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SUMMARY

This study was conducted to quantify the association between meteorological variables and incidence of Plasmodium

falciparum in areas with unstable malaria transmission in Ethiopia. We used morbidity data pertaining to microscopically

confirmed cases reported from 35 sites throughout Ethiopia over a period of approximately 6–7 years. A model was

developed reflecting biological relationships between meteorological and morbidity variables. A model that included

rainfall 2 and 3months earlier, meanminimum temperature of the previous month and P. falciparum case incidence during

the previous month was fitted to morbidity data from the various areas. The model produced similar percentages of over-

estimation (19.7% of predictions exceeded twice the observed values) and under-estimation (18.6% were less than half the

observed values). Inclusion of maximum temperature did not improve the model. The model performed better in areas

with relatively high or low incidence (>85% of the total variance explained) than those withmoderate incidence (55–85% of

the total variance explained). The study indicated that a dynamic immunity mechanism is needed in a prediction model.

The potential usefulness and drawbacks of the modelling approach in studying the weather–malaria relationship are

discussed, including a need for mechanisms that can adequately handle temporal variations in immunity to malaria.
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INTRODUCTION

Epidemic malaria remains a major public health con-

cern in highland and arid areas in tropical countries

(Lindsay & Martens, 1998; Nájera et al. 1998).

Changes in weather conditions have probably played

a major role as the cause of most of the severe

epidemics. Increased temperature in cooler en-

vironments shortens the parasite’s life-cycle within

the vector, thus increasing transmission probability

before the mosquito vector dies (MacDonald, 1957;

Molineaux, 1988). Increased temperature would also

increase the rate of mosquito emergence from

breeding places, and in the presence of rainfall in-

creased humidity results in longer survival of the

vector to transmit the parasite (Hay et al. 2000).

Rainfall also affects the abundance of mosquito

breeding sites.

In the Ethiopian highlands, several large-scale

epidemics have been reported since the 1950s. In

1958, an estimated 150000 people died during a

widespread epidemic of malaria in the highlands

(Fontaine et al. 1961). Several epidemics have been

reported since then. Abnormal transmission of un-

usual proportions has affected the highlands and

highland-fringe areas in 1988 and 1991–92 which

was associated with abnormally increased minimum

temperature (Abeku et al. 2003). More recently,

epidemics have occurred in the highlands during the

second half of the last decade; in particular a wide-

spread epidemic in 1998 was largely attributed to an

El Niño event (unpublished data). The association of

abnormal weather conditions and increased malaria

incidence has been reported in several studies. In the

Punjab province of India, epidemics were shown to

be significantly more prevalent in a year with a wet

(high) monsoon rainfall following a dry El Niño year

than in other years, while in Sri Lanka, epidemics

were significantly more prevalent during El Niño
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years, when the same south-west monsoon tends to

fail (Bouma & Van der Kaay, 1996). In Venezuela,

malaria significantly increased in the year following

an El Niño event (Bouma & Dye, 1997).

Currently there is a need for systems for epidemic

early warning in areas at risk (Myers et al. 2000;

Thomson & Connor, 2001). Previously, we have

demonstrated that incidence in areas with unstable

transmission may not be predicted well from his-

torical morbidity patterns alone even when a stat-

istically more sophisticated ARIMA (autoregressive

and integrated moving average) method is used

(Abeku et al. 2002). In areas with highly variable

transmission, the use of predictor variables such

as temperature and rainfall together with past

patterns of incidence might lead to more accurate

predictions.

The aim of this study was to quantify the effects of

meteorological factors on malaria incidence in areas

with unstable transmission using a statistical model

based on theoretical reasoning. On the basis of

biological arguments, we derived a linear mixed

model for monthly data including rainfall, tempera-

ture and incidence of confirmed Plasmodium falci-

parum cases reported from 35 sites across Ethiopia.

We also tested whether extending the model by

including more variables would significantly im-

prove the basic model. Moreover, we compared the

performance of the basic model with methods that

use historical morbidity patterns for studying the

impact of weather variables on incidence after one

month interval.

MATERIALS AND METHODS

Data used for analysis

We used malaria morbidity data (microscopically

confirmed cases) reported from 35 Sector Malaria

Control Offices (SMCOs) throughout Ethiopia

between September 1986 and August 1993. A sector

is an area delineated for the purpose of malaria con-

trol and covers 2–5 districts, eachwith approximately

75 000 to 150 000 inhabitants. Themalaria cases were

seen at Malaria Detection and Treatment Posts

(MDTPs) located in catchment areas of SMCOs,

which are supposed to report to their respective

SMCOs every month. We assumed that among the

confirmed cases reported monthly, the majority were

diagnosed at malaria laboratories which were based

at the SMCOs. Most of the other MDTPs (e.g.

health centres, hospitals, etc.) irregularly report to

SMCOs and when they do, the reports constitute

only a small proportion of the total confirmed cases

in each sector. Furthermore, in view of the limited

modes of transportation in rural areas, it is very likely

that most of the malaria cases seen at a sector’s

malaria laboratory originated from localities not far

away from the base town of the sector.

During September 1986–August 1993, on average

320 confirmed malaria cases were reported per sector

per month. P. falciparum and P. vivax constituted

68.7% and 31.3% of the total 604589 malaria-

positive cases, respectively. To study the seasonal

pattern of malaria at different altitudes, the sectors

were grouped as ‘highlands’ (above 1750 m, n=18)

and ‘lowlands’ (1750 m and below, n=17). Both

groups have a similar seasonal pattern of incidence

(Fig. 1A) with a peak in P. falciparum incidence

in October (P. vivax showed much less inter-

seasonal variation). The high degree of seasonality of
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Fig. 1. Seasonal variations in (A) incidence of Plasmodium

falciparum and P. vivax malaria, (B) rainfall and

(C) temperature, in ‘highlands’ (>1750 m) and ‘lowlands’

(f1750 m) in Ethiopia.
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falciparummalaria is closely associated with seasonal

variation in rainfall and temperature. Weather data

between January 1950 and December 1998 (monthly

rainfall, and minimum and maximum temperatures)

and altitudes of base towns of the SMCOs were ob-

tained from the National Meteorological Services

Agency of Ethiopia (Table 1). In most areas, the

main rainy season is between June and September

with peak rains falling in July and August (Fig. 1B).

On average, the highland sectors received more rain-

fall than did the lowlands. Average daily temperature

in the highlands ranged from 17.1 xC inDecember to

19.5 xC in April, whereas in the lowlands, it ranged

from 20.7 xC in December to 30.6 xC in March.

Mean monthly minimum and maximum tempera-

tures differed (as expected) between highlands and

lowlands (Fig. 1C). Minimum and maximum tem-

peratures also show different patterns of seasonal

variation. During the rainy months, maximum

temperature declines while minimum temperature

remains unchanged. After September, minimum

temperature gradually falls to a minimum value in

December, while, in contrast, maximum tempera-

ture increased after September to a peak in March.

Data transformation and imputation

To obtain approximate Normal distribution, log and

cube-root transformations were applied to incidence

and rainfall data, respectively. Monthly minimum

and maximum temperature data were assumed to

have Normal distribution. Prior to log transform-

ation, a value of 1 was added to all monthly number

of cases to avoid transformation problem which

arises in the case of 0 values.

Before fitting models, missing values of rainfall

and temperature were imputed using linear inter-

polation (for gaps of up to 5 months) or by taking

Table 1. Characteristics of the 35 study areas (sectors) and area-specific random effects of the basic linear

mixed model fitted to log-transformed Plasmodium falciparum incidence data reported during September

1986–August 1993

Sector
Altitude
(m)

Average daily
temperature (xC) Annual

rainfall
(mm)

Mean monthly
no. of falciparum
malaria cases Intercept

Coefficient of
loge (incidence) in
previous monthMinimum Maximum

Abomsa 1800 15.3 28.2 960 706 x0.92 0.78
Adiszemen 1550 10.9 28.3 1315 63 x0.91 0.71
Alaba 1750 11.2 26.9 1032 252 x0.71 0.82
Alamata 1580 14.8 29.9 754 302 x1.13 0.77
Alemketema 2280 12.6 24.8 1174 30 x1.18 0.68
Ambo 2130 11.4 25.2 1024 6 x1.36 0.57
Arba Minch 1290 15.1 29.9 839 569 x0.92 0.75
Asela 2350 8.5 21.0 1208 264 x0.79 0.76
Awasa 1750 12.2 26.7 953 101 x1.05 0.69
Bahirdar 1770 11.5 26.6 1466 263 x0.79 0.76
Bati 1660 13.0 28.3 873 382 x1.12 0.80
Bedele 2030 12.0 25.2 1793 12 x1.20 0.50
Chagni 1620 12.3 27.7 1762 177 x0.96 0.75
Debretabor 2690 9.4 22.2 1565 65 x0.83 0.70
Debrezeit 1900 11.5 26.2 861 260 x1.00 0.79
Dembidolo 1850 13.0 25.0 1225 98 x0.81 0.64
Dila 1500 11.3 27.8 1323 26 x1.01 0.67
Fiche 2750 7.7 20.2 1211 40 x0.87 0.70
Finoteselam 1900 11.8 27.3 1129 96 x1.11 0.75
Gambela 480 18.6 35.8 1228 609 x1.02 0.76
Gode 295 22.5 34.8 262 44 x1.00 0.57
Harer 2100 13.5 25.2 713 276 x1.38 0.84
Hirna 2050 12.2 25.6 1041 14 x1.21 0.69
Hosana 2200 10.4 22.5 1186 37 x0.92 0.67
Jima 1725 11.1 26.9 1506 20 x1.13 0.67
Jinka 1480 15.7 27.0 1268 70 x1.15 0.68
Kombolcha 1903 11.8 25.9 1049 663 x1.33 0.86
Metehara 960 17.5 32.7 543 544 x0.82 0.73
Mizanteferi 1370 15.5 27.4 2180 44 x1.54 0.70
Nazret 1622 14.0 27.9 861 291 x0.95 0.75
Negele 1544 13.2 25.8 764 24 x1.19 0.65
Nekemte 2080 12.2 23.7 2089 130 x0.98 0.71
Sodo 2020 13.1 24.3 1263 370 x1.20 0.81
Weliso 2000 11.8 24.8 1203 106 x1.05 0.74
Zway 1640 13.5 26.4 757 426 x1.01 0.78
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seasonal average values (for gaps of more than 5

months). The value of a missing data point for month

t (i.e. Xt) was estimated as:

Xt=

�XXt+Xtxmx �XXtxm+ m(Xt+nx �XXt+nxXtxm+ �XXtxm)
m+n

if m+nf5

�XXt otherwise,

8><
>:

(1)

where X̄t is the seasonal average (of the transformed

series) for the corresponding calendar month, m is

the number of missing observations from the last

observed value up to time t and n is the lead time

to the next observed value in the ‘future’. Of the

data points relevant to the basic model (described

below), the percentage imputed values of rainfall

and minimum temperature were 12.7% and 15.8%,

respectively.

Theoretical reasoning

In areas with low malaria endemicity, the number of

new malaria cases in month t (denoted as It) can be

considered to depend on the number of new cases in

the previous month multiplied by the vectorial ca-

pacity during the previous month (vectorial capacity

is defined as the average number of secondary ma-

laria cases potentially disseminated in a susceptible

population by vector mosquitoes per day from a

single primary case). This is due to the fact that

nearly all newly infected individuals develop clinical

illness as a result of lack of immunity. In areas with

high endemicity, many people are (partially) immune

and (mostly) not clinically ill, but still infectious;

only people who lack sufficient immunity would visit

health facilities for treatment, and this means that the

number of new cases is mainly determined by vec-

torial capacity in the previous month alone. The

minimum generation time (sometimes referred to as

the ‘ incubation interval – i.e. the duration of a com-

plete gametocyte-to-gametocyte cycle or the time

from take-up of gametocytes by the vector until

production of gametocytes by the next host after

transmission), normally has a length of approxi-

mately 1 month in tropical temperatures, and this

corresponds to the monthly character of the data

used for analysis. These considerations can be gen-

eralized in the following equation:

It=aIbtx1Ctx1, (2)

where a and b are area-specific constants, and Ctx1 is

vectorial capacity in month tx1. If b is (close to) 0,

we have It=aCtx1 as expected in areas with high

endemicity. On the other hand, if b is (close to) 1, we

have It=aItx1Ctx1 as expected in areas with low

endemicity.

Ct is defined as the product of mosquito density in

relation to the human population (Mt) and vectorial

capacity per mosquito (Wt) in month t :

Ct=MtWt: (3)

We assume Mt depends on rainfall during the pre-

vious 2 months and some area-specific constant M,

and that there are enough mosquitoes present to

generate an infinite number of offspring, whereby the

presence of breeding sites is the limiting factor.

Rainfall will be represented as amount during a

particular month relative to average annual total for

each area. Our assumption for taking rainfall relative

to the annual total was that absolute rainfall is not so

important but the consequences of rainfall in terms

of number (and duration) of mosquito breeding sites

are important. These consequences differ strongly

among areas (depending on vegetation, soil type,

presence of rivers, topography etc.) and therefore

there cannot be an absolute relationship between

rainfall and vector abundance. For example, if ab-

solute rainfall would be used then a doubling of

rainfall in a relatively dry area would have relatively

little impact, as the difference involved is small.

Thus, the effects of this doubling would be under-

estimated. In a very wet area, these effects would be

overestimated. Thus we have:

Mt=M exp b1
Rtx1

R
+b2

Rtx2

R

� �
, (4)

where Rtx1 and Rtx2 denote rainfall in months tx1

and tx2, respectively, R is an area-specific average

annual rainfall, and b1 and b2 are statistical coeffi-

cients of rainfall relative to annual total in months

tx1 and tx2, respectively, to be estimated from

data.

Vectorial capacity per mosquito Wt in eqn (3) was

assumed to depend to a large extent on temperature,

and was represented by the sum of a linear and a

quadratic term of average minimum temperature (T)

after a preliminary exploration of the likely effect of

temperature; hence, we can write:

Wt=exp(b3Tt+b4T
2
t ), (5)

where b3 and b4 are statistical coefficients of Tt and

Tt
2, respectively, to be estimated from data.

At higher temperatures, the sporogonic cycle of

the malaria parasite within the mosquito would

be shortened, increasing the probability of trans-

mission (as the parasite would be more likely to be

transmitted before the mosquito vector dies when

the duration of the cycle is shortened). Temperature

also has an effect on the length of the aquatic cycle

of the mosquito, but in the present model, the effect

on the parasite has been emphasized (and thus Mt is

assumed to depend entirely on rainfall as described

in eqn (4)). In this regard, the effect of rainfall (a

factor for mosquito production) was also made to

precede that of temperature (a factor that acts on the

parasite prior to transmission).
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After substitution we get:

It=MaIbtx1exp b1
Rtx2

R
+b2

Rtx3

R

� �

rexp(b3Ttx1+b4T
2
tx1): (6)

Resulting statistical model

After taking (natural) logarithms, eqn (6) can be re-

written as a linear mixed model for each sector i as

follows:

log(It,i)=ai+bi log(Itx1,i)+b1
Rtx2,i

Ri

+b2
Rtx3, i

Ri

+b3Ttx1,i+b4T
2
tx1,i+et,i: (7)

Here ai=log(Mi)+log(ai) denotes the sector-specific

intercept, and et,i is a normally distributed random

error with mean 0 and variance s2. This model

describes the area-specific (log) incidence in month

t as a function of: (1) (log) incidence in the previous

month; (2) rainfall 2 and 3 months earlier; and

(3) average minimum temperature in the previous

month. In eqn (7), between-sector differences in av-

erage incidence and in the effect of previous incidence

were accounted for by the random (sector-specific)

intercept ai and the slope bi (i.e. parameter of pre-

vious incidence). The effects of rainfall and tempera-

ture were assumed identical across sectors. Using the

MIXED procedure of the SAS/STAT1 software of

the SAS System Version 8.2 (SAS Institute Inc.,

Cary, NC 27513, USA), we estimated the intercept

ai and the slope bi of log(Itx1,i) as sector-specific

random effects, and b1, b2, b3 and b4, as fixed effects

from the data (SAS Institute Inc., 1999; Verbeke

& Molenberghs, 2000). This procedure can handle

problems related to spatial and temporal auto-

correlations in the data set during estimation of

model coefficients and their variance.

In order to judge the quality of the predictions, the

model was also extended to include more meteoro-

logical variables at different lags. Likelihood ratio

tests were performed to test the goodness-of-fit

of the various extensions in comparison to the basic

model given in eqn (7). Also, variance as explained

was used to reflect the goodness-of-fit per sector.

Predictions were considered not good enough if

they exceeded twice the observed values (over-

estimation) or were less than half the observed values

(under-estimation). Gross under-estimation in re-

lation to missing epidemic events which was con-

sidered more important than over-estimation was

also studied using a threshold value of 200 cases per

month per sector, and the results were compared to

other simpler models not using weather data, in-

cluding a simple method using incidence of the

previous month as a forecast value for the current

month and a seasonal adjustment method that uses

values of 3 previous months (Abeku et al. 2002).

RESULTS

The estimates of coefficients in the basic model rep-

resented by eqn (7), estimated from data from the 35

sectors, are given in Table 2. All included effects

were statistically highly significant except rainfall

3 months earlier which was significant at the 10%

level. Area-specific intercepts and incidence in

the previous month are given in Table 1. The area-

specific effect of incidence in the previous month

(i.e. term bi in model (7)) showed little variation

between sectors, with a mean of 0.72 (95%CI:

0.69–0.75). Three-quarters of the sectors had values

of the coefficient between 0.65 and 0.80.

Observed and predicted values of the basic model

are shown in Fig. 2. The model produced similar

percentages of over-estimation (19.7%) and under-

estimation (18.6%). Especially high incidence values

showed a good fit in the model. Detailed analysis of

the under-estimation problem showed that about

10% of the observations were under-estimated by

more than 200 cases per month, and about 5% were

under-estimated by 400 cases per month. It was also

found that sectors with normally high and low

number of malaria cases had better fits than did

sectors with moderate number of cases (Fig. 3). For

most areas, the amount of variance in incidence ex-

plained by the model exceeded 80%, and for nearly

half of the 35 sectors this proportion exceeded 90%.

The model performed better in areas with relatively

Table 2. Estimates of the fixed parameters of the basic linear mixed model fitted to log-transformed

Plasmodium falciparum incidence data reported from 35 sectors in different parts of Ethiopia during

September 1986–August 1993

Effect Estimate (S.E.) P

Mean intercept (a) x1.04 (0.22) <0.0001
Mean log (P. falciparum incidence in previous month) (b) 0.72 (0.02) <0.0001
Rainfall relative to annual total 2 months earlier (b1) 4.12 (0.49) <0.0001
Rainfall relative to annual total 3 months earlier (b2) 0.81 (0.49) 0.098
Minimum temperature in previous month (b3) 0.19 (0.03) <0.0001
(Minimum temperature in previous month) squared (b4) x0.0045 (0.0012) 0.0001
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high or low incidence (>85% of the variance ex-

plained) than in those with moderate incidence

(55–85% of the variance explained).

The various extensions of the basic model are

given in Table 3 with their respective likelihood

ratio tests for goodness-of-fit in comparison to the

basic model. In general, there was no significant

improvement when maximum temperature was in-

cluded. Due to the fact that rainfall relative to annual

total in the previous month, and the quadratic terms

of rainfall relative to annual total 2 months and 3

months earlier significantly improved the model,

these factors were used in an extended model which

improved themodel significantly (Table3).However,

in terms of prediction and percentage under- or over-

estimated observations, virtually no improvement

was obtained with the various extensions of the basic

model, including the extended model.

In terms of percentage of observations grossly

under-estimated (>200 cases per month per sector),

using the previous month’s incidence as a prediction

was surprisingly slightly better than the basic model

(9.1% vs 10.2%). However, in terms of percentage of

‘not good enough’ predictions, the basic model per-

formed better (38.3%) than the model using previous

month’s incidence (42.9%) (Table 4). The alternative

model based on the seasonal adjustment method was

slightly worse than both the basic model and the

previous month’s incidence prediction (Table 4).

DISCUSSION

This study showed an association between monthly

meteorological and malaria morbidity data in areas

with unstable transmission using a statistical model

based on theoretical reasoning. This linear mixed

model, which includes rainfall 2 and 3 months earlier

and mean minimum temperature in the previous

month entered as fixed effects and incidence in pre-

vious month entered as a random effect, was fitted

to malaria incidence data from 35 areas throughout

Ethiopia. The model’s fit was generally good es-

pecially in areas with high (and to some extent low)

monthly incidence.

The model performed relatively poorly in areas

with the mean number of cases per month between

approximately 50 and 300. This may be due to the

fact that only in high and low endemicity areas the

immunological status of the population is constant

(high and low, respectively). These observations in-

dicate a need to incorporate in a prediction model

dynamic or temporally varying immunity levels.

Although the model was motivated using immuno-

logical arguments and takes account of spatial vari-

ations in communal immunity levels across areas, it

does not incorporate varying levels of immunity over

time, to handle, for example, a consequence of recent

outbreaks on incidence. Nevertheless, the developed

theory of varying immunity is speculative and needs

further study. It should be noted also that incidence

and immunity levels interact in such a way that one

leads to the other and models for epidemic early

warning need to include such interactions. In an

attempt to incorporate the level of immunity in fore-

casting incidence, the spleen rate has been used as

a proxy to immunity status of the population in epi-

demic early warning in India, although this approach

did not appear to help in providing an adequate basis

for accurate forecast (Swaroop, 1949). In terms of
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prediction, the present model, however, performed

better than our best model that was devised pre-

viously based on historical incidence patterns alone

(Abeku et al. 2002). This indicates that weather vari-

ables are essential components in a model used for

epidemic prediction. Potentially confounding factors

that affect transmission such as the level of drug

resistant P. falciparum and the use of insecticides in

malaria control inEthiopiawere ignored in themodel,

as (simple) prediction was our objective and the role

of confounding factors was of less importance than in

epidemiological studies of causation.

The 95%CI for the estimates of the coefficient of

incidence in the previous month (0.69–0.75) indi-

cated a uniform value for most areas in the country.

This is in concordance with the fact that most sectors

in Ethiopia have similar endemicity levels. The in-

dividual effect of each of the predictor variables was

investigated in the present study using model esti-

mates for which the best fit was obtained, while

keeping the other variables constant. Increasedmini-

mum temperature resulted in increase in incidence

up to a threshold limit of approximately 23 xC, after

which increase in minimum temperature ceased to

have an effect on incidence. Around 14 xC, an in-

crease in minimum temperature of 1 xC resulted in

8% increase in incidence. The exponential effect of

rainfall associates with a 3% increase in incidence

for every 1% increase in rainfall.

Althoughmore detailed studies are still required to

thoroughly understand the impact of meteorological

variables in the genesis of epidemics in different

areas, it seems that the effect of rainfall varies from

sector to sector depending on prevailing temperature

and other epidemiological factors. Previously, an

inverse relationship was found between rainfall and

incidence in southern Ethiopia in drought-associated

epidemics due to breeding of vector mosquitoes in

pools formed in river beds and streams (unpublished

data). Abnormally high rainfall is a causative factor

for epidemics in lowlands and fringe areas bordering

lowlands. In the cooler highlands, temperature (es-

pecially minimum temperature) has amore profound

role in determining malaria transmission. A drop in

temperature has been shown to be associated with

interruption of transmission in the highland sectors

of Ethiopia (Abeku et al. 2003). In the hypoendemic

highlands, temperature exerts its effect on trans-

mission mainly as the result of shortened sporogonic

cycle of the parasite within the vector, and to some

extent also by accelerating larval development and

frequency of blood feeding by the vector.

In a study conducted in Rwanda, Loevinsohn

(1994) showed that changes in malaria incidence at

health facilities were significantly associated with

rainfall while temperature predicted incidence best at

higher altitudes. It was shown that a model that in-

cluded log of minimum temperature 1 and 2 months

Table 3. Comparison of goodness-of-fit of the basic model to its extensions by adding more predictor

variables (n=2067 and x2 log likelihood of basic model=5290.1)

Additional factor
to the basic model Estimate S.E.

Test for significance of
improvement over basic model

x1
2 P

Minimum temperature 2 months earlier x0.0047 0.0149 9.3 0.002
Maximum temperature in the previous month 0.0048 0.0095 0.2 0.655
Maximum temperature 2 months earlier 0.0080 0.0099 0.6 0.439
Rainfall relative to annual total in the previous month 2.364 0.498 22.3 <0.001
(Rainfall relative to annual total 2 months earlier) squared 21.913 6.240 12.2 <0.001
(Rainfall relative to annual total 3 months earlier) squared 20.996 6.335 10.7 0.001

Table 4. Comparison of different models in terms of percentage of ‘unacceptable ’ predictions (greater

than twice or less than half observed values) and percentage of observations grossly underestimated

(i.e. greater than 200 cases per month) (n=2067)

(The seasonal adjustment model was based on Abeku et al. (2002).)

Model

Predictions
>twice observed
values (%)

Predictions
<half observed
values (%)

Observations grossly
underestimated
(>200 cases per month) (%)

Basic model (7) 19.7 18.6 10.2
Extended model 19.2 18.0 9.7
Alternative model : current month’s incidence
=previous month’s incidence

22.0 20.9 9.1

Alternative model : seasonal adjustment 21.3 24.0 11.1
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earlier, and rainfall 2 and 3 months earlier fitted the

health facilitydata adequately. Inour studyminimum

temperature in the previous month included with

its quadratic term usually gave adequate fits in the

presence of the previous month’s incidence level.

Incidence was not included as a predictor variable

in the Rwandan study, but in our model we have

shown that it is highly significant as a determinant of

incidence in the following month. Previously, we

have shown that malaria epidemics in Ethiopia were

significantly more often preceded by a month of

abnormally high minimum temperature in the pre-

ceding 3 months than based on random chance

(Abeku et al. 2003). In another observation made in

Zimbabwe, Freeman & Bradley (1996), reported that

rainfall has little effect on severity ofmalaria (assessed

by comparing the numbers of malaria deaths and

malaria-inpatients in any one year with respect to

those in the preceding years), while temperature has

an effect. In Uganda, Kilian et al. (1999) reported the

existence of a close correlation between peak of

rainfall and peak of malaria incidence with a time lag

of 2–3 months between them. In a study conducted

in central Ethiopia, Tulu (1996) reported that a rise

in monthly mean minimum temperatures 2 and 3

months earlier was the strongest predictor of a rise in

incidence. In the present study, the inclusion of

minimum temperature of 2 or 3 months earlier did

not improve the basic model and the effects were not

significant whereas the effect of minimum tempera-

ture of the previous month (already in the model)

was strongly significant.

To test whether changes in the weather variables

have different effects on incidence in highlands and

lowlands, we carried out a stratified analysis by di-

chotomizing altitude into high (>1750 m) and low

(f1750 m) and including in the model interaction

terms between meteorological and the dichotomized

altitude variables. The altitude variable and all the

interactions with the weather variables did not have

significant coefficients, and the inclusions did not

improve the basic model ; the main results of the

study remained unchanged. This is probably due to

either absence of difference in effects of meteoro-

logical variables at different altitudes or due to the

already included temperature variables in the model

as temperature is strongly negatively correlated with

altitude, thus indirectly taking account of the effect

of altitude.

Climate-baseddistribution ofmalaria transmission

and infection risk models for Africa has been pro-

posed (Craig, Snow & Le Sueur, 1999) and spatially

predictive models have been prepared for epidemic-

affected areas of Africa (Cox et al. 1999). The present

study has indicated how the association between

some meteorological factors and incidence may be

modeled in a continuing effort to develop epidemic

early warning systems in highland areas for temporal

prediction.

Satellite-derived remote sensing (RS) data are

potentially useful for monitoring malaria epidemics,

although in some cases theymay not provide accurate

spatial proxies to actual ground meteorological

measurements. The relative accuracy of RS and

spatial interpolation (SI) of data frommeteorological

stations has been assessed for the prediction of spatial

variation in monthly climate across Africa (Hay &

Lennon, 1999). It has been found that SI was a more

accurate predictor of temperature, whereas RS pro-

vided a better surrogate for rainfall. On the other

hand, it has been shown that Normalized Difference

Vegetation Index (NDVI) in the previous month

correlated consistently with malaria incidence across

three sites inKenya (Hay et al. 1998). Although there

is obviously no direct causal link between NDVI and

malaria cases to use it as a variable in the current

model, the relationships between this and other RS

data, ground meteorological records and malaria

incidence in the highlands need to be further

investigated, for possible use in similar models. A

detailed study has been initiated to investigate such

relationships with epidemic malaria in four highland

districts in Kenya and Uganda, as part of the High-

landMalaria Project (HIMAL) (www.himal.uk.net).

The present analysis showed that a statistical

model based on theoretical reasoning is a good start-

ing point to understand the role of abnormal weather

variables in triggering epidemics in the highlands or

highland fringe areas, and that the impact of the

effects of these variables in terms of morbidity out-

comes may depend on several factors including

communal immunity and number of pre-epidemic

parasite reservoirs in the population.

Prediction of incidence several months in advance

will require major adaptation of the current model,

for example, by making use of predicted values of the

predictor variables themselves. However, it is antici-

pated that the accuracy of such prediction would

deteriorate after a few months, compared to the

(already moderate) performance of one month pre-

diction. Further validation is also needed by fitting

the model to new data sets to estimate random effects

by using optimal estimates of the fixed parameters.

Ways to improve forecasts by making use of past

patterns of incidence and other variables and/or by

combining seasonality and weighted forecasts of dif-

ferent methods in relation to population immunity

levels are currently under investigation. In terms of

prediction ofmalaria incidence using the basicmodel,

although the main contribution comes from the

previous month’s incidence, the weather parameters

included are highly significant and values of their

coefficients meet our expectations. Also, we have

demonstrated that inclusion of maximum tempera-

ture is not important at all. Nevertheless, the study

shows that prediction rules derived from simple and

straightforward use of monthly weather variables

alone might not produce accurate forecasts. In
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addition, it may be important to study the weather–

malaria relationships in somemore details using time

series of weather, morbidity and entomological vari-

ables at intervals of less than amonth. Themodelling

approach used in this study has shown the most

important variables that need to be considered in

developing a malaria epidemic early warning system

in areas where communities are at risk of sudden

increase in transmission due to slight changes in the

precipitating factors.
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