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a  b  s  t  r  a  c  t

Epidemiological  models  of  influenza  transmission  usually  assume  that  recovered  individuals  instantly
develop  a fully  protective  immunity  against  the  infecting  strain.  However,  recent  studies  have  highlighted
host heterogeneity  in the development  of  this  immune  response,  characterized  by delay  and  even  absence
of  protection,  that  could  lead to homologous  reinfection  (HR).  Here,  we  investigate  how  these  immuno-
logical  mechanisms  at the individual  level  shape  the  epidemiological  dynamics  at  the  population  level.  In
particular,  because  HR  was observed  during  the  successive  waves  of  past pandemics,  we  assess  its  role  in
driving  multiple-wave  influenza  outbreaks.  We  develop  a novel  mechanistic  model  accounting  for  host
heterogeneity  in  the immune  response.  Immunological  parameters  are  inferred  by fitting  our dynamical
model  to a two-wave  influenza  epidemic  that  occurred  on the  remote  island  of Tristan  da  Cunha  (TdC)  in
1971, and  during  which  HR  occurred  in 92  of  284  islanders.  We  then  explore  the  dynamics  predicted  by
our model  for various  population  settings.  We  find  that  our  model  can  explain  HR  over both  short  (e.g.
week)  and  long  (e.g.  month)  time-scales,  as reported  during  past pandemics.  In  particular,  our results
reveal  that  the  HR  wave  on TdC  was a natural  consequence  of the exceptional  contact  configuration  and
high  susceptibility  of  this  small  and  isolated  community.  By  contrast,  in larger,  less mixed  and  partially

protected  populations,  HR  alone  cannot  generate  multiple-wave  outbreaks.  However,  in  the  latter  case,
we  find  that a significant  proportion  of infected  hosts  would  remain  unprotected  at  the  end  of  the pan-
demic  season  and  should  therefore  benefit  from  vaccination.  Crucially,  we  show  that  failing  to  account
for  these  unprotected  individuals  can  lead  to large  underestimation  of the  magnitude  of  the  first  post-
pandemic  season.  These  results  are  relevant  in  the context  of  the  2009  A/H1N1  influenza  post-pandemic
era.
ntroduction

Mathematical models of infectious diseases often rely on a com-
artmental description in order to reduce the population diversity
o a few key characteristics which are relevant to the infection

nder consideration. An extensively used model for influenza infec-
ion is of susceptible-exposed-infectious-removed (SEIR) form:
fter exposure to the virus, susceptible hosts (S) pass through an
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exposed state (E) of latent infection, become infectious (I) and are
finally removed (R) from the infectious pool as they simultaneously
recover (or die) and acquire permanent protection against the
infecting strain. The SEIR model was particularly successful during
the 2009 pandemic in estimating the key transmission parameters
of the novel H1N1 virus (nH1N1) (Fraser et al., 2009) and assessing
the effectiveness of alternative vaccination strategies (Baguelin
et al., 2010).

Nevertheless, proper consideration of the primary immune
response, which occurs on the first exposure to a novel influenza
virus, motivates a more accurate description of the different stages
from recovery to development of long-term protective immunity.
Indeed, the primary immune response to influenza in humans

operates on two different time scales. Usually, the viral load is
cleared by the innate and cellular immune responses within a few
days following infection (Woodland, 2003), thus leading to recov-
ery of infected hosts. By contrast, the humoral (antibody-mediated)

reserved.
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mmune response, which provides long-term protection against
he infecting strain as well as closely related strains (Fairlie-Clarke
t al., 2008), takes several weeks to become efficient (Cox et al.,
004; Miller et al., 2010; Baguelin et al., 2011). Finally, at the pop-
lation level, there is host heterogeneity in the development of
his long-term protective immunity as some individuals show high
ntibody titres shortly after recovery whereas some other fail to
each a protective level (Cox et al., 2004; Miller et al., 2010; Chen
t al., 2010; Hung et al., 2010; Chan et al., 2011).

In a recent study, Camacho et al. (2011) showed that a precise
ccount of these host heterogenities was necessary to explain the
einfection episodes reported during the “natural experiment” of
ristan da Cunha (TdC), a remote island that underwent a two-wave
/H3N2 influenza epidemic in 1971 (Mantle and Tyrrell, 1973).
ore precisely, in the next few days that followed its introduction,

he virus spread rapidly throughout the whole island population
nd after three weeks of propagation, 273 (96%) of 284 islanders
ad been infected. However, while the epidemic was nearing its
nd, several recovered islanders developed a second illness, thus
nitiating the second epidemic wave during which at least 92 (32%)
slanders were reinfected (see section “Data” for more details). The

ain finding of Camacho et al. (2011) is that, among six biologically
ealistic reinfection mechanisms, only two could be retained: some
osts with either a delayed or deficient humoral immune response
o the primary influenza infection were reinfected following rapid
e-exposure to the same strain. This historical event illustrates that
ost heterogeneity at the individual level can not only lead to HR
ut also shape the epidemiological dynamics by triggering a second
pidemic wave.

Historically, multiple-wave outbreaks and rapid reinfections
ave commonly been observed during influenza pandemics. The
ost striking example remains the “Spanish” influenza pandemic

f 1918–1919 that occurred in three waves (Taubenberger and
orens, 2006) and during which several reinfection episodes were

eported, sometimes in proportions similar to that of the 1971 TdC
pidemic (Medical Department of the Local Government Board,
919; Ministry Of Health, 1920; Barry et al., 2008). However, the
hree epidemic waves in 1918–1919 were spread out over 9 months
Taubenberger and Morens, 2006) whereas the two-wave epidemic
n TdC lasted only 59 days (Mantle and Tyrrell, 1973). Accordingly,
he time-scale between successive infections in the same individ-
al was of the order of months during the pandemic whereas it was
f the order of a few weeks for the TdC islanders, thus questioning
heir common underlying biological mechanisms. More recently,

any populations experienced a spring and a fall waves during
he 2009 pandemic and several cases of HR were virologically con-
rmed (Perez et al., 2010; Kim et al., 2010). Most of these HR
pisodes occurred within 2–3 weeks following recovery, a time-
cale similar to that observed among the TdC islanders. However,
oth infection and HR occurred over the same epidemic wave in
009 whereas they were separated across both waves in TdC, thus
uestioning the role of HR in driving multiple-wave outbreaks.

Overall, these observations call for clarification of the signifi-
ance of HR and its role in driving multiple-wave outbreaks during
andemics. In particular, to what extent a better consideration of
he immunological dynamics may  be important in epidemiological

odels of influenza pandemics? In order to investigate these issues,
e propose to explore and characterize the interplay between the

mmunological and epidemiological dynamics of a novel influenza
irus. We  start by defining an extended SEIR model accounting
or the primary immune response to influenza and its inherent
ost heterogeneity. Using a maximum-likelihood (ML) approach,

e confront our mechanistic model with the time-series of the
aily incidence counts of the 1971 TdC epidemic and obtain ML
stimates for the key immunological parameters. This analysis also
eveals the exceptional setting of the TdC population and lead us
mics 5 (2013) 187–196

to explore the impact of HR on the epidemiological dynamics for
various population settings. We  conclude with a discussion on the
role of HR in the current post-pandemic era.

Materials and methods

The primary immune response to influenza infection in humans

A multi-pronged innate (McGill et al., 2009) and adaptive
(Brown et al., 2004) immune response has been described for
clearing influenza infection. The innate response is the first to be
activated and plays a key role through its ability to control early
viral replication and to promote and regulate the virus-specific
adaptive immune response (McGill et al., 2009). The adaptive
response itself may  be broken into two  critical sub-components: (i)
the cellular immune response by which antigen-specific cytotoxic
T lymphocytes (CTLs) eliminate infected cells and thus prevent viral
release; and (ii) the humoral immune response by which serum and
mucosal antibodies efficiently neutralize the virus (as explained in
Text S1 the separation between serum and mucosal antibodies is
not necessary for our study). Antibodies can remain detectable for
years after infection and prevent reinfection by the same strain as
well as by sufficiently cross-reactive variants (Fairlie-Clarke et al.,
2008). Genetic variation in any of these immune components might
determine whether or how rapidly an individual develops protec-
tive immunity following influenza infection.

As schematized in Fig. 1A, it is important to note that, during
a primary influenza infection, the innate and cellular responses
(blue curve) play the key role in viral clearance whereas neu-
tralizing antibodies (green curve) are generated later and do not
play a significant role unless the viral load is high and sustained
(Woodland, 2003). The primary CTL response is detectable in blood
after 6–14 days whereas the neutralizing antibody response peaks
at 4–6 weeks (Cox et al., 2004). Critically, the CTL response is down-
regulated after viral clearance (Woodland, 2003), disappears by day
21 post-infection (Cox et al., 2004) and is followed by a state of
immunological “memory” with antigen-specific T cells. The mem-
ory cells cannot prevent HR as well as specific antibodies could,
but they can reduce the severity of the disease (Woodland, 2003).
Finally, it has been reported that a serum or mucosal antibody
response cannot be detected in approximately 10 to 20% of sub-
jects after natural influenza infection (Cox et al., 2004; Tamura and
Kurata, 2004; Miller et al., 2010; Chen et al., 2010; Hung et al., 2010;
Chan et al., 2011).

Mechanistic modelling

Fig. 1B shows the SEICWH model which extends the classical
SEIR model to account for the dynamics and host heterogeneity of
the primary immune response to influenza in humans. Following
recovery, hosts remain temporarily protected against HR thanks to
the cellular response. Accordingly, they enter the C stage (cellular
protection). Then, following down-regulation of the CTL response,
the humoral response has a probability  ̨ to reach a level suffi-
cient to protect against HR. In this case, recovered hosts enter the
H stage (humoral protection) but otherwise they remain unpro-
tected and re-enter the susceptible pool (S). Finally, in order to
account for potential delay between completion of CTL contraction
and full development of the neutralizing antibody response, recov-
ered hosts pass through a time window of susceptibility (W)  before
entering the H stage. Crucially, while in the W stage, individuals can

be reinfected following re-exposure to the same strain

In order to account for host heterogeneity in the development of
the immune response, we use a stochastic framework to simulate
the durations of the successive immunological stages. Defining �E,
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Fig. 1. Mechanistic modelling of the primary immune response to influenza. (A) Schematized dynamics of the viral load as well as the innate and adaptive immune responses,
as  described in section “The primary immune response to influenza infection in humans”. (B) The SEICWH model. The six immunological stages are S: susceptible, E: exposed,
I:  clinically ill and infectious, C: temporarily protected by the cellular response, W:  temporarily susceptible, H: protected on the long-term by the humoral response. The
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umber of sub-compartments in each immunological stages corresponds to the sha
odelling”). The infection force is � = ˇ(I1 + I2)/˝. A description of the parameters c

rovided in Table 1. The set of ordinary differential equations used for deterministi

I, �C and �W as the times spent by an infected host in the indexed
mmunological stages, we assume that these four random vari-
bles follow independent Erlang distributions with shapes kE, kI,
C and kW and means �−1, �−1, �−1 and ω−1, respectively. Erlang
istribution with mean m and shape k is modelled by k consec-
tive sub-stages, each being exponentially distributed with mean
/k. As illustrated in Fig. S1 the flexibility of the Erlang distribution

anges from the exponential (k = 1) to Gaussian-like (k � 1) distri-
utions. In particular, whenever k > 1 the memory-less property of
he exponential distribution is lost, thus providing more realistic
istribution for biological processes with delays such as recovery
r contraction of the CTL response (Wearing et al., 2005). In Fig. 1B,
s well as in the rest of the paper, we use kE = kI = 2, kW = 1 and
C = 5. Justification of these values is provided in section “Parameter
nference via maximum likelihood”.

Finally, regarding disease transmission, we make the standard
ssumptions of a well mixed, isolated and constant size (= ˝)  pop-
lation, as well as a constant contact rate (= ˇ) among individuals.
hese simplifications permit us (i) to focus on the direct impacts
f the immunological mechanisms on the epidemic dynamics; and
ii) to rapidly assess these impacts for various population settings,
.e. contact rates. We  refer to the last section of this paper for a dis-
ussion on the inclusion of further refinements in the transmission
echanisms.

ata

The data counts are clinical records based on symptom obser-
ation and were drawn from the notes taken during the regular
ork of the local practice who visited all but three houses during

he course of the epidemic in TdC (Mantle and Tyrrell, 1973). In
ddition, blood sample of 11 individuals provided serological con-
rmation of the circulation of A/H3N2 on the island, a subtype to
hich the TdC population had never been exposed before 1971.

e refer to the paper of Mantle and Tyrrell (1973) for a detailed

escription of the 1971 data set as well as to the paper of Camacho
t al. (2011) for a summary of the influenza experiences in TdC
efore 1971.
he Erlang distribution for the residence time in this stage (see section “Mechanistic
found in Table 2. The transition rates used to stochastically simulate the model are
lations can be found in Text S3.

We note that the data are not available at the individual level.
However, since the data set consists of 312 cases for 284 islanders
some individuals must appear twice in the data counts. More pre-
cisely, in their original article, Mantle and Tyrrell (1973) states that
among the 284 islanders 273 were infected at least once whereas
92 were reinfected. Unfortunately, only 312 of the 365 total cases
were recorded with daily precision and were included in their data
set (Mantle and Tyrrell, 1973) which is reproduced in Fig. 2 (black
dots). As such, we can only conclude that at least 49 HR cases appear
in the data.

Simulation

Our aim is (i) to fit the SEICWH model to the 1971 TdC epidemic
in order to estimate the immunological parameters (�, �, � , ω, ˛)
and (ii) to explore the model dynamics for various population sett-
ings. For this purpose, we  used both stochastic and deterministic
simulations of the SEICWH model, as we now explain.

In a previous study, Camacho et al. (2011) showed that, given
the small population of TdC, demographic stochasticity should
be taken into account when fitting a mechanistic model to the
1971 TdC epidemic. This is because the risk of epidemic fade-out
during the trough between waves depends on the model param-
eters and must therefore be accounted for when maximizing the
likelihood over the parameter space. Accordingly, we  exclusively
resorted to stochastic simulations to fit the 1971 TdC epidemic.
In the stochastic SEICWH model, the number of individuals in each
immunological (sub-)stage is a discrete random variable and a pos-
sible state of the population at time t is defined by the random
vector

X(t) = (S(t), E1:2(t), I1:2(t), C1:5(t), W(t), H(t))

where C1:5 ≡ C1, . . .,  C5 (and similarly for I1:2 and E1:2). The state of

the population at time t is therefore a realization

x(t) = (s(t), e1:2(t), i1:2(t), c1:5(t), w(t), h(t))
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ealizations at time t. (For interpretation of the references to color in this figure
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f X(t). The time course of x(t) is led by the possible transitions
escribed in Table 1 and was simulated using Gillespie’s exact algo-
ithm (Gillespie, 1977).

Our second aim was to explore the dynamics of the SEICWH
odel over a wide range of parameter values. In this context,

tochastic simulations become computationally intensive and one
s tempted to resort on deterministic simulations for the sake
f efficiency. However, this approximation is acceptable only as
ne controls that the stochastic effects should remain negligible.
ccordingly, we assessed that the inter-wave extinction probability
emains negligible (p < 10−3) in the parameter range explored (see
ext S3), thus justifying the use of a deterministic approximation.
n the deterministic SEICWH model, the state of the population x(t)

ecomes a continuous variable governed by a set of ordinary differ-
ntial equations (given in Text S3) that can be obtained by the large
opulation limit (˝→ ∞)  of the stochastic process (Kurtz, 1971).

able 1
ransitions between classes in the stochastic SEICWH model. The notation A → B
eans that when the event occurs one individual is transferred from compartment

 to compartment B.

Event Transition Rate at which
event occurs

(re)Infection S → E1 ˇs(i1 + i2)/˝
W → E1 ˇw(i1 + i2)/˝

Progression of incubation E1 → E2 2�e1

Start of infectiosity E2 → I1 2�e2

Progression of infectiosity I1 → I2 2�i1
Recovery I2 → C1 2�i2
Progressive loss of cellular protection Ck → Ck+1 5�ck

Deficiency of humoral response C5 → S (1 − ˛)5�c5

Start of the window of susceptibility C5 → W ˛5�c5

Start of the humoral protection W → H ωw
mics 5 (2013) 187–196

These equations were numerically integrated using the fourth-
order Runge-Kutta routine of the GSL library (Galassi et al., 2010).

Parameter inference via maximum likelihood

For a time series y1:T of T successive observations and a state-
space model with parameter vector �, the likelihood is given by
L(�) = P(y1:T |�). For our stochastic model, the likelihood is analyti-
cally intractable and we  resorted to an iterated filtering procedure
which converges to the ML  parameter estimate (�ML) to the inci-
dence data (Ionides et al., 2006) (code available upon request). In
short, this inference framework only requires: (i) an algorithm to
simulate the stochastic model; and (ii) an observation process to
link the model-predicted incidence (i.e. the daily number of new
hosts entering the infectious class I1) to the daily incidence counts
reported in the data set. Following Camacho et al. (2011), we used
Gillespie’s algorithm for model simulation and a Poisson process,
whose reporting rate 	 was  also inferred, for observation. We  per-
formed log-likelihood profiles in order to check convergence to
the maximum likelihood and to calculate 95% confidence intervals
(CI95%) for parameter estimates.

A detailed description of the inference procedure can be found in
the Supplementary Material of Camacho et al. (2011). In particular,
it is shown that, in contrast to the other parameters, inference of the
shape parameters kE, kI, kC and kW is computationally too expen-
sive. To tackle this issue, we followed Wearing et al. (2005) who
fitted a SEIR model to an influenza epidemic in a boarding school
and obtained the best fit for kE = kI = 2. Then, we performed sensi-
tivity analyses on kC and kW and found that, whatever the value of
kC, the likelihood was maximized when kW = 1 (results not shown).
Finally, we  performed a log-likelihood profile on kC and found the
maximum at kC = 5. In the remainder of this paper we  therefore fix
kE = kI = 2, kW = 1 and kC = 5 and obtain the model of Fig. 1B.

Quantities of epidemiological interest

Our detailed description of the different immunological stages
allows us to derive several quantities of epidemiological interest.
We denote by � the time elapsed since the start of the infectious
period and define the following probabilities:

• P1(�) = P[�I > �] = 1 −
∫ �

0
fI(t)dt, the probability that, at time �,

the host is still infectious,
• P2(�) = P[�I + �C > �] = 1 −

∫ �

0
fIC (t)dt, the probability that, at

time �, the host is still temporarily protected against HR thanks
to the innate and cellular immunity,

• P3(�) = P[�I + �C + �W < �] = ˛
∫ �

0
fICW (t)dt, the probability that,

at time �, the host is already protected on the long-term against
HR thanks to the humoral immunity,

• P4(�) = 1 − P2(�) − P3(�), the probability that, at time �, the host is
unprotected and can potentially suffer from HR if re-exposed,

where fIC is the probability density function of �I + �C and simi-
larly for fICW. The probability distributions P1–4 were computed via
Monte-Carlo integration.

These probability distributions can be compared with empirical
ones obtained from volunteer challenge studies (Carrat et al., 2008)
or population surveys during natural infections (Miller et al., 2010;
Hung et al., 2010; Chan et al., 2011). In a recent study, Baguelin et al.
(2011) fitted a Weibull distribution to a data set consisting of 115
time intervals to seroconversion that were obtained from a serolog-
ical survey during the second wave of the 2009 A/H1N1 pandemic

in the UK (Miller et al., 2010). More precisely, the authors defined
the seroconversion interval of each individual as the time taken
since symptom onset to reach an hemagglutination-inhibition (HI)
titre of ≥32 (Baguelin et al., 2011). Historically, HI assay has been
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onsidered to be the gold standard for evaluation of the humoral
erum response, with an HI titre of ≥32 considered as a surrogate
arker for recent infection during the 2009 pandemic (Hardelid

t al., 2010). We  investigated the link between seroconversion and
fficient protection by comparing the Weibull distribution obtained
y Baguelin et al. (2011) to the distribution P3(�) under our ML
arameter estimates. For this purpose we implicitly assume that
he time of influenza symptom onset coincides with the start of the
nfectious period.

In order to assess the impact of HR on the epidemiological
ynamics, we define the fraction of the population that was (i)

nfected at least once (FI.), (ii) reinfected (FII.) and iii) infected
nly once but remains unprotected (FIS) at the end of the epi-
emic. We  note however that the model presented in Fig. 1B does
ot allow us to compute these fractions since it only tracks the
pidemiological status of individuals (e.g. susceptible, infectious,
rotected) rather than their infection and immunological histories.
or instance, it is impossible to distinguish between those infected
nly once and those reinfected (they all pass through the same
tages), nor between those susceptible who escaped infection and
hose unprotected who escaped reinfection (they all end in the S
lass). To tackle this issue, we developed a version of the SEICWH
odel that allows us to track both the infection and the immuno-

ogical histories of individuals and used this model to compute FI.,
II. and FIS. Since this model is of much higher dimension than that
f Fig. 1B, we refer to Text S4 for a more detailed description.

Finally, we define the daily inflow of unprotected hosts Ud by
ounting the number of recovered hosts who lose their tempo-
ary immunity conferred by the cellular protection (i.e. leave the
5 compartment) during day d, independently of the outcome of
heir humoral response.

xploration

Human communities differ from each other in their con-
act structure. We  seek to characterize the interplay between
he immunological and epidemiological dynamics of the SEICWH

odel for various contact rates (ˇ) ranging from highly to less
ixed populations. We  keep the immunological parameters con-

tant and equal to those inferred from the 1971 TdC epidemic. We
an thus express changes in the contact rate in terms of the more
eaningful basic reproduction number (R0 = ˇ/�).
We then focus on the first post-pandemic influenza seasons and

eek to determine under which conditions a subsequent variant
o the pandemic strain can break population herd immunity, thus
eading to a typical seasonal epidemic. Rapid evolution of the pan-
emic strain through mutations mainly results in changes of its
ntigenic properties and/or its transmissibility. Other properties
uch as the duration of the infectious period could also evolve but
e keep them constant for simplicity. As such, evolution of the

ransmissibility translates into a difference 
R0 between the basic
eproduction number of the mutated variant and that of the pan-
emic strain. On the other hand, antigenic evolution is modelled
hrough an immune escape factor � ∈ [0, 1] which corresponds to
he proportion of antigenic properties of the mutated variant that
iffers from the pandemic strain. For instance, � = 0 means that
oth the pandemic and the mutant strain share the same anti-
enic properties. Finally, we assume that immune escape translates
nto cross-immunity by reducing the susceptibility against infec-
ion by the new variant by a multiplicative factor 1 − �. As such,
ndividuals who have developed a protective humoral response to
he pandemic strain are partially protected against infection by the
utant strain whereas those who escaped infection or remained
nprotected at the end of the pandemic season are fully suscepti-
le. As detailed in Text S5, previous empirical and modelling studies
uggest a relative increase of the transmissibility 
R0/R0 ∈ [0, 1] as
mics 5 (2013) 187–196 191

well as an immune escape � ∈ [0, 0.5] for a post-pandemic variant.
In the following, we explore these parameter ranges.

Results

Parameter inference

ML  estimates and CI95% for the parameter set are presented
in Table 2. Our estimates reveal the exceptional epidemiologi-
cal context of the 1971 epidemic, in the small and fully isolated
TdC community, characterized by a high contact rate among the
islanders (R0 = 11.78, CI95% = [7.7–25.5]), as well as a very low
level of pre-existing immunity at the beginning of the epidemic
(S0/� ≈ 98 %, [97–99]), the origin of which we  speculate upon in
Text S6. ML  estimates of the generation time (average time between
primary and secondary cases: 3.34 days [2.53–4.7]) and of the
reporting rate in the data counts (due to asymptomatic infections
and observation errors: 71%, [62–82]) are in good agreement with
those previously published (Carrat et al., 2008). Similarly, we  find
that 17%, [0–51] of the infected islanders did not mount an efficient
humoral immune response, which is in the range of the estimates
available in the literature (Cox et al., 2004; Miller et al., 2010; Chen
et al., 2010). Finally, ML  estimates of the duration of the short-term
protection (13.37 days [10.37–16.31]) that follows recovery and of
the window of susceptibility (2.75 days [0–6.03]) that precedes the
establishment of a long-term humoral protection are both in good
agreement with the timings of the completion of the CTLs contrac-
tion (Cowling et al., 2012) and the peak of neutralizing antibodies
(see section “The primary immune response to influenza infection
in humans”).

We  note that the CI95% of the mean window of susceptibil-
ity (ω−1) contains 0 which could suggest a more parsimonious
model. However, as we show in Text S7, the broad CI95% of ω−1

is due to a strong correlation with the parameter  ̨ (the probability
to mount an efficient humoral response). In particular, the lower
bound ω−1 = 0 corresponds to values of ˛∼ 50 % that are far below
empirical estimates found in the literature (∼80–90%). Conversely,
we show that fixing ˛∼80–90% leads to a much tighter CI95% for ω−1

that excludes 0. As such, we  conclude that despite its broad CI95%
the window of susceptibility is justified for the sake of biological
realism.

Immunodynamics

The immunodynamics under our ML  estimates is summarized
in Fig. 3. In particular, we  find that the waiting time in the win-
dow of susceptibility is exponentially distributed, thus revealing a
high level of host heterogeneity in the development of the humoral
response. Indeed, among those who do mount a protective humoral
immune response (83% of the population), 30% will stay in the win-
dow of susceptibility less than one day and 20% more than four days
(see Fig. S1, green curve). It also shows that, at the population level,
the probability P4(�) to sample an unprotected individual rapidly
peaks to 0.25 three weeks after the date of symptom onset, owing
to the window of susceptibility, and then decreases to (1 − ˛) = 0.17
on a longer time scale due to the lack of humoral protection.

Finally, we  investigate the link between seroconversion and
efficient protection by comparing the cumulative distribution
obtained by Baguelin et al. (2011) with our probability distribu-

tion P3. Fig. 3 suggests that seroconversion occurs faster (∼1 week)
and in a slightly greater proportion of infected hosts (87% vs. 83%)
than efficient protection. We discuss this discrepancy in section
“Immunodynamics model”.
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Table 2
Results of the maximum likelihood statistical inference for the 1971 TdC epidemic. ML  estimates and 95% confidence intervals for the SEICWH model parameters.

Symbol Description Estimate CI95%

R0 = ˇ/� Basic reproduction number 11.78 7.70–25.50
1/� Mean latent period (days) 2.18 1.53–2.96
1/�  mean infectious period (days) 2.32 0.70–5.03
1/�  Mean temporary removed period (days) 13.37 10.37–16.31
1/ω  Mean duration of the reinfection window (days) 2.75 0–6.03
˛  Probability to develop long-term immunity 0.83 0.49–1
	  Reporting rate for observation 0.71 0.62–0.82
I0 Number of initially infectious individuals 1 1–3
S0 Number of initially susceptible individuals

l(�ML) Maximized log-likelihood 
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odel fit

In order to better characterize the 1971 two-wave epidemic on
dC, we simulated 105 realizations of the stochastic SEICWH model
Fig. 1B) under the ML  estimates (Table 2) and computed the 50 and
5 percentile intervals (PI50,95%) of the distribution conditioned on
on extinction. Fig. 2 (upper panel) demonstrates the goodness of
t of the SEICWH model since the data lie in the PI95% while the
hape and dynamics of the epidemic are closely captured by the
ean predicted incidence with PI50% envelope (we refer to Text S8

or a similar analysis using parameter sets sampled from the CI95%).
In addition, Fig. 2 (lower panel) reveals that although the extinc-

ion probability increases at the beginning of the epidemic and
uring the inter-wave period (i.e. when the transmission chain can
e broken due to the low number of infectious hosts), the risk of
isease fadeout remains below 5%. By contrast, this risk rapidly

ncreases during the downturn of the second epidemic wave due
o depletion of the susceptible pool (i.e. most HR individuals have
ained long-term protection). We  can thus conclude that, despite

he small community size of TdC, the infection and HR dynamics
ere robust to demographic stochasticity during the 1971 epi-
emic. Put another way, given the population settings of TdC, the
277 275–280

−112.19 –

HR wave was  not a twist of fate but did have a high probability to
occur.

Interplay between the immunological and epidemiological
dynamics

Three typical epidemic profiles
The first striking result of the exploration is that three typical

epidemic profiles can be distinguished, depending on the value
of R0. When the contact rate is high (R0 � 5), as on TdC, the epi-
demic is composed of two  waves with two distinct peaks (Fig. 4C).
By contrast, at intermediate contact rates (R0 ∈ [2 − 5]), the epi-
demic is composed of a single wave with a “long tail” end (Fig. 4B).
Finally, when the contact rate is low (R0 � 2), the tail disappears so
that the epidemic becomes bell shaped (Fig. 4A). These three epi-
demic profiles arise from the interplay between the immunological
and epidemiological dynamics that modulates the effective repro-
duction number Re(t) throughout the epidemic. For our model,
Re(t) = R0(S(t) + W(t))/  ̋ and as long as Re(t) > 1 the epidemic is
increasing.

In the parameter region of high R0 (Fig. 4C), the disease spreads
so rapidly that almost the entire population is infected over a short
time interval which is similar to the duration of the cellular protec-
tion. As a result, many recovered hosts lose their cellular protection
simultaneously, leading to an important inflow of unprotected indi-
viduals (Ud) shortly after the end of the infection wave. Accordingly,
Re rapidly increases so that, in the event that the chain of transmis-
sion is maintained until the threshold Re = 1 is reached, HR becomes
sustained and a second epidemic wave is observed.

By contrast, in the parameter region of low R0 (Fig. 4A), the
disease spreads over a much longer time scale than the immune
response so that Ud peaks during the downturn of the infection
wave. This timing, together with the low R0, help to explain why
Re remains below one after the first epidemic peak. In this case, the
reinfection wave is not sustained but mainly driven by the infection
wave.

Finally, in the parameter region of intermediate R0 (Fig. 4B), the
disease spreads slowly enough that the reinfection wave is initially
driven by the infection wave while Ud is sufficient to maintain the
chain of transmission after the end of the infection wave. However,
in contrast to the high R0 case, Re remains below one so that the
epidemic does not peak again, but subsides in a tail of reinfection.

The HR threshold
As shown in Fig. 5 (upper panel), the fraction of individuals

infected at least once during the epidemic (FI.) increases rapidly
with R0. In particular, the value of FI. is greater than expected with
a SEIR model since the latter does not account for new cases result-
a dotted-line).
Regarding the fraction of the population that is reinfected (FII.,

middle panel) or that remains unprotected (FIS, lower panel) at
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he end of the epidemic, we note a qualitative change at inter-
ediate values of R0. Specifically, we define the HR threshold by

∗
0 = argmaxR0

FIS(R0). When R0 < R∗
0, most hosts have closed their

indow of susceptibility before re-exposure to the virus whereas
ost of those with deficient humoral response are likely to escape
R until the end of the epidemic and remains unprotected. By con-

rast, when R0 > R∗
0, most hosts are likely to be re-exposed to the

irus before their window of susceptibility closes whereas most
nprotected hosts gain long-term immunity via HR during the sec-
nd epidemic wave. We  numerically calculated R∗

0 = 3 under the
L  estimates of the immunological parameters.
Finally, we contend that this HR threshold should not be con-

used with the reinfection threshold introduced by Gomes et al.
2004). Although both thresholds indicate important qualitative
hange of the epidemic dynamics, we show in Text S9 that they
ave different epidemiological interpretations as well as different
ynamical implications.

mplications for the first post-pandemic season
Fig. 6 (upper panels) shows the expected fraction of individuals

nfected at least once by a mutant during the first post-pandemic
eason (FI. post-pdm) as a function of the immune escape � and
he relative increase in transmissibility 
R0/R0, for five differ-
nt values of R0 in agreement with pandemic scenarios in large
opulations (Lessler et al., 2007). As R0 increases the pandemic
ecomes more and more severe so that the expected fraction
f protected individuals at the beginning of the post-pandemic
eason (H) increases. Accordingly, from an evolutionary point
f view, it becomes more and more efficient for the mutant
o increase its immune escape than its transmissibility in order
o invade the population. By contrast, when R0 is close to 1, a

utant antigenically similar to the pandemic strain can invade
he population following moderate increase in transmissibil-
ty.

This pattern can be compared to that predicted by a SEIR model,
.e. assuming that all the individuals infected during the pandemic

evelop an efficient humoral response and are therefore partially
rotected against the mutant strain. One can show that, at the
eginning of the post-pandemic season, the SEIR model underesti-
ates the value of Re for the mutant strain by (R0 + 
R0)(1 − �)
H,
ls (Ud). Lower panels: time course of the effective reproduction number Re(t). The
retation of the references to color in text, the reader is referred to the web version

where 
H = FIS is the fraction of unprotected hosts at the end
of pandemic season in the SEICWH model. Fig. 6 (lower pan-
els) reveals a parameter region, below the invasion threshold
(Re = 1) of the SEIR model, where the SEICWH model predicts epi-
demics involving up to 25% of the population. Furthermore, even
above this invasion threshold, the epidemic sizes differ by the
same order of magnitude as a typical seasonal influenza epidemic
(
FI. ≈ 5–20%).

Discussion

Immunodynamics model

Our study supports the view that host heterogeneity in the
timely development of a protective immunity can explain HR.
More precisely, although short lived (innate and cellular) immu-
nity should prevent HR within 2–3 weeks following the primary
infection (Cowling et al., 2012), incomplete immune formation and
non seroconversion can lead to HR following re-exposure to the
same strain on an intermediate and a long time-scale, respectively.
These mechanisms provide an explanation to the HR cases reported
over 2–5 weeks (Perez et al., 2010; Kim et al., 2010) as well as over
several months (Trakulsrichai et al., 2012) during the 2009 A/H1N1
pandemic.

To our knowledge, the present statistical analysis is the first one
that attempts to provide joint estimates for the duration of the
short-term protection, the duration of the window of susceptibil-
ity and the probability to develop a long-term protection. Although
strong correlations between ω−1 and  ̨ prevent us from identify-
ing these key quantities with tight CI95%, our ML  estimate of  ̨ is
in very good agreement with empirical estimates in the literature.
Moreover, we  show in Text S7 that fixing  ̨ around these empir-
ical estimates leads to much tighter CI95% for ω−1. We  have so
far assumed that hosts are fully susceptibility to HR while in the
window of susceptibility. In Text S10 we show that partial suscep-
tibility can be modelled by means of an extra parameter and has

the effect to lengthen the window of susceptibility. However, we
also found that this extra parameter suffers from serious identifi-
ability issue and choose not to include it in the present SEICWH
model.
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Finally, comparison of the immunological dynamics under the
est fit model with empirical estimates from the 2009 pandemic

n the UK (Fig. 3) suggests that either (i) seroconversion occurred
ore rapidly during the 2009 A/H1N1 pandemic in the UK than

uring the 1972 A/H3N2 epidemic on TdC or (ii) it should take a
igher HI titre than 32 for efficient protection against HR. The first
xplanation could be justified by different immunogenic properties
etween A/H1N1 and A/H3N2 as well as different immuno-genetic
ackground between the UK and TdC populations. However, we
ote that ML  estimates of the immunological parameters for the
dC epidemic are in close agreement with empirical literature (see
ection “The primary immune response to influenza infection in
umans”). Accordingly, we believe that our estimates can reason-
bly be extended to other human populations and influenza viruses.
n the other hand, the second explanation is in good agreement
ith the results of a recent meta-analysis showing that a HI titre of

2 corresponds to less than 50% reduction in the risk of contracting
nfluenza whereas it takes a titre of ≥100 to decrease this risk to 10%
Coudeville et al., 2010). Similarly, we note that most labs outside

K fix the protective threshold at 40 instead of 32, thus increas-

ng the time to seroconversion while reducing the proportion of
eroconverted.
mics 5 (2013) 187–196

Does HR drive multiple-wave influenza outbreaks?

Our study indicates that HR could drive multiple-wave influenza
outbreaks in communities with exceptional contact configurations
like schools or isolated settlements. However, we  have assumed
so far a constant contact rate between infected and susceptible (or
unprotected) individuals as well as no prior immunity to the new
virus. These assumptions seem justified for the isolated and close-
knit TdC community. Indeed, the high attack rate (96%) during the
1971 epidemic (Mantle and Tyrrell, 1973) suggests that those who
were infected at the beginning of the infection wave have rapidly
been re-exposed while caring for the sick during the inter-wave
period, thus initiating the HR wave. By contrast, we expect that
in less isolated and better prepared communities, past influenza
exposures and vaccination should reduce the number of suscepti-
ble individuals at the beginning of the epidemic, thus increasing
the HR threshold R∗

0. On the other hand, distancing or contain-
ment measures should rapidly be implemented as the epidemic
progresses, thus considerably mitigating the risk of re-exposure.
For instance, school closure could rapidly drive the epidemic to
extinction, whereas rapid isolation of suspected cases could effi-
ciently reduce the contact rate of infected host, thus preventing
the HR wave.

In line with these scenarios, no reinfection was reported dur-
ing an influenza outbreak that occurred in a boarding school of
763 boys in 1978 (one year after the re-emergence of A/H1N1)
despite the high attack rate (67%) (Anonymous, 1978). In this case,
infectious boys were confined to bed and cared by 130 adults, pre-
sumably already immune as only one of them reported symptoms.
As a result, the epidemic died out after 13 days, while most of the
recovered boys would still have benefited from a cellular protec-
tion (see Fig. S11). By contrast, in 1924, only 121 (13%) of 904 boys
of the Royal Navy School of Greenwich had already been infected
after 23 days of disease propagation (presumably because of the
high level of prior-immunity acquired since the 1918 pandemic),
when 40 new boys were distributed indiscriminately throughout
the school (Dudley, 1926). On the 26th day, two of this batch devel-
oped influenza, and within a week nine new boys had been infected.
Meanwhile the incidence among the old boys, which had previously
been on the wane, rose again, and 12 reinfections were reported.
Interestingly, a further batch of 40 new boys were introduced just
at the end of the epidemic, when the chances of infection must
have considerably diminished; six of these were ultimately infected
during the period in which 14 cases of infection and 4 cases of
reinfection were reported among the old boys (see Fig. S12). This
epidemic pattern can simply be explained by an increase of Re due
to the simultaneous effect of the replenishment of the susceptible
pool and the inflow of unprotected old boys.

On the other hand, our results clearly indicate that HR is not
sufficient in itself to generate the multiple-wave outbreak patterns
observed during past pandemics in large populations. Indeed, R0
has been estimated around 2 (Lessler et al., 2007) which is below
the HR threshold R∗

0. In these cases, HR would have only increased
the force of infection, and thus the number of infected hosts, by a
few percent. Once again, we  contend that our simple transmission
model willingly ignores many known mechanisms at work in larger
and more structured populations such as age-dependency in the
contact rate (Mossong et al., 2008) (i.e. heterogeneous mixing) and
behavioural changes (Funk et al., 2009). Furthermore, propagation
of a new influenza virus over several months must depend on sea-
sonal variations in transmissibility (i.e. change in absolute humidity
(Shaman and Kohn, 2009)) and contact rate (i.e. school closing and
(Balcan et al., 2009). Indeed, recent studies suggest that the timing
of the first and second waves during the 2009 pandemic influenza
was controlled by a combination of these mechanisms (Chao et al.,
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odel  overestimates the population herd immunity, it predicts a greater invasion th
odel. (For interpretation of the references to color in this figure legend, the reade

010; Shaman et al., 2010). Nevertheless, despite the simplicity of
ur transmission model, we believe that our qualitative conclusions
n the role of HR in large populations (i.e. below the HR threshold)
emain valid even including these additional mechanisms.

he necessity to account for immunodynamics and host
eterogeneity in epidemiological models

In communities with exceptional contact rates, HR can rapidly
rive a second epidemic wave involving not only individuals with
eficient humoral response but also those who  are re-exposed
efore their humoral protection becomes efficient. Accordingly, the
isk of a wave of reinfection cannot be anticipated without a pre-
ise description of the immunodynamics that follows recovery from
nfluenza infection as in the SEICWH model. By contrast, in larger
nd less mixed populations, HR does not significantly alter the epi-
emiological dynamics so that a simple SEIR framework should be
ufficient to predict or infer (retrospectively) the impact of a new
irus in these populations.

On the other hand, one should also bear in mind that the SEIR
odel overestimates the level of population immunity at the end

f the pandemic by assuming that all infected hosts develop a pro-
ective humoral response. Accordingly, our results indicate that
onsideration of host heterogeneity in the humoral response is
ssential in order to anticipate the impact of a mutant in the
ost-pandemic era. In addition, this would permit to quantify
he fraction of infected hosts that should remain unprotected
fter a pandemic and could therefore benefit from vaccination in
rder to boost their humoral response. Although it seems difficult
o separate protected from unprotected hosts without individual

erological tests, we can nonetheless assume that random vaccina-
ion of symptomatic cases should, in principle, increase population
erd immunity through cross-immunity to subsequent antigenic
ariants.
condition and plotted the difference (
FI. post-pdm, colour-coded). Since the SEIR
ld for the post-pandemic mutant (isocline Re = 1, black solid line) than the SEICWH
erred to the web version of the article.)

The SEICWH model represents a step forward in the consid-
eration of the immune response, and its heterogeneity among
individuals, in epidemiological models. However, further research
and refinements could be envisaged to improve its realism. First,
reinfected hosts may  benefit from T-cell “memory” and be less
infectious than infected hosts, and even more often asymptomatic,
thus reducing their risk to transmit the disease. Second, host het-
erogeneity in the development of a protective humoral response
could vary depending on the immunogenic properties of each
influenza virus and the population under study. For instance, it was
recently reported that although 90% of the infected hosts in the age
range 16–29 seroconverted during the 2009 pandemic, this pro-
portion decreased to 70% for those aged 50 years and over (Hung
et al., 2010). Finally, although we  have assumed a life-long humoral
protection once in the H stage, the same study conducted dur-
ing the 2009 pandemic also revealed that 7 and 16% of patients
who seroconverted had a decline of antibody titre of 4- and 2-fold,
respectively, after one year (Hung et al., 2010). As for the lack of
immune response, this additional mechanism could have signifi-
cant implications for the current post-pandemic era by increasing
the effective reproduction number of subsequent nH1N1 variants.
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alcan, D., Colizza, V., Gonç alves, B., Hu, H., Ramasco, J.J., Vespignani, A., 2009. Mul-
tiscale mobility networks and the spatial spreading of infectious diseases. Proc.
Natl. Acad. Sci. U.S.A. 106, 21484–21489.

arry, J.M., Viboud, C., Simonsen, L., 2008. Cross?Protection between successive
waves of the 1918–1919 influenza pandemic: epidemiological evidence from
US  Army Camps and from Britain. J. Infect. Dis. 198, 1427–1434.

rown, D.M., Román, E., Swain, S.L., 2004. CD4 T cell responses to influenza infection.
Semin. Immunol. 16, 171–177.

amacho, A., Ballesteros, S., Graham, A.L., Carrat, F., ratmann, O., Cazelles, B., 2011.
Explaining rapid reinfections in multiple-wave influenza outbreaks: Tristan da
Cunha 1971 epidemic as a case study. Proc. R. Soc. B 278, 3635–3643.

arrat, F., Vergu, E., Ferguson, N.M., Lemaitre, M.,  Cauchemez, S., Leach, S., Valleron,
A.J.,  2008. Time lines of infection and disease in human influenza: a review of
volunteer challenge studies. Am.  J. Epidemiol. 167, 775–785.

han, K., To, K.K.W., Hung, I.F.N., Zhang, A.J.X., Chan, J.F.W., Cheng, V.C.C., Tse, H.,
Che, X.Y., Chen, H., Yuen, K.Y., 2011. Differences in antibody responses of indi-
viduals with natural infection and those vaccinated against pandemic H1N1
2009 influenza. Clin. Vacc. Immunol. 18, 867–873.

hao, D.L., Elizabeth Halloran, M.,  Longini Jr., I.M., 2010. School opening dates predict
pandemic influenza A(H1N1) outbreaks in the United States. J. Infect. Dis. 202,
877–880.

hen, M.I., Barr, I.G., Koh, G.C.H., Lee, V.J., Lee, C.P.S., Shaw, R., Lin, C., Yap, J., Cook, A.R.,
Tan, B.H., Loh, J.P., Barkham, T., Chow, V.T.K., Lin, R.T.P., Leo, Y.S., 2010. Serologi-
cal response in RT-PCR confirmed H1N1-2009 influenza A by hemagglutination
inhibition and virus neutralization assays: an observational study. PLoS ONE 5,
e12474.

oudeville, L., Bailleux, F., Riche, B., Megas, F., Andre, P., Ecochard, R., 2010.
Relationship between haemagglutination-inhibiting antibody titres and clin-
ical protection against influenza: development and application of a bayesian
random-effects model. BMC  Med. Res. Methodol., 1–11.

owling, B.J., Fang, V., Nishiura, H., Chan, K., Ng, S., Ip, D.K.M., Chiu, S.S., Leung,
G.M., Peiris, J.S., 2012. Increased risk of noninfluenza respiratory virus infec-
tions associated with receipt of inactivated influenza vaccine. Clin. Infect. Dis.
54, 1778–1783.

ox, R.J., Brokstad, K.A., Ogra, P., 2004. Influenza virus: immunity and vaccination
strategies. Comparison of the immune response to inactivated and live, attenu-
ated influenza vaccines. Scand. J. Immunol. 59, 1–15.

udley, S., 1926. The spread of “Droplet Infection” in Semi-isolateed Communities.
Technical Report 111, Oxford.

airlie-Clarke, K.J., Shuker, D.M., Graham, A.L., 2008. Perspective article: Why  do
adaptive immune responses cross-react? Evol. Appl. 2, 122–131.

raser, C., Donnelly, C.A., Cauchemez, S., Hanage, W.P., Van Kerkhove, M.D.,
Hollingsworth, T.D., Griffin, J., Baggaley, R.F., Jenkins, H.E., Lyons, E.J., Jombart,
T.,  Hinsley, W.R., Grassly, N.C., Balloux, F., Ghani, A.C., Ferguson, N.M., Rambaut,
A.,  Pybus, O.G., Lopez-Gatell, H., Alpuche-Aranda, C.M., Chapela, I.B., Zavala, E.P.,

Guevara, D.M.E., Checchi, F., Garcia, E., Hugonnet, S., Roth, C., The WHO  Rapid
Pandemic Assessment Collaboration, 2009. Pandemic potential of a strain of
influenza A (H1N1): early findings. Science 324, 1557–1561.

unk, S., Gilad, E., Watkins, C., Jansen, V.A.A., 2009. The spread of awareness and its
impact on epidemic outbreaks. Proc. Natl. Acad. Sci. U.S.A. 106, 6872–6877.
mics 5 (2013) 187–196

Galassi, M., Theiler, J., Jungman, G., Gough, B., Davies, J., Priedhorsky, R., Booth, M.,
Rossi, F., 2010. GNU Scientific Library Reference Manual.

Gillespie, D.T., 1977. Exact stochastic simulation of coupled chemical reactions. J.
Phys. Chem. 81, 2340–2361.

Gomes, M.G.M., White, L.J., Medley, G.F., 2004. Infection, reinfection, and vaccination
under suboptimal immune protection: epidemiological perspectives. J. Theor.
Biol.  228, 539–549.

Hardelid, P., Andrews, N.J., Hoschler, K., Stanford, E., Baguelin, M.,  Waight, P.A.,
ZAMBON, M.,  Miller, E., 2010. Assessment of baseline age-specific antibody
prevalence and incidence of infection to novel influenza A/H1N1 2009. Health
Technol. Assess. 14, 115–192.

Hens, N., Ayele, G., Goeyvaerts, N., Aerts, M.,  Mossong, J., Edmunds, J.W., Beutels, P.,
2009. Estimating the impact of school closure on social mixing behaviour and
the  transmission of close contact infections in eight European countries. BMC
Infect. Dis. 9, 187.

Hung, I.F.N., To, K.K.W., Lee, C.K., Lin, C.K., Chan, J.F.W., Tse, H., Cheng, V.C.C., Chen,
H.,  Ho, P.L., Tse, C.W.S., Ng, T.K., Que, T.L., Chan, K.H., Yuen, K.Y., 2010. Effect of
clinical and virological parameters on the level of neutralizing antibody against
pandemic influenza A virus H1N1 2009. Clin. Infect. Dis. 51, 274–279.

Ionides, E.L., Bretó, C., King, A.A., 2006. Inference for nonlinear dynamical systems.
Proc. Natl. Acad. Sci. U.S.A. 103, 18438–18443.

Kim, T.S., Ho, K.M., Yim, K.R., Oh, W.S., Chon, S.B., Ryu, S.W., Yie, K., Lee, S.J.,
2010. Three reinfection cases of the pandemic influenza (H1N1 2009). Infect.
Chemother. 42, 257.

Kurtz, T.G., 1971. Limit theorems for sequences of jump Markov processes approxi-
mating ordinary differential processes. J. Appl. Probabil., 344–356.

Lessler, J., Cummings, D.A.T., Fishman, S., Vora, A., Burke, D.S., 2007. Transmissibility
of  swine flu at Fort Dix, 1976. J. R. Soc. Interface 4, 755–762.

Mantle, J., Tyrrell, D.A., 1973. An epidemic of influenza on Tristan da Cunha. J. Hyg.
71,  89–95.

McGill, J., Heusel, J.W., Legge, K.L., 2009. Innate immune control and regulation of
influenza virus infections. J. Leukoc. Biol. 86, 803–812.

Medical Department of the Local Government Board, 1919. Report of the Medi-
cal  Department of the Local Government board for 1918–19. Technical Report,
London.

Miller, E., Hoschler, K., Hardelid, P., Stanford, E., Andrews, N., Zambon, M.,  2010.
Incidence of 2009 pandemic influenza A H1N1 infection in England: a cross-
sectional serological study. Lancet 375, 1100–1108.

Ministry of Health, 1920. Reports on Public Health and Medical Subjects. Technical
Report 4, London.

Mossong, J., Hens, N., Jit, M.,  Beutels, P., Auranen, K., Mikolajczyk, R., Massari, M.,
Salmaso, S., Tomba, G.S., Wallinga, J., Heijne, J., Sadkowska-Todys, M.,  Rosinska,
M.,  Edmunds, W.J., 2008. Social contacts and mixing patterns relevant to the
spread of infectious diseases. PLoS Med. 5, e74.

Perez, C.M., Ferres, M.,  Labarca, J.A., 2010. Pandemic (H1N1) 2009 reinfection, Chile.
Emerging Infect. Dis. 16, 156–157.

Shaman, J., Goldstein, E., Lipsitch, M.,  2010. Absolute humidity and pandemic versus
epidemic influenza. Am.  J. Epidemiol. 173, 127–135.

Shaman, J., Kohn, M.,  2009. Absolute humidity modulates influenza survival, trans-
mission, and seasonality. Proc. Natl. Acad. Sci. U.S.A. 106, 3243–3248.

Tamura, S.i., Kurata, T., 2004. Defense mechanisms against influenza virus infection
in the respiratory tract mucosa. Jpn. J. Infect. Dis. 57, 236–247.

Taubenberger, J.K., Morens, D.M., 2006. 1918 Influenza: the mother of all pandemics.
Emerging Infect. Dis. 12, 15–22.

Trakulsrichai, S., Watcharananan, S.P., Chantratita, W.,  2012. Influenza A (H1N1)

2009 reinfection in Thailand. J. Infect. Public Health 5, 211–214.

Wearing, H.J., Rohani, P., Keeling, M.J., 2005. Appropriate models for the manage-
ment of infectious diseases. PLoS Med. 2, e174.

Woodland, D.L., 2003. Cell-mediated immunity to respiratory virus infections. Curr.
Opin. Immunol. 15, 430–435.

http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0005
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0005
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0005
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0005
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0005
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0005
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0005
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0005
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0005
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0005
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0010
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0010
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0010
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0010
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0010
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0010
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0010
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0010
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0010
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0010
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0010
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0010
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0010
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0010
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0010
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0010
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0010
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0015
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0020
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0025
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0030
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0030
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0030
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0030
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0030
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0030
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0030
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0030
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0030
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0030
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0030
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0030
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0030
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0035
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0040
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0045
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0050
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0055
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0060
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0065
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0070
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0075
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0075
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0075
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0075
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0075
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0075
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0075
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0075
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0075
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0075
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0075
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0075
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0080
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0080
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0080
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0080
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0080
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0080
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0080
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0080
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0080
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0080
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0080
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0080
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0080
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0080
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0085
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0085
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0085
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0085
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0085
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0085
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0085
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0085
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0085
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0085
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0085
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0085
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0085
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0085
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0085
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0085
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0090
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0095
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0095
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0095
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0095
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0095
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0100
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0100
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0100
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0100
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0100
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0100
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0100
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0100
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0100
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0100
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0100
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0100
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0100
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0100
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0105
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0105
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0105
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0105
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0105
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0105
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0105
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0105
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0105
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0105
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0105
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0105
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0105
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0105
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0105
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0105
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0105
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0110
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0115
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0120
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0125
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0125
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0125
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0125
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0125
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0125
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0125
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0125
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0125
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0125
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0125
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0125
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0125
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0125
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0130
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0130
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0130
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0130
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0130
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0130
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0130
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0130
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0130
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0130
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0130
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0130
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0130
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0135
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0140
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0140
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0140
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0140
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0140
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0140
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0140
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0140
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0140
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0140
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0140
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0140
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0140
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0140
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0140
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0140
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0145
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0145
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0145
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0145
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0145
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0145
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0145
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0145
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0145
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0145
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0145
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0145
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0145
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0145
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0150
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0150
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0150
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0150
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0150
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0150
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0150
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0150
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0150
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0150
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0150
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0150
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0150
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0150
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0150
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0150
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0155
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0155
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0155
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0155
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0155
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0155
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0155
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0155
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0155
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0155
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0155
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0155
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0155
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0155
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0155
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0155
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0155
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0155
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0160
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0165
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0165
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0165
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0165
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0165
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0165
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0165
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0165
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0165
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0165
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0165
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0170
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0170
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0170
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0170
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0170
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0170
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0170
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0170
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0170
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0170
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0170
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0170
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0170
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0170
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0170
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0170
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0175
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0175
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0175
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0175
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0175
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0175
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0175
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0175
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0175
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0175
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0175
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0175
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0180
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0180
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0180
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0180
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0180
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0180
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0180
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0180
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0180
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0180
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0180
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0180
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0180
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0180
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0185
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0185
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0185
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0185
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0185
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0185
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0185
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0185
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0185
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0185
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0185
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0185
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0185
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0185
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0185
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0185
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0185
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0185
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0190
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0195
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0195
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0195
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0195
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0195
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0195
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0195
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0195
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0195
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0195
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0195
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0195
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0195
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0195
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0200
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0200
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0200
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0200
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0200
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0200
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0200
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0200
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0200
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0200
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0200
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0200
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0200
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0200
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0200
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0205
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0205
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0205
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0205
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0205
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0205
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0205
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0205
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0205
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0205
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0205
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0205
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0205
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0210
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0210
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0210
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0210
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0210
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0210
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0210
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0210
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0210
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0210
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0210
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0210
http://refhub.elsevier.com/S1755-4365(13)00042-X/sbref0210

	Does homologous reinfection drive multiple-wave influenza outbreaks? Accounting for immunodynamics in epidemiological models
	Introduction
	Materials and methods
	The primary immune response to influenza infection in humans
	Mechanistic modelling
	Data
	Simulation
	Parameter inference via maximum likelihood
	Quantities of epidemiological interest
	Exploration

	Results
	Parameter inference
	Immunodynamics
	Model fit
	Interplay between the immunological and epidemiological dynamics
	Three typical epidemic profiles
	The HR threshold
	Implications for the first post-pandemic season


	Discussion
	Immunodynamics model
	Does HR drive multiple-wave influenza outbreaks?
	The necessity to account for immunodynamics and host heterogeneity in epidemiological models

	Acknowledgments
	Appendix A Supplementary data
	Appendix A Supplementary data


