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Abstract

This paper describes the spatial and temporal distribution of Anopheles gambiae
s.l. Giles in two Tanzanian villages based on data collected from a five-month
intensive mosquito sampling programme and analysed using Taylor’s power law.
The degree of spatial aggregation of female A. gambiae in each village was similar
to its corresponding temporal aggregation, indicating that in designing sampling
routines for estimating the abundance of mosquitoes, sampling effort should be
allocated equally to houses (spatial) and nights (temporal). The analysis also
showed that for a given amount of sampling effort, estimates of village-level
mosquito abundance are more precise when sampling is carried out in randomly
selected houses, than when the same houses are used on each sampling occasion.
Also, the precision of estimating parous rates does not depend on whether
mosquito sampling is carried out in the same or a random selection of houses. The
implications of these findings for designing sampling routines for entomological
evaluation of vector control trials are discussed.

Introduction

Insect distributions are generally aggregated, that is,
individuals are more clustered than would be expected if a
random distribution applied (Southwood, 1978). This
clustering which arises as a compounding of biological and
environmental factors, sampling variation and sampling
bias often gives rise to problems of precision in the
evaluation of vector control interventions. Such
interventions normally aim to reduce vector densities and to
establish this, it is necessary to estimate and compare mean
densities in areas with and without intervention. In the case
of malaria vector control trials, this typically entails

estimating in each of a series of villages the mean vector
density for the whole village over at least a year (Magesa et
al., 1991; Lindsay et al., 1993). However, mosquito sampling
is carried out at house-level but the densities are estimated
at village-level. Hence, the greater the clustering of
mosquitoes, the more difficult it is to obtain adequately
precise village-level estimates based on a representative
sample of houses. In practice, even substantial absolute
differences in observed village-level mean densities often
cannot be shown to be statistically significant (Magbity,
1999). Moreover, even sampling over a one year period may
not be sufficient because cyclical fluctuations in vector
abundance are likely to confound the assumption that
reduction in vector abundance is a result of the control
measure. 

In order to increase precision and to reduce sampling
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error, it is necessary to increase sampling effort, but in
practice available resources invariably limit sampling efforts.
Often, designing an entomological sampling routine for
vector control trials involves making ad hoc decisions about
how to apply the resources available for vector sampling in a
manner that will maximize the precision of the estimates
obtained. This is rarely a simple task, since variation in both
space and time must be considered and there are no
guidelines for making these decisions.

The question therefore arises of how best to distribute
sampling effort in order to maximize the precision of the
estimates of village-level means. Suppose, for example, that
monthly estimates of mean density in each village are
required, and that no more than 12 light-trap samples can be
carried out in each village, monthly. Is it better to trap six
times in each of two houses, or twice in each of six houses, or
four times in each of three houses? And in the latter case, is it
necessary that the nights should be at weekly intervals, or
would the easier task of sampling over four consecutive
nights yield a similar amount of information? Should the
same ‘fixed’ houses be sampled on each occasion, or should
a new set be chosen randomly on each occasion? A further
complication arises when, as is normally the case, estimates
of the parous rate and sporozoite rate are also required, in
addition to estimates of density. Is the best routine for
comparing densities between villages also the best for
comparing parous rates?

Smith et al. (1995) started to tackle the sampling by
applying Bayesian techniques to map densities of Anopheles
gambiae Giles and Anopheles funestus Giles (Diptera:
Culicidae) in a Tanzanian village. They predicted mosquito
densities based on a model that estimated the degree of
variation attributed to various spatial and temporal factors.
The present study tackles a similar problem but using a
more direct approach, and hopefully will provide the basis
for developing specific rationales for distributing sampling
efforts when estimating village-level mosquito abundance
and parous rates in vector control trials. The aim was to
sample mosquitoes in an unusually intense manner in both
space and time and then compare spatial and temporal
variation. In addition, this intensive sampling regime
allowed the use of random sub-samples of the data to
simulate what the result would have been for various
alternative strategies of less intense sampling.

Materials and methods

Study area

Data for this study were collected from two hamlets, Enzi
Mnundu and Tengeni Central, situated in the Muheza
District (5° 10�N, 38° 47�E) of Tanzania. This region had two
rainy seasons a year; a short rainy season from December to
January, and a long rainy season from April to June.

Falciparum malaria was holoendemic with A. gambiae and
A. funestus the primary malaria vectors. These vectors bred
mainly in the swamps and numerous ditches within and
around the villages.

Study design

In each hamlet, six designated houses were selected
randomly and a room in each was chosen for mosquito

sampling. All sleeping places in the sampling rooms were
supplied with untreated bed nets.

Data were collected for 18 weeks, from February to June
1996. In each week a hamlet was randomly selected for
mosquito sampling for the first set of three consecutive
nights, followed by sampling in the other hamlet for the
second set of three nights. On each sampling occasion,
mosquitoes were sampled simultaneously in all six sampling
rooms of the hamlet.

Mosquitoes were sampled using Centers for Disease
Control (CDC) miniature light traps, placed beside an
occupied untreated bed net as described by Lines et al.
(1991). Prior to each sampling occasion, numbered light-
traps and batteries (6V, 10Ah) were distributed randomly
among the various houses. Each householder was instructed
in the proper operation of the trap and participated in the
study by turning the traps on at sunset. The traps were
turned off in the morning by the project staff, who also
recorded the trap and battery numbers used in each room,
and the number of people who had slept in the room the
previous night. The staff also enquired if the people noticed
any malfunctioning of the trap during the night. Six data
points were discarded for traps that did not work properly.

Statistical analysis

Data were analysed using: (i) Taylor’s power (Taylor,
1961) to compare the magnitude of spatial and temporal
aggregation of A. gambiae populations; and (ii) a novel
bootstrapping technique to compare the relative sampling
error in estimating mosquito abundance using different
mosquito sampling routines. 

Spatial and temporal aggregation of mosquito populations

The spatial and temporal variation of A. gambiae in each
of the study villages were determined using Taylor’s power
law (Taylor, 1961), which states that the spatial variance, s2,
characteristic of a species at a particular stage in its
development, is proportional to a fractional power of the
mean population density, m, at that place. That is,

s2 = amb

The equation is typically linearized with logarithmic
transformation, to

log10(s
2 ) = log10(a) + b log10(m)

Taylor claimed that the intercept, a, is a scaling factor
related to sample size, and that the slope, b, is an index of
aggregation that is dependent upon species behaviour and
the environment. A value of b = 1 indicates random
distribution, while b > 1 indicates aggregated distribution,
and b < 1 indicates a regular distribution. An appropriate
transformation can be found from the formula p = 1 – b/2.
According to this relationship: if p = 0, a logarithmic
transformation is appropriate for a given set of data; if p =
0.5, a square root transformation is appropriate. Taylor et al.
(1978) showed that most insect populations have b values
between 1 and 2, giving transformation factors, p, between 0
and 0.5, indicating a transformation somewhere between the
square root and the logarithmic. 

Taylor et al. (1980) also postulated that just as each species
has its own fixed, functional relationship between spatial
variance (ss

2) and mean population density (ms) over an area
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at all times described by a power law, temporal variability
(st

2) is also a power function of mean population density (mt)
over time at all places, given as 

st
2 = amt

b

or 

log st
2 = log(a) + b log(mt).

For the analysis of spatial variation in mosquito
abundance, the mean, xs, and variance, ss

2, of A. gambiae
were calculated for each night in each village. The spatial
aggregation index of mosquitoes was estimated by
regression of ss

2 against xs, after transforming both to log10
scale (Taylor, 1961).

For the analysis of temporal variation in mosquito
distribution, the means and variances were calculated per
house per night for mosquitoes collected within each month
(four weeks period). Monthly intervals were used for
calculating st

2 and xt in order to assess day-to-day variability
within months. The variability of mosquitoes between days
in a month was determined by regression of st

2, on xt, after
transforming both to log10 scale (Taylor, 1961). 

All power law regression analyses of these data were
carried out after excluding means, m < 2, and variances, s2

< 4 (Taylor & Woiwod, 1982). In the present case, only one
record was excluded from the data for temporal analysis,
and none from the data for spatial analysis.

The least squares linear regression procedure of STATA
5.0 (Statacorp, 1995) was used to determine variables in the
power law. Confidence intervals were used to determine if
the slopes of the regression lines (b values) were significantly
different from one.

Determining relative sampling error

Bootstrapping techniques were used to compare the
relative sampling error in estimating mosquito abundance
from different sub-samples of the data representing various
alternative sampling routines. Only data from the first 12
weeks of sampling were used for these bootstrapping
exercises, because longer periods would include larger
variations in mosquito abundance. Counts of adult female A.
gambiae caught in individual light-traps were log-
transformed to the scale log10(x+1). The STATA 5.0 statistical
package was used to design statistical programmes capable
of generating different subsets of these data, with each
subset simulating possible data from a less intensive
sampling routine. 

For example, a programme was designed to generate a
subset of the data collected from the village of Enzi by

stimulating a routine of sampling one night a week in a
single designated house for 12 weeks. This programme was
run 1000 times to generate 1000 subsets of data. The mean
log mosquito count for each of the 1000 simulated data sets
was calculated, and a new data set containing the 1000
means was constructed. The mean of these means and the
size of its 95% confidence interval were then calculated. The
95% confidence interval was calculated by ranking the 1000
means and excluding the top and bottom 25; the range of the
remaining 950 estimates was designated the 95% confidence
interval.

The relative sampling error was estimated as the
percentage relative sampling error, which is expressed as:
percentage relative sampling error = 50 � (size of the
confidence interval) / mean (Sutherland, 1996). 

This gives the error in calculating the mosquito
abundance for a given sampling routine relative to the best
estimate of the mean mosquito abundance.

For each sampling routine, the relative sampling error
was calculated for data generated when the same houses
were used, and also when the houses were randomly
selected on each sampling occasion.

The procedure used for calculating the relative sampling
error in estimating parous rate was similar to that described
above for mosquito abundance. Parous rates were calculated
for each of the 1000 simulated data sets, as a fraction of
parous females to the total number of females dissected in
each data set. These were used to construct a new data set
containing 1000 parous rates. 

Results

Power law regression analysis

Power law regression analysis for both spatial and
temporal distributions of A. gambiae yielded slopes
significantly greater than one, signifying spatial and
temporal aggregation of A. gambiae mosquitoes (table 1 and
fig. 1). 

Table 1 also showed that the transformation indices
(estimated from p = 1 � b/2) were not significantly greater
than zero, justifying logarithmic transformation of data on
mosquito abundance. 

Precision of estimating mosquito abundance

Figure 2 shows the relative sampling error in estimating
mosquito abundance as a function of sampling routine
involving various amounts of sampling effort. For various
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Table 1. Regression coefficients of Taylor’s power law for spatial and temporal variability of Anopheles gambiae s.l. 

b (95% C.I. ) p (95% C.I. ) r2

bs bt ps pt rs2
r
t2

Enzi 1.99 1.83 0.00 0.00 0.63 0.84
(1.58; 2.41) (1.55; 2.11) (0.21; �0.20) (0.22; �0.06)

Tengeni 1.70 1.77 0.15 0.11 0.76 0.84
(1.44; 2.01) (1.47; 2.06) (0.28; �0.01) (0.26; �0.03)

Combined villages 1.79 1.82 0.10 0.09 0.72 0.86
(1.57; 2.04) (1.63; 2.08) (0.21; �0.02) (0.19; �0.04)

Subscripts s and t stand for spatial and temporal values respectively; p is a transformation factor; r2 = goodness of fit of the regression
model, p = 1� b/2.



predetermined levels of sampling efforts, the figure
compares the relative sampling error in estimating mosquito
abundance by sampling in the same houses to random
selection of houses on each occasion. The results show that
the relative sampling error in estimating mosquito
abundance decreases as the number of houses sampled or
the frequency of sampling increases. The results also show
that for a given amount of sampling effort, the relative
sampling error was lower when sampling was carried out in
randomly selected houses, than when the same houses were
used on each sampling occasion.

Figure 3 compares the relative sampling error in
estimating mosquito abundance by sampling once a week
with that obtained from sampling on two consecutive nights
a fortnight, for the same total sampling effort. The figure
clearly reveals that sampling at weekly intervals resulted in
less error than sampling on two consecutive nights per
fortnight.

Precision of estimating parous rates

Figure 4 compares the relative sampling error in
estimating parous rates for different predetermined levels of
sampling effort and sampling routines. The figure shows
that the relative sampling error in estimating parous rates
reduces as either the number of houses sampled or the
frequency of sampling increases. However, unlike the
estimation of mosquito abundance, there seemed to be no
clear differences in sampling error in estimating parous rates
between sampling in a random selection of houses and
sampling in the same houses. 

Discussion

Power law analysis of the spatial distribution of A.
gambiae mosquitoes in the two Tanzanian villages revealed
clustering. Spatial clustering indicates that more mosquitoes
were found in some houses than others. This result agrees
with that obtained by Ribeiro et al. (1996) in Ethiopia, where
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village. Each data point represents the log-transformed mean
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Fig. 2. Relative sampling error in estimating mosquito
abundance using various sampling designs in either the same
houses (---------) or in a random selection of houses (——) on
each occasion (�, weekly; �, fortnightly; ●, monthly).
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Fig. 3. Comparison between the relative sampling error in
estimating mosquito abundance by sampling once a week (–�–)
and two consecutive nights a fortnight (--- ● ---), using the same
total sampling effort.

Fig. 4. Relative sampling error in estimating parous rates
using various sampling designs in either the same houses (------)
or in a random selection of houses (——) on each occasion 
(�, weekly; �, fortnightly; ●, monthly).
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clustering was observed mainly at the peripheral houses of
the study village. According to their results, factors related
to the location of the houses, such as their distance from
breeding sites and surrounding rather than house-specific
factors such as house design and presence of open eaves
were responsible for the observed clustering. In the present
study, the reasons for the clustering are not clear. However,
since the villages were small with lots of scattered breeding
sites, it is possible that both the general location of the
houses and factors specific to individual houses could have
been responsible for the differences observed in the number
of mosquitoes caught in different houses on the same night. 

When mosquito samples are taken over a period of time,
the issue of temporal variability becomes crucial. Analysis of
temporal variability for A. gambiae mosquitoes revealed a
clumped within-month distribution, probably due to the
effect of meteorological factors. Some of these factors (e.g.
rainfall during the previous week) have long-term impact on
mosquitoes and may even affect their actual abundance,
while others (e.g. wind velocity) only act over the short-term
and affect only the catchability of mosquitoes (Bidlingmayer,
1985). The relative degree to which these long and short-
term factors contribute to the number of mosquitoes caught
by any given sampling method is unknown. Hence the
degree to which the number of mosquitoes caught in light
traps actually represents the mosquito population is also
unknown. However, by considering the suggestions made
here, one may be able to increase the precision of the
estimates. 

It should be noted that the power law has come under
considerable criticism, that the index, b, does not differ
between species and is even inconsistent within species
(Downing, 1986). Therefore, the results obtained here should
be considered as only initial estimates. Moreover, whereas
temporal aggregation was estimated by sampling 12 nights
every 28 days, only six of the more than 50 houses in each
village were used to estimate spatial aggregation. The
estimate of temporal variability is therefore likely to be more
reliable than the corresponding estimate of spatial
variability. It is possible that had more houses been used, the
magnitude of the spatial variation might have been different. 

The results clearly revealed less sampling error in
estimating mosquito densities when sampling was carried
out in a random selection of houses than when the same
houses were used on each occasion. This could be because
this type of routine is more liable to account for spatial
variation and therefore provide more representative
estimates. On the other hand, the relative sampling error in
estimating mosquito parous rates were not affected by
whether a random selection of houses or a fixed set of
houses were used on each occasion. This is because, even
though mosquito distribution is aggregated, parous and
nulliparous mosquitoes are expected to be randomly
distributed within a mosquito population. There are no
documented environmental factors that preferentially attract
mosquitoes on the basis of their parity. 

Estimates of parous rates and mosquito abundances are
both subject to night to night variation but the former is less
subject to house to house variation. One should therefore
expect estimates of village-level parous rates to be more
precise and reliable than village-level mosquito abundances.
By coupling this with the fact that a reduction in parous rate
(mosquito survival rate) has more impact on malaria
transmission than reduction on mosquito abundance

(Garrett-Jones, 1964), it might be more meaningful in
situations where there are very limited resources for
entomological evaluation to focus entirely on estimating
parous rates and ignore mosquito abundance. In such
situations, a sampling routine that permits a more reliable
estimate of parous rates while ignoring mosquito abundance
should involve frequent sampling in fewer houses on each
occasion. The same houses, rather than a random selection
of houses each time, can be used for mosquito sampling, in
order to simplify the sampling regime. And, in order to
maximize output, it would be appropriate to sample in
houses with high mosquito abundance and to dissect all the
mosquitoes caught for parous rate determination.

The conclusions so far reached are rather tentative,
because mosquitoes were sampled over a small area, and for
a short period. Further study involving more houses
sampled over a longer period, in the same and in other
areas, would be required to verify these results. There are
also some obvious further steps that need to be investigated
such as dominant spatial and temporal factors and effect of
seasonal variation on spatial and temporal variation. 
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