clarity of presentation
the log-transformed levels and 95% confi-
dence intervals (CIs) were back transformed,
and data throughout are presented as geo-
metric means with 95% CIs. AF-alb adduct
level was divided into six groups. Group 1
samples were below the detection limit; the
remaining samples were divided into quin-
tiles of increasing adduct level (groups 2–6).
For sIgA the AF-alb level was additionally
considered as a dichotomous variable, with
all samples in group 1 below the detection
limit. The effect of each independent vari-
able (AF-alb, plasma micronutrient, anthro-
pometry, age) on each dependent variable
(immune outcome) was determined by
regression analysis in STATA 7.0 (Stata
Corp., College Station, TX, USA). The
contribution of each variable was then
examined in a multivariable model that

always included month of blood sample
collection and sex.

Results

Aflatoxin exposure. The sera of 466 of 472
children 6–9 years of age were tested for the
level of AF-alb adducts; 93% (n = 434) of the
samples were positive (geometric mean
adduct level 22.3 pg/mg, 95% CI 20.3–24.5;
range 5–456 pg/mg). AF-alb level was not
significantly related to the age or sex of the
children. However, the level of AF-alb was
significantly (p =0.0001) related to month of
blood sample collection, although sample col-
lection covered two cycles of harvest and stor-
age, thus reflecting both annual and seasonal
variation.

Micronutrient status. The levels of
micronutrients in the prevaccination bleeds
are detailed elsewhere (Moore et al. 2001). In
brief, there were seasonal variations in a
number of micronutrients—for example, vit-
amin C, α- and β-carotene, and lycopene—
reflecting periods in January–May when
citrus fruits and mangos were available, and
September–October when more green leafy
vegetables are included in the diet. However,
of all the micronutrients measured, the only
association with AF-alb was a negative
correlation with vitamin C (p = 0.01).

Anthropometry. Anthropometric results
are presented as Z-scores according to
WHO criteria (WHO 1986), where a score
< –2 is recognized as a state of malnutrition,
and a score < –3 as severe malnutrition. In
this study, 11.5% of the children were
stunted (HAZ-score < –2), 17.5% were
underweight (WAZ-score < –2), and 14.9%
were classified as wasting (WHZ-score <
–2). AF-alb level was weakly associated (p =
0.034) with a lower WHZ score and subse-
quently fitted to a regression model. AF-alb
was grouped into nondetectable and quin-
tiles of detectable adducts. In this model,
AF-alb level (p = 0.028), month of sampling
(p = 0.003), sex (p = 0.044), and birth
weight (p = 0.024) were all associated with
WHZ. When adjusted for all other factors
contributing to the model, there was a
decrease in WHZ score up to 21 pg/mg,
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Figure 1. WHZ compared with AF-alb level. Data
are presented as adjusted mean with 95% CI.



after which the WHZ-score reached a
plateau (Figure 1). AF-alb level was not
associated with either HAZ or WAZ scores.

Immune outcomes. Salivary secretory
IgA. The mean sIgA was 51.8 µg/mg protein
(range 10.0–343 µg/mg). Aflatoxin exposure
was strongly associated (p = 0.006) with
reduced sIgA levels and subsequently fitted to
a regression model. AF-alb was used as a
dichotomous variable: those with nonde-
tectable levels of adduct (n = 32) and those
with detectable adduct levels (n = 432). In
this model, AF-alb (p < 0.0001), sex (p =
0.041), age (p = 0.040), month of birth (p =
0.016), and mid–upper-arm circumference
(p = 0.002) were all associated with the sIgA
level. When adjusted for all other factors con-
tributing to the model, the mean adjusted
sIgA level was lower in children with
detectable AF-alb adducts (50.4 µg/mg; 95%
CI, 48.0–52.8) compared with those without
detectable adducts (70.2 µg/mg; 95% CI,
61.1–79.2) (Figure 2). No dose–response
effect was observed when examined as
quintiles of exposure.

CMI response. All but three children
were successfully tested for CMI using the
skin test. The responsiveness to the individual
antigens, however, was low, ranging from 6.0
to 21.3%, with 50% of children being aner-
gic (unresponsive to any test antigens). None
of the children reacted to the glycerin control.
The geometric mean AF-alb adduct levels in
anergic children (23.8 pg/mg; 95% CI,
21.1–26.8) and nonanergic children (24.3
pg/mg; 95% CI, 21.5–27.4) were not statisti-
cally different. In addition, no significant
association between level of AF-alb and
responsiveness to the individual antigens or to
the total number of responses to test antigens
was observed.

Vaccination response. The rabies anti-
body titers and three of the four pneumococcal
antibody titers were not associated with AF-alb
level. In a multivariable regression model for
pneumococcal serotype 23, antibody titer was
associated with AF-alb, but only with marginal
statistical significance (p = 0.05). WHZ

(p < 0.0001) and weight (p < 0.0001) were also
positively associated with antibody titer.
However, there was no strong trend in
adjusted geometric mean antibody titer with
increasing AF-alb adduct level (Figure 3).

Discussion

In The Gambia, season of birth has been
associated with altered morbidity and mortal-
ity in adulthood, which are frequently infec-
tion related (Moore et al. 1999). Aflatoxins are
also prevalent in this population, and there are
seasonal variations in the level of food contam-
ination and therefore exposure (Turner et al.
2000; Wild et al. 2000). Because aflatoxins are
potent immunosuppressors in animals (Bondy
and Pestka 2000; Richard 1998), we examined
whether aflatoxin exposure was associated with
a spectrum of immune tests reflecting T-cell,
B-cell, and mucosal secretion as measured by
the CMI test, vaccine responses, and the level
of sIgA in saliva. The present cross-sectional
study involved a cohort of children 6–9 years
of age that was part of a larger study investigat-
ing fetal nutrition by maternal nutritional sup-
plementation on long-term immune outcome.
In addition to aflatoxin, the levels of many of
the nutritional factors were seasonal, so month
of sampling was an important parameter in the
multivariable models. The supplementation
status of mothers during pregnancy was not
significantly associated with the measured
immune parameters in this study.

AF-alb in peripheral blood reflects
consumption of toxin over the preceding 2–3
months. In this study, 93% of the children
had detectable AF-alb. We previously demon-
strated similar high levels of exposure in both
Gambian adults and children (Allen et al.
1992; Groopman et al. 1992; Turner et al.
2000; Wild et al. 1991, 1992, 1993, 2000).
However, it is worth noting that the mean
level in the present study, although high, was
somewhat lower than previously observed.
This may reflect geographic, seasonal, and
annual variations in the levels of aflatoxin in
contaminated food.

This study showed a weak association
between adduct level and wasting (WHZ-

scores), but not for stunting (HAZ-score) or
being underweight (WAZ-score). We previ-
ously showed a very strong association
between AF-alb adduct level and stunting and
being underweight (Gong et al. 2002), but
this was in a younger group of children (9
months to 5 years of age) from Benin and
Togo, who may be more sensitive to the
growth-inhibitory effects of aflatoxin. In
addition, the children in Benin and Togo had
some of the highest AF-alb levels observed in
any of our studies in West Africa.

Aflatoxin exposure was significantly
associated (p < 0.0001) with a decreased level
of sIgA [from 70.2 µg/mg (95% CI,
61.1–79.2) in children with no detectable
AF-alb to 50.4 µg/mg (95% CI, 48.0–52.8)
in those with detectable adduct level]. In
saliva, breast milk, tears, and mucus of the
bronchial, genitourinary, and digestive tracts,
sIgA binds to bacterial and viral surface anti-
gens, providing an important component of
the mucosal barrier. Given the high levels of
aflatoxin exposure and frequency of infectious
insult in African populations, this observation
suggests that toxin exposure may influence
susceptibility to infectious disease. The mech-
anism behind this observation is uncertain,
although aflatoxin can disrupt protein synthe-
sis through binding to DNA, RNA, and pro-
teins (Bondy and Pestka 2000).

In this study using the CMI test, 50% of
the children were classified as anergic. There
are no previous data from The Gambia, but in
nearby Guinea Bissau, between 17 and 31%
of children 3–13 years of age were anergic
using the same test, with higher prevalence in
the rainy season (Shaheen et al. 1996).
Despite the high prevalence of anergy, there
was no association between the CMI response
and the aflatoxin biomarker level. This
appears to contradict the strong effects of afla-
toxin on CMI in animals. Previous studies—
e.g., the one in Guinea-Bissau (Shaheen et al.
1996)—have shown the CMI test can detect
significant differences between exposures vari-
ables and predict outcome measures, so this
test should have been adequate to detect mod-
est differences between exposure groups in this
population. One possibility is that even these
high aflatoxin exposures are insufficient to
cause this effect in humans. Alternatively, the
timing of the aflatoxin exposure assessment
may not have been relevant to the effects on
immune status, because it is unknown
whether recent or past exposure is important
in determining immune modulation. In the
cross-sectional design employed, only a single
measure of AF-alb was made (at the time of
the CMI test). The AF-alb marker integrates
aflatoxin exposure over the previous 2–3
months; ideally, exposure needs to be consid-
ered in the context of the dynamic of the
immune system for each of the parameters
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under consideration. A longitudinal study
may be more informative in this regard. In
addition, in developed countries only about
2% of the population are anergic (Beier-
Holgersen and Brandstrup 1999), and there-
fore strong confounding factors in the
Gambian population may be masking any
more-modest effects of aflatoxin exposure. It is
also possible that the low levels of response to
the CMI testing in our study could indicate
malfunction of the test kits; however, the cold
chain was meticulously preserved, and the kits
were applied by a single investigator according
to the manufacturer’s instructions.

A weak association between AF-alb adduct
level was observed with pneumococcal serotype
23 (p = 0.05) vaccination responses but, con-
trary to expectations, there was a tendency to
higher antibody titers with increasing levels of
AF-alb. No associations were observed for the
other test vaccines. The effects of aflatoxin on
the immune system are complex. Aflatoxin
exposure has occasionally been shown to
increase antibody production (Richard et al.
1998), but generally reductions are observed
(Azzam and Gabal 1997; Dimitri and Gabal
1996; Fernandez et al. 2000; Gabal and
Dimitri 1998). At present it is not possible to
say whether these associations we report are
chance findings or represent an unexpected
effect of aflatoxin exposure.

In conclusion, populations in West
Africa are frequently exposed to high levels of
aflatoxin, and exposures in childhood may
have a critical influence on disease outcomes
in later life (Turner et al. 2000). Turner et al.
(2000) estimated that 30% of Gambian chil-
dren are exposed to food contaminated with
more than 100 ppb aflatoxins. Previous stud-
ies in poultry indicate that immune compe-
tence is compromised when feeds contain
similar levels of contamination (reviewed by
Coulombe 1994). Despite the inherent limi-
tations in cross-species comparisons, the data
nevertheless indicate that children are natu-
rally exposed to aflatoxin through the diet at
levels that compromise the immune system
in other species. This study specifically
observed a highly significant association
between aflatoxin exposure and reduced sali-
vary sIgA. The possible impact of this effect
on health outcomes in this population merits
consideration, particularly within the context

of intervention studies to reduce aflatoxin
exposure.
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