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Abstract
Malaria epidemics have long been known to recur in the African highlands. Efforts to develop
systems of early warning and detection for epidemics are outlined here with special emphasis on
the Highland Malaria Project (HIMAL). This project has been conducting research on the
operational implementation of a district-based surveillance and epidemic-monitoring system using
a network of sentinel sites in four pilot districts of Kenya and Uganda. The potential use of
weather monitoring as well as disease surveillance for effective early warning is being
investigated.

The African highlands have been frequently affected by malaria epidemics, often with
devastating morbidity and mortality consequences among populations with little or no
immunity to the disease [1-3; http://www.lshtm.ac.uk/dcvbu/himal/Documents.html].
Epidemic malaria has been defined as ‘an acute exacerbation of disease out of proportion to
the normal to which the community is subject’ [4]. It is estimated that 110 million people are
at risk of malaria epidemics in Africa and 110 000 of these die of the disease each year [5].
In the past decade, epidemics have been reported from several areas including Ethiopia,
Kenya, Uganda, Zimbabwe, Botswana, Mozambique, Madagascar, Swaziland and South
Africa [6-14]. Early warning and detection systems are needed in these and other areas at
risk, to reduce or avert the negative public health and economic impacts of epidemics
[15-17]. Reasonably accurate warning signals could help health services to take targeted and
specific preventive measures before the onset of epidemics.

Terminology
It is important to distinguish between different terminologies that have been used to describe
activities for monitoring epidemic risk, including long-range epidemic forecasting, malaria
epidemic early warning and epidemic early detection. These activities are sequential,

© 2004 Elsevier Ltd. All rights reserved.

Corresponding author: Jonathan Cox (jonathan.cox@lshtm.ac.uk)..

Europe PMC Funders Group
Author Manuscript
Trends Parasitol. Author manuscript; available in PMC 2011 September 15.

Published in final edited form as:
Trends Parasitol. 2004 September ; 20(9): 400–405. doi:10.1016/j.pt.2004.07.005.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.lshtm.ac.uk/dcvbu/himal/Documents.html


complementary and have decreasing lead times with increasing accuracy [3,16,18,19] (see:
http://www.int/globalchange/publications/oeh0401/en/index.html and http://
mosquito.who.int/docs/BamforthLeysinreport.pdf).

Long-range epidemic forecasting based on climate forecasting and El Niño Southern
Oscillation indices has been proposed for the broad prediction of epidemic risk months in
advance over large geographical areas. This allows time for resource allocation and general
prepared-ness for an eventuality of an epidemic in the coming malaria season [19-21].

Malaria epidemic early warning is based on monitoring transmission risk indicators used to
predict timing of an increase (such as abnormal rainfall and/or temperature), and population
vulnerability indicators used to predict severity of impact (such as poor nutritional status,
drug resistance, loss of immunity due to recent history of low transmission or high incidence
of HIV/AIDS) [15,16,19]. Prediction of malaria epidemics using such factors can give lead
times of weeks to months, during which other surveillance activities can be enhanced, and
preventive and control measures targeting specific areas can be planned and implemented.

Epidemic early detection involves recognizing the beginning of an epidemic situation by
measuring changes in local disease incidence. Although this surveillance mechanism offers
little lead time (days to weeks) for preparation and implementation of preventive measures,
it can lead to a rapid and effective response to avert or reduce peak morbidity and mortality
[16,19].

The Highland Malaria Project (HIMAL)
HIMAL (http://www.himal.uk.net) is a continuation of work that produced spatial epidemic
risk maps in the late 1990s as part of the Mapping Malaria Risk in Africa (MARA)
collaboration [3]. The distribution of malaria epidemic risk in the highlands of East Africa
was modelled on the basis of climate parameters and known historical distribution of
epidemics. Results suggested that highland epidemics tend to occur within defined
altitudinal ranges, which vary by country primarily as a function of latitude. However,
efforts to map epidemic risk on the basis of these ranges proved unsuccessful and
demonstrated that altitude on its own is a poor indicator of the likelihood of epidemics.
More-reliable estimates of epidemic risk could be obtained using representative
climatological profiles for epidemic-prone localities in each country and by classifying risk
according to how closely annual climate patterns matched those of known epidemic-prone
areas [3].

The current phase of the HIMAL project began in 2001, and aims to create and test
functional systems for malaria early warning and early detection, incorporating district-level
surveillance and predictive modelling using environmental data, remote sensing (RS) and
geographical information systems (GIS). As well as addressing the technical feasibility of
early warning, the project will evaluate the current prospects for implementation from an
institutional perspective, and will develop recommendations for ongoing data collection and
proactive epidemic management strategies.

New approaches to epidemic monitoring
A new surveillance system, introduced in October 2002, comprises a network of 20 sentinel
health facilities in four pilot districts: North Nandi and Gucha in Kenya, and Kabale and
Rukungiri in Uganda. Geographically, these districts are partly or wholly prone to
epidemics. It is extremely important to detect abnormal incidence in such areas as early as
possible to initiate timely preventive and/or control measures. Disease surveillance systems
in many developing countries, including those with unstable malaria, are usually based on
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monthly (and often irregular) reporting to the central authorities, and have resulted in
delayed responses to epidemics [22]. Monitoring morbidity data on a monthly basis is often
of little practical use for epidemic detection because the temporal resolution does not allow
an early response [8,22]. Surveillance data from the sentinel sites within HIMAL are
therefore reported to the District Health Management Team (DHMT) on a weekly basis.

Different techniques have been suggested for the determination of thresholds that are
predictive of a dramatic and unexpected increase in future cases. Most of these techniques
are based on the definition of the ‘normal’ (or expected) incidence for a particular area and
point in time, with varying sensitivity and specificity [14,16,23-26]. Application of currently
recommended epidemic detection algorithms in epidemic-prone settings has demonstrated
that they lack required sensitivity and specificity, and the need to develop robust and reliable
approaches to detection remains a significant research issue [25].

Within HIMAL, a special database application is used at the district level for data entry and
automated analysis, which includes a built-in incidence-monitoring system for detecting
aberrations based on week- and area-specific levels of disease incidence assessed against a
baseline period of seven or more years. The epidemic onset detection method being tested is
a modification of the Salmonella Potential Outbreak Targeting System (SPOT) developed in
Australia [27]. Incidence in a sentinel health facility during a baseline period is de-trended
(after log transformation) to minimize possible bias caused by events such as malaria
endemicity equilibrium changes, population growth and establishment of new health
facilities in the catchment area of sentinel sites. Furthermore, the Loess de-trending method
[28,29] is used to ensure that outliers and abnormally high incidences during the baseline
period would not affect the trend line fitted to the data.

The de-trended series is then smoothed using the 4253H-Twice method [30]. The mean for
each week and an overall standard deviation are then calculated from the de-trended and
smoothed series. An anomaly measure – called the standardized departure – is calculated by
dividing the difference between the observed (de-trended log) number of cases and the mean
for the particular week number by the overall standard deviation of the baseline. This
measure reflects deviation from normal, yet taking into account the variability within the
baseline data. Both the values and the trend of the standardized departure during the 12 most
recent weeks are used to assess the degree of aberration. Values around zero indicate normal
incidence and those above 1 are tentatively considered abnormally high, especially if there
has been an upward trend in the anomaly during the previous weeks (Figure 1).

Although a plot of the standardized departure gives an indication of the trend of incidence
anomaly in several sites, it will also be necessary to use the site-specific incidence levels and
to characterize objectively an epidemic situation for each area. Tentatively, an epidemic is
flagged if weekly incidence exceeds both: (i) the week-specific mean plus one standard
deviation (i.e. standardized departure value of 1); and (ii) the overall mean plus one standard
deviation threshold. The week-specific expected values as well as the overall mean and
standard deviation are dynamic and change over time depending on the underlying trend. A
chart that allows visual inspection of weekly incidence together with the corresponding
threshold values (Figure 2) is automatically generated by the database together with several
other charts. This new epidemic detection method is explained further in Box 1.

The surveillance approach being piloted by the malaria control programmes in Uganda and
Kenya builds upon, and compliments, the standard health-facility-centred model used in
many Health Management Information Systems (HMIS). Key differences between these
systems are listed in Box 2.
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Developing epidemic early warning systems
Various attempts have been made to use climatic/environmental, RS, entomological and
morbidity data for epidemic forecasting [17,26,31-35], but the science is far from complete.
HIMAL has created a unique opportunity to carry out detailed longitudinal studies to
explore the associations between selected meteorological, entomological and morbidity
variables as an empirical basis for developing and testing predictive models. The temporal
and spatial resolutions of the prospective studies will allow modelling of the malaria
transmission system in relation to the genesis of epidemics. Locality-specific weekly
determination of indoor resting densities of Anopheles vectors, together with continuous
parasitological confirmation of clinical malaria using rapid diagnostic tests, weather
monitoring and RS data, will provide a strong platform for detailed analysis and modelling.

A partnership established between HIMAL and the Epidemio Project of the European Space
Agency (http://www.epidemio.info) will make available Earth Observation (EO) data for
daily maximum and minimum land surface temperature at a spatial resolution of 5 km,
whereas dekadal (10-day) rainfall estimates and normalized difference vegetation index
(NDVI) data, which are available at a spatial resolution of 8 km from the Africa Data
Dissemination Service (http://edcw2ks21.cr.usgs.gov/adds/), will also be utilized. EO data
available in the public domain are limited with respect to both temporal and spatial
resolution. One task of HIMAL is to evaluate the implications of these constraints in relation
to efforts to model malaria transmission.

The locality-specific longitudinal data with high temporal resolutions for meteorological,
entomological and malaria morbidity variables will be used to shed light on the complex
relationships between these factors, through combinations of statistical, analytical
(mathematical) and/or simulation modelling approaches (Figure 3). A model reflecting
biological relationships between meteorological and morbidity variables using retrospective
data from Ethiopia, which includes rainfall two and three months earlier, mean minimum
temperature of the previous month and Plasmodium falciparum case incidence during the
previous month, has been used to study the weather–malaria relationship and has indicated
that a dynamic immunity mechanism is needed in prediction models [36]. Dynamic
immunity might be incorporated in potential models through the use of proxy measures such
as adult-to-child ratio of patients presenting at sentinel sites. In this respect, abnormally low
incidence will also be monitored, as it might be a risk factor for future epidemics owing to
the associated reduced immunity of the population.

Perspective
Further validation and refinement will be made to the epidemic detection techniques being
implemented within HIMAL through detailed analysis of morbidity data and comparison of
different algorithms to develop a reliable surveillance system. Better insights into the
practical use of weather variables as predictors of epidemics are desirable. In the medium
term, the use of EO and morbidity surveillance data (with or without ground meteorological
data) will be investigated for spatial and temporal prediction of epidemic malaria, potentially
removing the need for intermediate entomological variables. The use of EO data for scaling-
up risk models without recourse to ground-based meteorological data will also be assessed.
This work is expected to provide regular assessments of epidemic risk in affected areas at
different lead times, to which uncertainty measures are progressively attached to assist the
relevant authorities in making sound decisions for effective, long-term management of
epidemic malaria.
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Box 1

The Highland Malaria Project (HIMAL) epidemic detection system

To describe the epidemic detection algorithm, suppose Xt=weekly number of (clinical)

malaria cases seen at a sentinel surveillance site at time t; Yt = Loge (Xt + 1); = overall
mean of the Yt series during baseline period (which increases in length over time, but
excludes the last 12 weeks); Lt=Loess trend line value at time t estimated from the Yt

series [28,29]; and = overall mean of the Loess trend line values.

Then, the de-trended value corresponding to Yt is calculated as . 4253H-
Twice smoothing [30] is then applied to the de-trended series to generate a new series,

with a value Mt at time t. Ewt, the expected value of  for week w of the year at time
t(w= 1,2,…,52), is given by the mean of all Mt values for week w during the baseline
years. Then, the standardized departure (Dt), the anomaly measure, is calculated as,

, where S is the overall standard deviation calculated from the de-
trended and smoothed baseline series. Dt can be plotted for several sentinel sites in a
single chart as shown in Figure 1.

Two threshold values (shown in Figure 2 plotted for each sentinel site separately with the
original Xt series) are used to detect an epidemic (when both are exceeded). These are
calculated in actual number of malaria cases after ‘re-trending’ and back-transformation.

The week-specific threshold for time t, , whereas the overall

mean plus one standard deviation threshold, 
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Box 2

New surveillance approach for epidemic early detection

• The District Health Management Team (DHMT), rather than the Ministry of
Health at the central level, is the focus for data collation, analysis and
interpretation. Whether this decentralized approach is better suited to effective
epidemic control than prevailing centralized approaches remains to be seen and
needs to be evaluated rigorously.

• Data entry, organization and analysis, together with report generation, are all
computer based.

• A weekly system of surveillance has been introduced. This facilitates
assessment of the relative sensitivities and specificities of early detection
systems based on monthly and weekly reporting. Data from individual health
facilities are analyzed and interpreted before any data aggregation is carried out.

• The system makes efficient use of information from a small number of sentinel
sites representing epidemic-prone geographical areas within a district, rather
than attempting to monitor data from all health facilities.

• Historical morbidity patterns are used as the basis for monitoring anomalies
within prospective data, and the trend in the baseline is taken into account in the
definition of epidemic situations using an objective and automated early
detection algorithm.

• The system incorporates a rapid dissemination mechanism for data, reports and
feedback between sentinel sites, DHMT, the Ministry of Health and other
relevant decision-making bodies, including district administrative authorities. In
the case of a detected epidemic in one or more of the sentinel sites, the DHMT
can rapidly look at incidence levels in other health facilities to delineate affected
areas and select appropriate control measures, including mass or fever treatment
and vector control.
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Figure 1.
Standardized departure from expected number of clinical malaria out-patients during
Week33 to Week 44of 2003, at five sentinel health centers in the Kabale District, Uganda.
The weekly points indicate the actual standardized departure values for each sentinel site
and the corresponding lines have been smoothed to aide interpretation. An epidemic could
be detected at Week 41 in the sentinel sites (except Bufundi), using this automated output
from the Highland Malaria Project (HIMAL) database. Both the weekly trend (as in Mparo
during Week 38 to Week 41, for example) and the level of the standardized departure are
used to determine a developing epidemic. (A more objective definition of an epidemic using
threshold values is given in Box 1 and Figure 2.) Key: black circle, Bufundi; blue triangle,
Kitanga; green square, Mparo; red diamond, Buhara; purple triangle, Bukinda.
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Figure 2.
Historical morbidity pattern of clinical malaria between October 1995 and March 2004 at
Mparo Health Centre, Kabale District, Uganda. The series shown are the observed number
of cases (blue line), the expected number of cases (green line), the week-specific mean plus
one standard deviation threshold (solid red line), the overall mean plus one standard
deviation threshold (broken red line), and the standardized departure values (black dots with
solid black line). An epidemic is tentatively defined when weekly incidence exceeds both
threshold values. The baseline period is from Week 39 of 1995 to Week 38 of 2003.
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Figure 3.
Epidemic-related factors and their relationships that are under investigation by the Highland
Malaria Project. Prospective data are collected within the project to provide an empirical
base for developing epidemic prediction models. Direct and indirect relationships between
variables are represented by arrows with solid and broken lines, respectively. Although all
indicated variables will be used in modelling transmission dynamics, meteorological (both
ground and Earth Observation), in addition to morbidity data from sentinel health units, are
variables that are most important for practical prediction. Abbreviations: EIR, entomological
inoculation rate; NDVI, normalized difference vegetation index; RS, remote sensing.
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