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Introduction
Malaria is caused by species of Plasmodium, a protozoan 

parasite belonging to the phylum Apicomplexa. The parasite 

grows within erythrocytes, which it invades in a rapid, multi-

step process. Initial attachment of the merozoite is followed by 

reorientation, formation of an electron-dense junction between 

its apical prominence and the erythrocyte surface, and entry 

through this “moving junction” into a parasitophorous  vacuole. 

Invasion is facilitated by the discharge of apical secretory 

organelles called micronemes.

The various steps in invasion involve different receptor–

 ligand interactions. Primary binding is low affi nity and is 

 proba bly mediated by a glycosyl phosphatidylinositol–anchored 

protein complex mostly composed of fragments of merozoite 

surface protein 1 (MSP1), which is expressed around the mero-

zoite circumference (Li et al., 2004), or by other surface- resident 

glycosyl phosphatidylinositol–anchored proteins (Sanders 

et al., 2005). Reorientation requires a microneme protein called 

apical membrane antigen 1 (AMA1), which is released onto the 

merozoite surface before attachment (Mitchell et al., 2004). 

Junction formation constitutes an essentially irreversible, high-

affi nity binding step and involves members of a family of adhe-

sive type I integral membrane microneme proteins known as the 

Duffy binding ligand-erythrocyte binding proteins (DBL-EBPs). 

The DBL-EBPs share a similar overall structure, with one or 

two erythrocyte binding DBL domains situated near their N 

 terminus, a juxtamembrane cysteine-rich domain of unknown 

function called region VI, a transmembrane domain (TMD), 

and short cytoplasmic domain (Adams et al., 2001). Despite this 

overall similarity, the DBL-EBP exhibit extensive sequence 

 diversity and interact with a range of receptors.

The best-characterized P. falciparum DBL-EBP is eryth-

rocyte binding antigen 175 (EBA-175), which binds to a sialic 

acid–containing structure on glycophorin A (Dolan et al., 1994; 
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Sim et al., 1994; Tolia et al., 2005). Although some P. falci-
parum strains use predominantly this interaction for invasion, 

others (including many fi eld isolates) do not, invading through 

alternative pathways (Dolan et al., 1990; Okoyeh et al., 1999) 

that use other members of the DBL-EBP family (Duraisingh 

et al., 2003; Gilberger et al., 2003b). There is extensive re-

dundancy in invasion pathways, and the variety of DBL-EBP 

paralogues expressed by P. falciparum together with polymor-

phism within them may allow the parasite to evade  immune 

responses and to invade a range of host cells despite wide-

spread polymorphism in human erythrocyte surface molecules 

(Maier et al., 2003; Mayer et al., 2004). The structural and 

 antigenic diversity across the DBL-EBP family poses hurdles 

for the development of vaccines or drugs that target these 

 important ligands.

Invasion by all Apicomplexa is accompanied by extensive 

proteolysis of surface and microneme proteins. During invasion 

by P. falciparum merozoites, both the MSP1 complex and 

AMA1 are quantitatively shed by cleavage at juxtamembrane 

sites. The enzyme responsible is a subtilisin-like “sheddase” 

called PfSUB2 that translocates across the parasite surface 

(Howell et al., 2003; Harris et al., 2005). A distinct mode of 

shedding has been observed in the related apicomplexan Toxo-
plasma gondii. Here, several transmembrane microneme pro-

teins that translocate across the parasite through interactions 

with a subplasmalemmal actinomyosin motor are shed in the 

 fi nal stages of invasion by cleavage within their TMD (Opitz 

et al., 2002; Zhou et al., 2004). This “capping proteolysis” is 

mediated by an enzyme, initially dubbed microneme processing 

protease 1 (MPP1; Carruthers et al., 2000), that is now thought 

to be a rhomboid, a class of polytopic membrane serine prote-

ases that cleave within the TMD of their substrates (Urban 

et al., 2001; Urban and Freeman, 2003; Zhou et al., 2004; Brossier 

et al., 2005; Dowse et al., 2005). All the proteins shed by 

PfSUB2 and MPP1 have demonstrated or putative binding 

 acti vity, and the fact that interventions that prevent shedding 

also inhibit invasion suggests that shedding is required to disen-

gage binding interactions between the parasite and host cell 

surface, enabling rapid entry into the parasitophorous vacuole 

(Carruthers and Blackman, 2005). It has not been established 

whether intramembrane proteolysis plays a role in the release 

of Plasmodium adhesins.

EBA-175 and all other known DBL-EBPs accumulate in 

soluble form in culture supernatants (Orlandi et al., 1990; Reed 

et al., 2000; Gilberger et al., 2003b), suggesting that their role at 

invasion may culminate in their being shed in a manner similar 

to the adhesins described above. The signifi cance of DBL-EBP 

shedding has not been investigated. Here, we address this issue. 

We show that EBA-175 is secreted onto the surface of P. falci-
parum merozoites and is shed at or around the point of invasion. 

Shedding occurs by cleavage within the TMD at a site that is 

conserved in all DBL-EBPs. Cleavage is mediated by a rhomboid 

Figure 1. EBA-175 is shed at or around the point of erythrocyte inva-
sion and retains region VI. (A) Schematic of EBA-175 structure, indicat-
ing signal sequence (SS), F1 and F2 DBL domains, TMD, and cytoplasmic 
domain (CYT). The position of region VI is shown, with a Coomassie 
blue–stained SDS-PAGE gel of purifi ed recombinant region VI (inset). 
(B) Western blot of 3D7 schizonts, merozoites, and culture supernatant, run 
on nonreducing 7.5% SDS-PAGE and probed with anti–region VI anti-
bodies. Shed EBA-175 (arrow) migrates more rapidly than the parasite 
forms. Molecular mass markers are indicated. (C) IFA images of an ace-
tone-fi xed segmented 3D7 schizont and free merozoites dual labeled 
after fi xation with mAb 1E1 (anti-MSP119; red) and anti–region VI anti-
bodies (green). The punctate, apical pattern obtained with the latter is 
typical of microneme staining. (D) EBA-175 is discharged onto the api-
cal surface of free merozoites. Merozoites released from 3D7 schizonts 
in the presence of anti–region VI antibodies were washed, fi xed, and 
probed with FITC anti-mouse IgG to detect bound anti–region VI anti-
bodies (green), followed by mAb 1E1 (anti-MSP119; red). Many free 
merozoites exhibit a strong apical FITC signal (thin arrows), whereas 
residual intact schizonts containing merozoites that were not  accessible 
to the anti–region VI antibodies show only background FITC  labeling 
(thick arrows). No signal was associated with merozoites released in 
the presence of preimmune mouse antisera (unpublished data). (E) IFA 
images of newly invaded (≤3-h-old) ring-stage 3D7 parasites probed 
with anti–region VI antibodies after acetone fi xation. Most rings did not 

react at all with the antibodies. Nuclei were stained with DAPI (blue). 
Identical results were obtained with the W2mef clone (unpublished 
data). Bars, 5 μm.
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called PfROM4 that is expressed at the merozoite plasma mem-

brane but not by other rhomboids tested. Importantly, parasite 

lines carrying mutations that prevent PfROM4-mediated cleav-

age could not be established, suggesting that shedding of EBA-

175 is important for successful invasion. Our results show that 

intramembrane proteolysis by PfROM4 is critical to mainte-

nance of the parasite life cycle and suggest that targeting 

PfROM4 activity may provide a means to interfere with the 

function of the entire DBL-EBP family.

Results
EBA-175 is shed from the merozoite at or 
around the point of erythrocyte invasion
Antibodies raised against a folded, recombinant form of EBA- 

175 region VI (Fig. 1 A) were specifi c for schizont and merozo-

ite-derived EBA-175 on Western blots and also reacted with the 

shed form in culture supernatants (Fig. 1 B). The shed protein 

therefore retains some or all of region VI, as previously sug-

gested (Kaneko et al., 2000; Duraisingh et al., 2003). The anti-

bodies produced a strong punctate immunofl uorescence assay 

(IFA) pattern in acetone-fi xed schizonts and free merozoites, 

consistent with the micronemal location of EBA-175 (Fig. 1 C). 

They also reacted specifi cally with the apical surface of many 

nonpermeabilized free merozoites, suggesting that EBA-175 is 

secreted onto the merozoite surface just before invasion (Fig. 1 D). 

In contrast, the anti–region VI antibodies did not react at all 

with most newly invaded rings of either the W2mef or 3D7 

P. falciparum clones, labeling only a small fraction with a 

weak, punctate pattern (Fig. 1 E and Table I, second column). 

To examine this in more detail, we took advantage of the fact 

that parasite lines vary in their degree of dependence on 

EBA-175 as an invasion ligand. W2mef relies predominantly 

on  sialic acid–dependent pathways for invasion and uses EBA-175 

as its dominant invasion ligand, whereas 3D7 is capable of in-

vading by both sialic acid–dependent and –independent routes 

(Reed et al., 2000; Duraisingh et al., 2003). Pretreatment of 

host erythrocytes with neuraminidase removes the sialic acids 

required for EBA-175 binding to glycophorin A (Fig. S1, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200604136/DC1), 

precluding EBA-175–mediated invasion and forcing invasion 

to proceed by alternative pathways. As shown in Table I, in-

vasion into neuraminidase-treated cells did not alter the pro-

portion of 3D7 rings reactive with the anti–region VI  antibodies. 

Collectively, these results imply that at around the time of in-

vasion, EBA-175 is predominantly shed from the merozoite 

and that this occurs to the same degree regardless of whether 

EBA-175 is used as a primary ligand mediating invasion. As 

EBA-175 plays its role in invasion at the parasite–host interface, 

shedding presumably takes place from the merozoite surface. 

The truncated form of EBA-175 that appears in culture super-

natants is the product of this.

EBA-175 is shed by a calcium-independent 
serine protease distinct from PfSUB2
To study the mechanism of EBA-175 shedding, we used an  assay 

developed for characterizing the sheddase PfSUB2  (Howell 

et al., 2003; Harris et al., 2005). Merozoites were incuba ted 

at 37°C with a range of test additives, and supernatants were 

analyzed for the presence of shed proteins. Fig. 2 shows that 

shedding of EBA-175 was readily detectable, as was shedding 

of the expected MSP1 and AMA1 fragments. Release of EBA-

175 was partially sensitive to PMSF and dichloroisocoumarin, 

indicating the involvement of a serine protease. However, in 

contrast to MSP1 and AMA1, EBA-175 shedding was not in-

hibited by either the calcium chelating agent EGTA or recom-

binant PfSUB2 prodomain (PfSUB2PD), a selective inhibitor 

of PfSUB2 (Harris et al., 2005). These data show that EBA-175 

is not shed by PfSUB2 but by a distinct, calcium-independent, 

serine protease.

Figure 2. EBA-175 is not shed by PfSUB2 but by a distinct calcium-
 independent serine protease. Shed EBA-175 and processing fragments of 
AMA1 (AMA148/44) and MSP1 (MSP133) were detected in merozoite 
 supernatants by Western blot as described in Materials and methods. 
 Supernatants were harvested immediately (start) or after a 1-h incubation 
at 37°C in buffer alone (no additions) or containing the indicated addi-
tives. Isopropanol and DMSO were solvent controls for PMSF and dichloro-
isocoumarin (DCI), respectively, whereas FT control refers to fl ow-through 
from the fi nal step of concentration of purifi ed PfSUB2PD by ultrafi ltration 
(Harris et al., 2005), added to the assay at a dilution similar to that used 
for PfSUB2PD. These results were reproducible in three independent 
 experiments. In Western blot analysis (similar to that in Fig. 1 A) the shed 
EBA-175 produced in these assays comigrated with that from culture 
 supernatants (unpublished data), consistent with it being the result of the 
same protease activity.

Table I. Shedding of EBA-175 at erythrocyte invasion occurs to the 
same extent whether or not it is used as the dominant invasion ligand

Proportion of rings reactive with anti–region VI 
antibodies in IFAa

P. falciparum line Erythrocyte pretreatment

untreated mock neuraminidaseb

% % %

W2mef 13.4 ± 3.8 NDc NDc

3D7 16.7 ± 3.5 14.9 ± 3.2 15.4 ± 5.1d

aFigures shown are derived from three experiments. At least 1,000 rings were 
examined in each case. 95% confi dence levels are indicated.
bErythrocytes were neuraminidase treated or mock treated as described in 
Materials and methods. The effi ciency of the treatment was assessed using 
an overlay assay to confi rm lack of EBA-175 binding (Fig. S1, available at 
http://www.jcb.org/cgi/content/full/jcb.200604136/DC1).
cInvasion of neuraminidase-treated erythrocytes by W2mef was very ineffi cient 
(≤2.0% of invasion into mock-treated cells) as expected, so these rings were not 
examined by IFA.
dInvasion of neuraminidase-treated erythrocytes by 3D7 was 89% of invasion into 
mock-treated cells, in agreement with previous fi ndings (Duraisingh et al., 2003).
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EBA-175 is shed by cleavage within 
its TMD at a rhomboid-like site
Shed EBA-175 can be recovered from culture medium by  being 

bound to erythrocytes and then eluted with high salt (Orlandi 

et al., 1990). We adapted this approach to purify suffi cient 

EBA-175 for structural analysis. SDS-PAGE of the partially 

purifi ed fractions revealed a major protein species at �175 kD 

(Fig. 3 A). Matrix-assisted laser desorption/ionization time-

of-fl ight (MALDI-TOF) analysis of in-gel tryptic digests con-

fi rmed this as EBA-175, with a MASCOT probability score of 

462 (Table S1, available at http://www.jcb.org/cgi/content/full/

jcb.200604136/DC1). The most C-terminal peptide identifi ed in 

these digests corresponds to 1406E F D D P S Y T C F R K 1417, which 

lies just upstream of the TMD (Fig. 3 B). No anomalous pep-

tides were identifi ed that might represent the N- or C-terminal 

end of the protein, so further samples were digested with Asp-N 

in the presence of 50% (vol/vol) 18O water. Under these con-

ditions, products of digestion incorporate both 18O and 16O at 

their C termini as a result of proteolytic hydrolysis, whereas 

any peptide derived from the extreme C terminus of the protein 

substrate should retain a normal 16O isotope spectrum (Howell 

et al., 2003, 2005). Examination of these digests by MALDI-

TOF again identifi ed only peptides derived from the EBA-175 

ectodomain (MASCOT probability score 199), including a region 

VI–derived ion at m/z 1740.716, matching 1395D S E E Y Y N C T-

K R E F 1407 (calculated m/z 1740.717). As expected, all peptides 

identifi ed with an N-terminal Asp and ending at a residue ad-

jacent to an Asp-N cleavage site exhibited an 18O-containing 

spectrum. Within the anomalous peptides observed were only 

two unlabeled ions that could be assigned as being products 

of EBA-175 digestion: one at m/z 2435.242, corresponding 

closely to the EBA-175–derived peptide 1408D D P S Y T C F R K E-

A F S S M P Y Y A 1427 (calculated m/z 2435.032; Fig. 3, B and C), 

and a second, less intense ion at m/z 2451.262, matching its 

expected Met oxidized form (calculated m/z 2451.032; un-

published data). The absence of an Asp-N cleavage site at the 

C terminus of this peptide, together with the absence of 18O label, 

implicated it as the C terminus of the shed EBA-175. Collision-

induced fragmentation in a nanospray mass spectrometer (Fig. 

3 D) confi rmed its identity and clearly detected the C-terminal 

sequence Y-A.

These data map the C terminus of shed EBA-175 to an 

Ala residue that lies three residues into the TMD. Importantly, 

Figure 3. EBA-175 is shed by intramembrane cleavage. (A) Coomassie-
stained SDS-PAGE of partially purifi ed shed EBA-175 (arrow). A total of 
�40 μg of EBA-175 was obtained from 3 liters of culture medium. (B) The 
most C-terminal intact tryptic and Asp-N peptides identifi ed in digests 
of EBA-175, with calculated m/z values in carbamidomethylated form, 
are shown in relation to the juxtamembrane sequence of 3D7 EBA-175 
(PlasmoDB ID PF07_0128). The TMD (TMHMM v2.0) is shaded. The sequence 
is aligned with corresponding sequence from P. falciparum paralogues 
EBA-181 (PFA0125c) and EBA-140 (MAL13P1.60), as well as P. falci-
parum MAEBL (PF11_0486), P. vivax DBP (available from GenBank/
EMBL/DDBJ under accession no. P22290), and P. knowlesi DBP (available 
from GenBank/EMBL/DDBJ under accession no. P22545). Conserved cys-
teines are marked with an asterisk. Helix breaking motifs constituting 

 potential rhomboid recognition sites within the TMD are underlined, and the 
con served Ala at which EBA-175 is cleaved is boxed. (C) MALDI-TOF spec-
tra of EBA-175 Asp-N digests performed in 100% H2

16O or 50% (vol/vol) 
H2

18O. The peak matching 1408D D P S Y T C F R K E A F S S M P Y Y A 1427 (arrow; 
shown magnifi ed in inset, with observed m/z value) is not 18O-labeled in 
the lower spectrum, indicating that it derives from the C terminus. For com-
parison, peaks corresponding to 1227D R N S N T L H L K 1236 (calculated m/z 
1197.634) and 562D L S N R K L V G K I N T N S N Y V H R N K Q N 585 (calculated m/z 
2812.493) are indicated as examples of species that in the lower spec-
trum exhibit the 18O-labeled isotope pattern typical of internal peptides. 
(D) Collision-induced fragmentation spectrum of the unlabeled m/z 2435.242 
peptide in Asp-N digests. The indicated fragment peaks can be assigned 
to a b and y series of ions, with the b18 and b19 ions assigning the C-terminal 
peptide sequence Y-A. The remaining major ions are all consistent with the 
indicated sequence.
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this Ala is conserved across the DBL-EBP family (Fig. 3 B; 

Carruthers and Blackman, 2005). Of the few proteases that can 

hydrolyze intramembrane substrates, only rhomboids cleave 

close to the luminal side of the TMD; also, cleavage after an 

Ala is a hallmark of rhomboids (Urban and Freeman, 2003; 

Zhou et al., 2004; Howell et al., 2005). Collectively, our data 

show that EBA-175 is shed by a protease with the characteris-

tics of a rhomboid.

The merozoite rhomboid PfROM1 localizes 
exclusively to micronemes
Apicomplexan parasites possess several rhomboid-like genes 

(Dowse and Soldati, 2005). T. gondii has six, of which three 

(encoding TgROM1, -4, and -5) are expressed in tachyzoites 

in locations where they might play a role in invasion; TgROM1 

is micronemal, whereas the other two larger rhomboids are 

expressed at the parasite plasma membrane (Brossier et al., 

2005; Dowse et al., 2005). Based on these expression patterns, 

the best candidates for the protease mediating shedding of 

EBA-175 were considered to be PfROM1, the P. falciparum 

orthologue of TgROM1, and PfROM4, the single orthologue 

of TgROM4 and -5. Microarray studies have shown that both 

pfrom1 (PlasmoDB ID PF11_0150) and pfrom4 (PFE0340c) are 

expressed in P. falciparum blood stages (Bozdech et al., 2003; 

Le Roch et al., 2003) The predominantly intramembrane na-

ture of rhomboids can make them poor antigens; therefore, to 

localize these gene products, we attempted to epitope tag the 

genes using single-crossover homologous recombination. For 

PfROM1, we transfected parasites with a plasmid containing a 

targeting sequence that included pfrom1 coding sequence fused 

to three copies of the HA epitope (HA3; Fig. S2 A, available 

at http://www.jcb.org/cgi/content/full/jcb.200604136/DC1). 

Drug-selected parasites (called 3D7ROM1HA) were cloned 

for further characterization. Southern blot (Fig. S2 B) and PCR 

analysis (unpublished data) confi rmed that the plasmid had in-

tegrated through the expected recombination event, placing the 

HA3 tag at the 3′ end of the pfrom1 gene.

Western blot of the clones (Fig. S3 A, available at http://

www.jcb.org/cgi/content/full/jcb.200604136/DC1) revealed an 

anti-HA–reactive protein matching the predicted mass (26.7 kD) 

of HA-tagged PfROM1. Schizonts probed with mAb 3F10 

showed a punctate IFA pattern that colocalized with the micro-

neme protein AMA1 (Fig. S3 B), indicating that, like its T. gondii 
homologue, PfROM1 is a microneme protein. IFA of free 

 merozoites and ring stages showed that, unlike AMA1, which 

redistributes onto the merozoite surface just before invasion 

(Howell et al., 2003), PfROM1 remains exclusively in an apical 

location; it could not be detected at the merozoite surface 

(Fig. S3, C and D) and did not colocalize with the plasma mem-

brane marker MSP119 in rings (Fig. S3 E). Our results show 

that PfROM1 is restricted to micronemes, where it is unlikely to 

play a part in shedding of surface-located EBA-175.

PfROM4 is a merozoite surface rhomboid
Attempts to epitope tag the 3′ end of the pfrom4 gene using a 

similar strategy failed (unpublished data), perhaps  indicating that 

modifi cation of the gene at this site is deleterious to the parasite. 

In an alternative approach, we transfected parasites with a 

construct for episomal expression of N-terminal HA3-tagged 

PfROM4, under the control of the pfrom4 promoter. Western 

blot of the resulting parasite line (called 3D7HAROM4synth) 

revealed expression of a novel, anti-HA–reactive protein of 

84 kD, close to the expected mass of HA-tagged PfROM4 

(Fig. 4 A). IFA showed this colocalized with the plasma mem-

brane marker MSP1 in schizonts (Fig. 4 B). Identical results 

were obtained using the ama1 promoter to express the gene 

(unpublished data). These fi ndings indicate that PfROM4 

is expressed at the merozoite plasma  membrane, an appro-

priate location to play a role in shedding of merozoite surface 

EBA-175.

EBA-175 is specifi cally cleaved by PfROM4
To explore whether EBA-175 could be a substrate for PfROM4, 

we used a heterologous expression system that has been used to 

characterize several rhomboids, including those from T. gondii 
and Drosophila melanogaster. A synthetic “minigene,” encod-

ing HA-tagged EBA-175 region VI plus its cognate TMD and 

cytoplasmic domain, was cloned into a vector for constitutive 

expression in mammalian cells (Fig. 5 A). The gene product 

was targeted to the secretory pathway by the murine Igκ signal 

sequence. COS-7 cells transfected with this construct showed 

Figure 4. PfROM4 is a merozoite plasma membrane protein. (A) Western 
blot showing extracts of parental 3D7 and 3D7HAROM4synth probed with 
mAb 3F10 (anti-HA) and polyclonal anti-AMA1 (loading control). The size 
of the anti-HA–reactive species detected only in 3D7HAROM4synth is close 
to the predicted mass (90.4 kD) of HA-tagged PfROM4. (B) IFA of mature 
nonsegmented (top) and fully segmented (bottom) schizonts of 3D7HA-
ROM4synth, dual labeled with mAb 3F10 (anti-HA; green) and mAb 1E1 
(anti-MSP1; red). The DAPI signal (blue) is not included in merged images 
for clarity. Bar, 5 μm.
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strong surface fl uorescence when probed without prior fi xation 

with mAb 3F10, indicating expression of the protein in mem-

brane bound form at the cell surface (Fig. 5 B). Western blot 

with the same mAb detected a major, �32-kD, and minor, 25-kD, 

protein in transfected cells. Region VI contains two potential 

N-glycosylation sites at N1333 and N1401. N-glycosylation is 

rare or absent in P. falciparum (Howell et al., 2003), so one or 

both of these residues was substituted with Asp, resulting in 

expressed products EBAregVIgl1 and EBAregVI, respectively. 

The latter migrated as a single 25-kD species, close to its pre-

dicted nonglycosylated mass of 24 kD; it was also equally well 

expressed at the surface of transfected COS-7 cells (Fig. 5 B). 

Cells were then cotransfected with constructs designed for 

 expression of either wild-type PfROM4 or a mutant form with 

the predicted active-site Ser residue replaced with Ala, and 

 medium from the cells was examined by Western blot for 

the  appearance of shed forms of the HA-tagged region VI. 

 Co expression with wild-type PfROM4 resulted in the appearance 

in cell supernatants of anti-HA–reactive proteins that migrated 

on SDS-PAGE more rapidly than the forms in cell extracts 

(Fig. 5 C). Importantly, levels of these shed forms were sig-

nifi cantly lower, and not above background levels (unpublished 

data), when coexpressed with the mutant PfROM4. These 

 results suggested that the shed protein is a result of PfROM4 

proteolytic activity.

All DBL-EBP possess a GA or GG motif just proximal to 

the extracellular side of their TMD (Fig. 3 B), reminiscent of 

the helix-destabilizing structures that determine sensitivity to 

rhomboids (Urban and Freeman, 2003). To explore the require-

ments for recognition of the EBA-175 TMD by PfROM4, three 

further forms of EBAregVI with mutations in the TMD were 

evaluated in the COS-7 cell system (Fig. 5). Substitution of 

A1427, the residue at which cleavage occurs to release EBA-

175 from the merozoite surface (mutant EBAregVI-mutA), pre-

vented PfROM4-mediated shedding. Similarly, substitution of 

the GA motif (called GA1) closest to the extracellular end of the 

TMD (EBAregVI-mutGA1), predicted as the site required for 

rhomboid recognition, abolished specifi c cleavage. In contrast, 

substitution of another GA motif (GA2) lying near the cyto-

plasmic end of the TMD (EBAregVI-mutGA2) had no effect on 

cleavage. These data show that the EBA-175 TMD is recog-

nized and cleaved by PfROM4 and suggest that the require-

ments for recognition are similar to those characterized for 

other rhomboids.

These experiments were extended, cotransfecting with 

constructs expressing PfROM1 or the D. melanogaster rhom-

boid Rho-1 instead of PfROM4. In repeated experiments, and 

under conditions where Rho-1 effi ciently cleaved AMA1 as 

shown previously (Howell et al., 2005), we were unable to de-

tect any activity of these rhomboids against the EBAregVI con-

structs (unpublished data). These fi ndings imply a specifi c 

interaction between PfROM4 and EBA-175.

PfROM4-mediated shedding of EBA-175 is 
critical to maintenance of the P. falciparum 
blood-stage life cycle
To directly address the importance of EBA-175 shedding in the 

erythrocytic life cycle of P. falciparum, we attempted to  generate 

transgenic parasites expressing mutant forms of EBA-175 that 

lacked one or other of the two TMD GA motifs examined in the 

previous section. To do this, we constructed plasmids (pHH1-

175-GA1/FF and pHH1-175-GA2/FF) designed to introduce the 

desired substitutions by recombination into the 3′ end of the 

eba-175 gene (Fig. 6 A).

Figure 5. EBA-175 is a substrate for PfROM4. 
(A) Structure of EBA-175 minigenes expressed 
in COS-7 cells. Partial amino acid sequences 
of the various mutants are indicated. Substitu-
tions made to remove N-glycosylation sites or 
to modify the TMD (shaded) are in bold and 
underlined. The position mapped as the site of 
EBA-175 shedding is indicated by an arrow. 
The predicted topology of the expression prod-
ucts is shown (inset). (B) IFA showing expres-
sion of EBA-175 minigene products at the 
surface of COS-7 cells. Cells transfected with 
the various constructs were probed without fi x-
ation or permeabilization with the anti-HA 
mAb 3F10 (green). In all cases, 15–20% of 
cells exhibited strong surface fl uorescence. 
Nuclei were stained with DAPI (blue). Bar, 50 μm. 
(C) Western blots of cells or medium from 
COS-7 cells cotransfected with EBA-175 
 minigene constructs and HA-tagged PfROM4 
expression constructs, either in wild-type (wt) or 
active site Ser knockout form (mut). Blots were 
probed with mAb 3F10. The uppermost band 
visible in the cell extract blot (arrow) corre-
sponds to HA-tagged PfROM4; note its ab-
sence from the farthest right lane, where no 
PfROM4 construct was transfected. The band 
just below this is a nonspecifi c reaction signal. 
These results were reproducible in >19 inde-
pendent experiments.
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Each plasmid was fi rst transfected into W2mef, and the re-

sulting parasite lines (called EBA175GA1/FF and EBA175GA2/FF) 

were drug cycled to select for integrants. Southern blot analysis 

of EBA175GA2/FF revealed a hybridization profi le consistent 

with integration into the eba-175 locus as expected, in the bulk 

of the parasite population (Fig. 6 B). Confi rmation of the 

 expected GA2/FF substitution within the eba-175 gene was 

obtained by PCR amplifi cation (Fig. 6 C) and sequencing (not 

depicted) of the modifi ed locus. Expression and correct localiza-

tion of the mutant EBA-175 protein was confi rmed by IFA us-

ing antibodies against EBA-175 and -181, another  micronemal 

EBL-DBP (Fig. 6 D).

In contrast to the ease with which the EBA175GA2/FF 

transgenic line was derived, establishment of a viable parasite 

line carrying a substitution of the GA1 motif could not be 

achieved. In two independent transfection experiments in W2mef 

and one in 3D7, the input plasmid remained episomal for up to 

six drug cycles (unpublished data), a typical fi nding where inte-

gration is lethal or severely detrimental to the parasite. Because 

the two integration constructs used here were identical aside 

from the few base-pairs within the TMD encoding the mutant 

codons, it is unlikely that the failure to obtain integration of 

pHH1-175-GA1/FF was a technical problem associated with 

construct design. Our results support a critical role for the GA1 

motif and suggest that modifi cations that interfere with PfROM4-

mediated cleavage of EBA-175 cannot be tolerated by the para-

site. Because shedding of EBA-175 occurs at or around the point 

of erythrocyte invasion, this is likely to be the stage in the life 

cycle at which arrest occurs after substitution of the GA1 motif.

Discussion

Many microneme proteins are secreted onto the parasite sur-

face to play a role in host cell entry and then ultimately shed. 

This study demonstrates that EBA-175, and, by extrapolation, 

all other DBL-EBPs, are subject to a similar fate. Given their 

role in invasion and their capacity to bind erythrocyte surface 

receptors with high affi nity, these ligands presumably func-

tion in membrane bound form at the merozoite surface. Our 

results show that the truncated form of EBA-175 released into 

supernatants is a result of a physiologically important, precise 

cleavage event that takes place at the merozoite surface and 

is mediated via intramembrane cleavage by a rhomboid-like 

malarial protease.

IFA of newly invaded rings showed that, irrespective of 

whether EBA-175 was used as the dominant invasion ligand, 

invasion is associated with shedding of EBA-175. Western blot 

showed that the shed protein retains much or all of region VI, 

and mass spectrometric analysis allowed us to map its C termi-

nus to an Ala residue that lies three residues into the predicted 

TMD, a specifi city identical to that of the rhomboid-like cleav-

age sites previously mapped in apicomplexan microneme proteins 

(Opitz et al., 2002; Zhou et al., 2004; Howell et al., 2005). 

We then showed that the P. falciparum homologues of three 

rhomboids previously localized to the secretory pathway in 

T. gondii are expressed in merozoites. Whereas PfROM1 was 

found to be exclusively micronemal, PfROM4 localizes to the 

merozoite plasma membrane. This is consistent with the fi nd-

ings of Brossier et al. (2005) and Dowse et al. (2005) who 

Figure 6. Mutation of the PfROM4 recognition motif within 
the EBA-175 TMD is deleterious. (A) Scheme showing the 
 replacement of the 3′ region of the eba-175 gene by  single-
crossover integration of pHH1-175-GA1,2/FF constructs. 
The positive selection cassette (hDHFR) of the pHH1 vector 
is represented by a black box. A �1-kb fragment of eba-
175 cDNA including sequence encoding region VI (yellow), 
the mutant TMD (red), and the cytoplasmic domain (green) 
was cloned into vector pHH1, fl anked by the 3′ UTR of the 
Plasmodium berghei dihydrofolate reductase gene (blue) to 
ensure correct transcription termination and polyadenylation 
of the modifi ed gene. The intron-exon structure of the eba-
175 gene is shown (gray; signal peptide). MfeI restriction 
enzyme sites are indicated (M). Relative positions of oli-
gonucleotides used in the PCR analysis (1, primer HH1-S; 
2, primer HH1-AS; 3, primer 1753259-S; 4, primer 175-ASstop; 
see Table S2, available at http://www.jcb.org/cgi/content/
full/jcb.200604136/DC1) are shown as colored arrows, 
and the position of the probe used for Southern analysis is 
indicated by the red bar. (B) Southern blot of gDNA from 
parental and transgenic parasites (MfeI restricted) reveals in-
tegration of pHH1-175-GA2/FF but not pHH1-175-GA1/FF 
into the eba-175 locus. The endogenous eba-175 hybrid-
izing fragment (8.4 kb) is present in the W2mef and 3D7 
EBA175GA1/FF lines at both the second and third cycles of 
drug selection but disappears upon integration of the plasmid 
in the W2mef EBA175GA2/FF transgenic line; the 2.4- and 
13-kb hybridization bands indicate replacement as expected 

of the 3′ end of the eba-175 gene by the second drug selection cycle. Sizes of hybridizing bands are shown, and the band corresponding to free episome 
is marked by an arrow. (C) PCR analysis of the eba-175 locus using gDNA from parental and transgenic parasite lines. Molecular mass markers are shown (M). 
Amplifi cation from the eba-175 locus is displayed for each parasite line using three different oligonucleotide primer combinations: 1 plus 2 (black and 
blue; plasmid specifi c), 3 plus 4 (red and green; eba-175 specifi c), and 2 plus 3 (blue and red; eba-175 single-crossover specifi c). (D) IFA localization of 
mutant EBA-175 in transgenic EBA175GA2/FF W2mef schizonts and free merozoites. Antibodies specifi c for EBA-175 (red) and EBA-181 (green) colocalize 
in the merged image. The DAPI signal (blue) is not included in the merge. Bars, 5 μm.
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showed that TgROM4 and -5, the two T. gondii homologues of 

PfROM4, are both expressed at the tachyzoite surface. Of these, 

only TgROM5 showed protease activity against microneme 

proteins; thus, it was proposed that this is MPP1. Brossier et al. 

(2005) also found that TgROM5 expression was concentrated at 

the posterior surface of the tachyzoite, where it may be opti-

mally placed to release transmembrane microneme proteins as 

they translocate rearwards at invasion. We observed no such 

bias in the distribution of PfROM4, but our fi ndings do indicate 

that this rhomboid is expressed at an appropriate time and place 

to mediate shedding of EBA-175.

Early studies on the protease activity of rhomboids indi-

cated that substrate recognition requires only a suitably disor-

dered TMD resulting from the presence of a helix-disrupting 

GA or GG motif disposed toward the luminal end of the se-

quence (Urban and Freeman, 2003). Subsequent studies suggest 

that this may not be universally true, and there are now indica-

tions that structures on the extracellular (Opitz et al., 2002; 

Brossier et al., 2003; Pascall and Brown, 2004) or intracellular 

side (Lohi et al., 2004) of the TMD are also important for effi -

cient substrate recognition. The minigene constructs used here 

to explore cleavage of the EBA-175 TMD incorporated the 

 entire region VI as well as the cytoplasmic domain in anticipation 

that elements critical for recognition might reside within these 

juxtamembrane sequences. Of the three rhomboids tested, only 

PfROM4 cleaved these proteins. Substitution of either the Ala 

mapped as the site of EBA-175 cleavage, or the GA1 motif, 

abolished cleavage. The lack of cleavage by either PfROM1 or 

D. melanogaster Rho-1 shows that these motifs alone are not 

suffi cient to render the EBA-175 TMD susceptible to all rhom-

boids and implies a degree of specifi city in the interaction be-

tween PfROM4 and EBA-175. Eukaryotic rhomboids cluster 

into two major groups referred to as the RHO (typifi ed by D. 
melanogaster Rho-1) and PARL (typifi ed by the mitochondrial 

presenilins-associated rhomboid-like protein) subfamilies 

(Koonin et al., 2003). Both the malarial rhomboids investigated 

here are more closely related to Rho-1 than to PARL, but 

PfROM4 differs noticeably from Rho-1 and PfROM1 in pos-

sessing unusually large predicted loops between its fi rst and 

second, and sixth and seventh TMD, as well as extended N- and 

C-terminal domains (Dowse and Soldati, 2005), structures that 

may be involved in EBA-175 recognition. Similarly, although 

region VI is known to be important for the traffi cking and struc-

tural integrity of EBA-175 (Reed et al., 2000), it might also play 

a role in recognition by PfROM4.

EBA-175 is the dominant DBL-EBP mediating invasion 

in the W2mef line, so this isolate was fi rst chosen to examine 

the effects of TMD mutations that prevent PfROM4-mediated 

cleavage. Although transgenic parasites lacking the GA2 motif 

were readily generated, parasites lacking the GA1 motif critical 

for PfROM4-mediated cleavage could not be. Further work 

showed that the GA1 mutation could not be introduced into the 

3D7 line either. This was initially surprising in view of previous 

work showing that functional inactivation of EBA-175 by re-

moval of the cytoplasmic tail (Gilberger et al., 2003a) or dele-

tion of the TMD (Reed et al., 2000) can be readily achieved in 

3D7 and is easily compensated for in W2mef by a switch to an 

EBA-175–independent invasion pathway. We accept that cau-

tion should be exercised in interpretation of our “negative” 

 result. However, together with our observation that shedding of 

EBA-175 takes place to the same degree in both parasite lines 

irrespective of whether the ligand is used for invasion, our re-

sults can be reconciled by a model that postulates that if EBA-

175 is present in a functional, membrane bound form, it must be 

capable of being shed for invasion to go to completion. At pres-

ent we can only speculate on how a defect in shedding could 

stall invasion. EBA-175 functions as a dimer (Tolia et al., 2005), 

and if shedding-defective mutants can form heterodimers with 

other DBL-EBPs, this may exert a dominant-negative effect, in-

terfering with the release of these ligands too from the merozo-

ite surface. EBA-175 is the most abundant DBL-EBP in most 

P. falciparum isolates examined; thus, an alternative possibility 

is that a defect in EBA-175 shedding leads to an insurmoun-

table physical barrier at invasion, with an accumulation of 

 unshed EBA-175 preventing the rapid recruitment of other 

DBL-EBPs to the confi ned space of the moving junction. It is 

worth noting that, somewhat analogous to our results, mutations 

that prevent MPP1-mediated shedding of the T. gondii micro-

neme protein TgMIC6 are deleterious to that parasite, despite 

the fact that TgMIC6 is not essential for host cell invasion 

(Opitz et al., 2002).

Could PfROM4 shed merozoite proteins other than the 

DBL-EBPs? Recent studies have implicated a second family of 

P. falciparum apical membrane proteins in erythrocyte invasion. 

Called the reticulocyte binding protein homologues, several 

lines of evidence indicate an important role, including gene dis-

ruption experiments that result in a switch in invasion pheno-

type (Stubbs et al., 2005). The precise function of these proteins 

is unclear, but they may have adhesive properties (Rayner et al., 

2001), and proteolytic shedding may be important for their 

function (Triglia et al., 2005). Some members of this family 

possess helix-disrupting motifs in their TMD, and it will be in-

teresting to determine whether they too can be substrates for 

PfROM4 or -1.

We have been unable to disrupt the pfrom4 gene by tar-

geted homologous recombination (unpublished data), suggest-

ing that it is indispensable in the blood-stage life cycle of the 

parasite. Our fi ndings show that erythrocyte invasion involves 

the activity of at least two serine proteases, PfSUB2 and 

PfROM4, which have distinct roles and which belong to differ-

ent protease families. This is consistent with protease inhibitor 

studies performed over two decades ago indicating that invasion 

requires the activity of more than one serine protease (Hadley 

et al., 1983).

Our evidence implicating PfROM4 in invasion by the 

 malaria parasite supports the emerging view that rhomboid-

 mediated intramembrane proteolysis likely plays multiple roles 

in biological systems across evolution (Freeman, 2004). Our 

fi ndings may have important practical implications for antima-

larial drug development. P. falciparum has evolved a complex 

strategy to overcome receptor heterogeneity in its human host, 

exploiting a diverse family of ligands able to recognize a range 

of erythrocyte types. The conserved nature of the EBA-175 

cleavage site across the DBL-EBP family raises the provocative 
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 notion that all these ligands may share a common requirement 

to be released at or around the point of invasion by PfROM4-

mediated cleavage. Targeting PfROM4 with suitably selective 

drugs may transcend this ligand diversity, providing a more 

global approach to blocking invasion than attempting to target 

the receptor binding function of the ligands themselves.

Materials and methods
Parasite culture and transfection
P. falciparum clones 3D7 and W2mef were cultivated and synchronized as 
described previously (Blackman, 1994). For invasion assays or production 
of newly invaded ring stages, schizonts enriched by centrifugation over 
cushions of 63% Percoll (GE Healthcare) were cultured with fresh erythro-
cytes for up to 3 h to allow rupture and reinvasion before removal of residual 
schizonts as described previously (Blackman et al., 1990). For trans fection, 
ring-stage parasites (2–10% parasitaemia) were electroporated with 70–
100 μg of plasmid DNA using standard procedures (Fidock and Wellems, 
1997). After initial selection for �4 wk in 2.5 or 10 nM of the antifolate 
WR99210 (Jacobus Pharmaceutical Co.), parasites were subjected to re-
peated cycles of selection for 3 wk followed by removal of the drug for 3 wk. 
Clonal populations were then obtained by limiting dilution.

Antibodies
Recombinant region VI was expressed in the yeast Pichia pastoris. For this, 
an intronless synthetic gene, called eba175regVIsynth, encoding the C-terminal 
170 residues (N1333-K1502) of 3D7 EBA-175 (PlasmoDB gene ID PF07_
0128) was obtained from GENEART. An N-glycosylation site at N1401 
was substituted with Asp using QuikChange site-directed mutagenesis 
(Stratagene) with primers EBAmut12for and -rev (see Table S2, available at 
http://www.jcb.org/cgi/content/full/jcb.200604136/DC1, for details 
of all primers used). Sequence encoding N1333 to M1423 was then PCR 
amplifi ed with primers PPeba-A and -B to remove a second N-glycosylation 
site at N1333 and add a 3′ hexa-histidine sequence. The product was 
 digested with EcoRI and NotI and cloned into similarly digested pPIK9K 
(Invitrogen). This was electroporated into P. pastoris strain GS115, and 
 integrant clones were selected as described previously (Pizarro et al., 
2005). Secreted recombinant protein was purifi ed by nickel chelate chro-
matography and gel fi ltration and used to raise antisera in mice by stan-
dard protocols. Circular dichroism and SDS-PAGE revealed that the protein 
was folded.

The mAbs 3F10 (anti-HA; Roche), X509 (anti-MSP133), 1E1 (anti-
PfMSP119), 61.3 (anti-PfRhopH2), and 4G2 (anti-AMA1), used unmodifi ed 
or conjugated to Alexa Fluor 594 (Invitrogen), as well as a mouse anti-
serum specifi c for AMA1 have been described (Harris et al., 2005; Pizarro 
et al., 2005), as have rabbit and mouse polyclonal antibodies against 
EBA-175 (Reed et al., 2000) and EBA-181 (Gilberger et al., 2003a).

SDS-PAGE and Western blot
Extracts of parasites, COS-7 cells, medium, and partially purifi ed or puri-
fi ed proteins were subjected to SDS-PAGE under reducing or nonreducing 
conditions and transferred to Hybond-C extra (GE Healthcare), and mem-
branes were probed with antibodies as described previously (Harris et al., 
2005; Pizarro et al., 2005). Binding was revealed by ECL detection (Pierce 
Chemical Co.)

Merozoite processing assays
Shedding from purifi ed merozoites and the effects of various inhibitors on 
it was assayed as described previously (Howell et al., 2003; Harris et al., 
2005). In brief, 3D7 merozoites suspended in 50 mM Tris-HCl and 5 mM 
CaCl2, pH 7.6, were divided into equal aliquots of �4 × 108 merozoites 
on ice, supplemented with test inhibitors or control buffers, and transferred 
to 37°C for 1 h. Merozoites were pelleted, and shed proteins were  detected 
in supernatants by Western blot using mAb 4G2, mAb X509, or anti–
 region VI antibodies.

Indirect immunofl uorescence microscopy
Thin fi lms of P. falciparum were fi xed with acetone or methanol and pro-
cessed for IFA with mAbs as described previously (Harris et al., 2005). For 
surface labeling of unfi xed free merozoites, purifi ed schizonts were cul-
tured for 2 h in medium supplemented with mAb 3F10 (1:500) to allow 
merozoite release. Parasites were then pelleted and washed, thin fi lms 

were prepared and fi xed in acetone, and labeling was continued at the 
secondary antibody step. For probing with polyclonal antibodies, slides 
were incubated for 1 h with anti–region VI antisera (1:2,000) or a mixture 
of rabbit anti–EBA-175 (1:1,000) and mouse anti–EBA-181 (1:1,250) and 
then washed and incubated for 1 h with FITC-conjugated anti-mouse IgG 
(1:200; Sigma-Aldrich) or a mixture of Alexa Fluor 594 goat anti–rabbit 
IgG antibodies (1:2,000) and Alexa Fluor 488 anti-mouse IgG antibodies 
(1:2,000; Invitrogen) and DAPI (1:1,000, Roche). For IFA of unfi xed COS-7 
cells, cells adherent to glass coverslips were transfected and cultured for 
48 h and then probed without prior fi xation or permeabilization with mAb 
3F10 (1:500) followed by biotinylated goat anti–rat IgG (1:500; Chemicon) 
and FITC-conjugated streptavidin (1:500; Vector Laboratories).  Samples 
were mounted in Citifl uor (Citifl uor Ltd.). Images were captured at 21°C 
 using AxioVision 3.1 software on an imaging system (Axioplan 2; Carl 
Zeiss MicroImaging, Inc.) using a Plan-A P O C H R O M A T  100×/1.4 (or Plan-
 A P O C H R O M A T  63×/1.4 for COS-7 cells) oil-immersion objective, and 
annotated using Photoshop (Adobe).

Purifi cation of shed EBA-175 and mass spectrometry
Medium harvested from cultures of 3D7 schizonts that had undergone rup-
ture and erythrocyte reinvasion overnight was concentrated 10-fold by 
ultrafi ltration using a 100,000-D molecular mass cutoff membrane (PBHK; 
Millipore). Human erythrocytes were added to a 5% haematocrit, and the 
suspension was mixed for 30 min at room temperature to allow binding of 
EBA-175. The erythrocytes were recovered and resuspended for 10 min in 
2 volumes of protein-free RPMI 1640 supplemented with 1.5 M NaCl, 
10 mM EDTA, and 1 mM PMSF to elute bound protein. Several batches 
of protein produced in this manner were pooled and fractionated on a 
 HiLoad 26/60 Superdex 200 pg gel fi ltration column equilibrated in 20 mM 
Tris-HCl, pH 8.0, and 150 mM NaCl. Fractions containing EBA-175 were 
identifi ed by Western blot. In-gel proteolytic digestion of reduced, alkyl-
ated protein and peptide analysis by MALDI-TOF and nanospray mass 
spectrometry was done as described previously (Howell et al., 2003, 
2005; Zhou et al., 2004).

Neuraminidase treatment and EBA-175 overlay assays
Erythrocytes were neuraminidase treated as described by Thompson et al. 
(2001). In brief, 150 μl of packed erythrocytes were washed and re-
suspended in 300 μl of protein-free RPMI 1640 25 mM Hepes, pH 6.7, 
containing 30 mU (30 μl) Vibrio cholerae α2-3,6,8-neuraminidase 
 (Calbiochem), and incubated at 37°C for 2.5 h. Mock-treated cells were 
incubated similarly without neuraminidase. The cells were washed in cul-
ture medium before use in invasion assays. EBA-175 overlay assays were 
performed as described by Maier et al. (2003). In brief, untreated, mock-
treated, or neuraminidase-treated cells were lysed in ice-cold 5 mM sodium 
phosphate, pH 7.0, and the resulting ghosts were washed extensively in 
the same buffer before being fractionated by SDS-PAGE on 7.5% gels and 
transferred to Hybond C. Membranes were blocked in 5% (wt/vol) milk 
powder in PBS 0.5% (vol/vol) Tween 20, incubated for 1 h at room 
 temperature with gel fi ltration fractions containing partially purifi ed 3D7 
EBA-175 prepared as described above, and probed sequentially with 
anti–region VI antibodies (diluted 1:1,000) and horseradish peroxidase–
conjugated goat anti–mouse IgG (1:8,000; Chemicon). Binding was 
 revealed by ECL.

P. falciparum transfection plasmids
Plasmid pPfROM1HA for epitope tagging of the pfrom1 gene by homo-
logous recombination was constructed by the insertion of sequence en-
coding the HA3 epitope, downstream of the pfrom1 coding sequence, 
into plasmid pHH1 (Reed et al., 2000). The HA3 tag was amplifi ed 
from pREP(HA3)42 (Craven et al., 1998) using primers HAROMtagF 
and -R and inserted into the EspI and XhoI sites of pHH1 to produce 
pHH1HA. A target fragment comprising the entire 609 bp of the pfrom1 
gene and the immediate 340-bp upstream sequence was amplifi ed from 
3D7 genomic DNA (gDNA) using primers PfROM1F and -R and inserted 
into pHH1HA using Afl II–AvrII sites within the tag. Primers were de-
signed to remove the stop codon from the end of the pfrom1 gene and 
form a continuous reading frame into the tag, at the end of which was 
a new stop codon.

Synthetic pfrom4 and pfrom1 genes, each with an HA3 epitope tag 
introduced immediately after the N-terminal initiator Met residue and reco-
doned for mammalian expression, were gifts of M. Freeman (Medical 
 Research Council Laboratory of Molecular Biology, Cambridge, UK). The 
pfrom4 gene, called HAROM4synth, was excised from the provided plasmid 
and blunted with Klenow. For episomal expression in P. falciparum under 
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control of the pfrom4 promoter, the pfrom4 5′ fl anking region was ampli-
fi ed from 3D7 gDNA using primers PfROM4upF and -R and cloned into the 
BglII–XhoI sites of pHH1. This vector was digested with XhoI and blunt 
ended, and the HAROM4synth fragment was inserted. A 1.4-kb NotI Rep20 
fragment was included in the fi nal vector, called pHAROM4synth.

The 3′ �1 kb of eba-175 was amplifi ed from cDNA using primers 
EBA175-S3443 and EBA175-AS. Mutagenesis of this fragment was ac-
hieved in a two-step primer-directed PCR method with Vent polymerase 
(Stratagene). Substitution of codons encoding 1428GA1429 (GA1) and 
1440GA1441 (GA2) with phenylalanine codons was achieved using 
primer pairs EBA175GA1/FF-S and EBA175GA1/FF-AS or EBA175GA2/
FF-S and EBA175GA2/FF-AS, respectively. PCR products were sequenced 
to confi rm the absence of undesired mutations, digested with BamHI and 
XhoI, and cloned into BglII–XhoI–digested pHH1 to produce constructs 
pHH1-175-GA1/FF and pHH1-175-GA2/FF.

Nucleic acid analysis
For Southern blot analysis, gDNA was extracted from parasites as described 
previously (Harris et al., 2005), restricted and electrophoresed on 0.6% 
agarose gel, and transferred to Hybond N+ nylon membrane (GE Health-
care) by standard procedures. Probe preparation and Southern blotting was 
performed using the Prime-It II random primer labeling kit (Stratagene).

Rhomboid cleavage assay
Sequence encoding HA3 was PCR amplifi ed from pREP(HA3)42 using 
primers pSecHAfor and -rev. The product was digested with EcoRI and li-
gated into pSecTag2a (Invitrogen) that had been digested with Sfi I, blunted 
with T4 polymerase, and further digested with EcoRI. The resulting con-
struct was digested with EcoRI–XhoI and ligated to similarly digested 
eba175regVIsynth to produce expression vector pSecEBAregVIgl2. Mutagenesis 
to remove N-glycosylation sites at N1333 and N1401 and to substitute 
codons for TMD residues A1427, 1428GA1429, and 1440GA1441 was 
performed by QuikChange mutagenesis (Stratagene) using primer pairs 
EBAmut13for and -rev, EBAmut12for and -rev, EBAactivefor1 and -rev1, 
EBATMmutfor1 and -rev1, and EBATMmutfor2 and -rev2, respectively.

Constructs based on pcDNA3.1 (Invitrogen) for transient expression 
of HA-tagged D. melanogaster Rho-1 in COS-7 cells (Lee et al., 2001; 
 Urban et al., 2001) were gifts of M. Freeman. Similar constructs for expres-
sion of HA-tagged PfROM4 and -1, containing the synthetic genes 
described above, were also provided by M. Freeman. Mutagenesis of the 
PfROM4 construct to convert the predicted active site Ser residue to Ala 
was done by QuikChange, using primers ROM4mutfor and -rev.

Transfection of COS-7 cells in 6-well plates was done as described 
previously (Howell et al., 2005; Pizarro et al., 2005) using 200 ng of each 
construct. 24 h after transfection, the medium was replaced with 1 ml per 
well of serum-free medium containing 25 μM Ilomastat (Calbiochem). After 
a further 24 h of incubation, the medium was harvested and concentrated 
to a fi nal volume of 25 μl using Vivaspin 5000 concentrators (Sartorius). 
Cells from each well were also harvested and resuspended in 50 μl PBS. 
All samples were analyzed by Western blot with mAb 3F10.

Online supplemental material
Fig. S1 shows that neuraminidase treatment of erythrocytes abolishes EBA-
175 binding. Fig. S2 shows generation of a transgenic P. falciparum line 
expressing HA-tagged PfROM1. Fig. S3 demonstrates that PfROM1 is ex-
clusively micronemal. Table S1 lists peptides identifi ed by MALDI-TOF 
analysis of EBA-175 tryptic digests. Table S2 gives oligonucleotide prim-
ers used in this study. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200604136/DC1.
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