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FOR PUBLICATION 

Comment on Tu et al. 2013. A critical evaluation of statistical approaches to examining the role of 

growth trajectories in the developmental origins of health and disease.  

From Andrew K Wills, Richard J Silverwood, Bianca L De Stavola 

Tu et al. (1) give a useful overview of several common approaches used to examine growth 

trajectories in relation to a later health outcome. One approach covered is the use of general linear 

models where the later health outcome is expressed as a function of several repeated measures of 

size (all or a subset up to a critical time), or of linear functions of size. In their paper, these are 

described as the life course plot model, change scores models 1 and 2, and the conditional (size) 

model. The authors highlight that different conclusions are drawn depending on the model 

specification. As an example, they show that the model specified in terms of size measures (the life 

course plot) finds negative associations of later SBP with early life weight, whereas the model 

containing birth weight and subsequent changes in weight (change scores model 1) finds positive 

associations with birth weight and subsequent changes in weight. We would like to provide some 

clarification and expansion on the interpretation of these models. 

First, it is worth noting that there is nothing contradictory about these results. While the analyses 

based on the life course plot, conditional size and change scores models are all re-parameterisations 

of the same underlying model (see appendix for their algebraic formulation and re-expression), the 

coefficients from each model are conditional on different sets of transformed variables and 

therefore address different questions. Hence we should indeed expect to get different answers. 

As stated elsewhere, the interpretation of each coefficient in a model containing repeated measures 

of the same dimension at different ages can be difficult because of the conditioning (2). Generally, 

the interpretation of each coefficient in Table 3 of Tu et al. (1) takes the form of: “the expected 

difference in SBP for a 1SD greater weight at age x (or a 1SD greater increase in weight from age x-1 

to x in the change scores models), conditional on all other sizes (or changes in size) in the model 

being equal”. In some sense, this means that each coefficient now contrasts a trajectory rather than 

a measure at a single point in time. Understanding this trajectory contrast is important to 

understanding the results from each of the model re-parameterisations presented in Tu et al. (1) and 

reported elsewhere e.g.; (3-6). 

Perhaps a useful visualisation of these model specifications is presented in figure 1. Using the 

example dataset from Tu et al.(1) , it illustrates the trajectory contrast tested by the coefficient for 

standardized weight at 8y in the life course model and conditional size model, and by the coefficient 

for change in standardized weight from 2-8y in each of the change scores models. The plot shows 

that in the life course model, the 8y coefficient represents the mean difference in SBP corresponding 

to a child whose trajectory includes a 1SD higher weight at age 8 and the same weight at all other 

ages. This model targets the question, what is the effect of carrying extra weight at only this one 

period in life? The corresponding coefficient in change scores model 1 represents the effect of a 1SD 

greater weight gain from 2 to 8y with the same birth weight and the same weight changes in all 

intervals other than 2 to 8y. This implies a 1SD difference in all future weights and hence asks a 

cumulative question: what is the effect of gaining extra weight in a particular interval and 

maintaining that weight differential in the future?  The coefficient for 2 to 8y in change scores model 
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2 also represents the effect of a 1SD greater weight gain from 2 to 8y but compares against children 

with the same future weight. This implies a 1SD lower weight at earlier ages and asks the question: 

given the same future weight trajectory, does starting smaller with subsequent greater weight gain 

matter? The parameter in the conditional size model corresponding to the conditional score at age 

8y is the same as that of a model that conditions only on past weight, hence the future is unspecified 

and the contrast in figure 1 ends at 8y. The plot shows that this coefficient represents the effect of a 

1SD greater weight gain from 2 to 8y among those with the same earlier weight. As implied, this asks 

a prospective question at each age: what is the effect of current weight (or recent weight gain), 

independent of the past? Using path analysis terminology, the coefficients for conditional size 

represent the total effect of that particular variable on the outcome. i.e. the sum of its direct and 

indirect effects (through future weights). This shows the connection between path analysis and the 

conditional size and life course models. For example, a path analysis model where each measure of 

weight is allowed to influence the outcome both directly and indirectly through all future weights is 

expressed using the equation for the life course plot model (equation 1 in the appendix) and the 

equations to calculate the conditional scores (equations 4 in the appendix), no new information is 

added and no information is removed.   

Returning to the ‘contradictory’ conclusions highlighted by Tu et al. (1). The suggestion from their 

life course plot (see their figure 4 and Table 3 (1)) is that being small at birth and in early life 

(although weak associations), and having a higher current weight are associated with a higher SBP. 

Change scores model 1 on the other hand, suggests that being heavy or gaining weight at any stage 

from birth is linked to a higher SBP. These are different contrasts, not contradictory findings. The 

parameters in the first model are comparisons against children with the same size at all other ages, 

whereas those in the second model compare against children who remain smaller at all future ages. 

Referring to the estimated age-specific coefficients from change scores model 1 (see Table 3 in Tu et 

al. (1)) also shows that those who were smaller at birth, stayed smaller and experienced weight gain 

later in life tended to have a higher SBP than those of the same current weight who were born 

bigger (obtained by performing the calculation from their table: -1SD*β(zwt0)+1SD*β(zwt19-15)= -

1*2.58+1*4.24 =+1.66mmHg), this is also the contrast made by the coefficient for zwt19-15 in change 

scores model 2 and so we get the same result. As mentioned, the coefficients from each model can 

be re-expressed as coefficients from the other models (see appendix) and in doing so we then just 

force them to make the same contrast and hence ask the same question. Note also that the life 

course model, change scores model 1 and conditional change model have the same estimated 

regression coefficient for the last weight measure (i.e. standardized weight at 19y or the change in 

weight between 15 and 19y). This is no coincidence but algebraic equivalence (2)( see appendix), 

highlighting the interpretation to be given to the most proximal weight measure, i.e. conditional on 

past values. This shows that if the coefficients are interpreted with respect to the conditioning in the 

model so that the contrast and question posed by each is explicitly referenced, then seemingly 

contradictory conclusions about the role of life course weight can be easily reconciled.  
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Figure 1. An illustration of the trajectory contrast made by the coefficient for weight at 8y in the life 

course model and conditional (size) model, and the coefficient for weight change from 2 to 8y in the 

change scores models as presented in Tu et al (1). The lines represent the difference in weight (z-

score) at each age versus the reference trajectory. The thin separation between trajectories is done 

for clarity; in reality they should be superimposed.  
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Appendix  

Using the same model terminology as Tu et al. (1), generally for a set of k standardised repeated 

measures of size    , the life course plot model can be written as: 

         ∑      
 
         [1] 

Change score model 1 (conditioned on initial size   ) as:  

              ∑             
 
       [2] 

Change score model 2 (conditioned on final size   ) as: 

         ∑                  
   
       [3] 

The Conditional size scores are the residuals    to    estimated from the following models: 

                     

                                

… 

         ∑            
   
    

      [4]     

where    is the conditional size or growth score for period j-1 to j. The analysis model used to 

estimate the conditional size effects is then: 

              ∑      
 
        [5] 

Coefficients from change model 1 (equation 2) can be re-expressed in terms of coefficients from the 

life course plot model (equation 1) as follows: 

    ∑   
 
     for all j≥1    [6] 

Likewise, coefficients from change model 2 (equation 3) can be re-expressed in terms of coefficients 

from the life course plot model (equation 1):  

     ∑   
 
     where 0<j<k    [7] 

    ∑   
 
     where j=k 

Coefficients from the life course plot (equation 1) can also be re-expressed in terms of those from 

the models to estimate the conditional size effects (equations 4 and 5), as follows:  

        ∑        
 
      for all j≥1   [8] 
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Equation [8] is probably best understood by considering the equivalence of the conditional size 

coefficients (ηj’s in equation 5) with the total effects from a saturated path analysis model containing 

repeated measures – by saturated we mean that the outcome is conditioned on all available 

repeated measures and each measure is allowed to influence the outcome directly, and indirectly 

through all future measures. For example, the saturated path model for serial measures of 

standardised weight in the example dataset of Tu et al., (1) would be expressed using equations  [1] 

(life course plot model) and [4] (equations used to calculate the conditional size scores), where the 

number of repeated measures k, is 6. In path analysis jargon, the total effect of weight at age j is the 

sum of the direct effect at age j and all indirect effects through future weights. The direct effects 

from a path analysis model are equal to the βj’s in the life course model (equation 1), the indirect 

effects are equal to the sum of the paths emanating from weight at age j to the outcome via 

intermediate variables, in this case subsequent weight measures. Here the effect of each path is 

estimated by the product of the coefficients along that path. Therefore the direct effect at age j (βj) 

can be re-expressed as the total effect at age j (ηj) minus the sum of indirect effects from age j 

(∑        
 
      , which gives equation [8]. Note though that this decomposition in path analysis is 

appropriate only if there are no unmeasured confounders between each growth measure and the 

outcome, no interactions among the growth measures and if all variables are continuous (7) 
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