A Hierarchical Metapopulation Model for Disease Dynamics Built on Population Movements of Both Patch-Coupling and Migration

Xiaosi Wang¹² and Calvin Dytham²

¹ Department of Health Sciences, University of York, York YO10 5DD, United Kingdom
² Department of Biology, University of York, York YO10 5DD, United Kingdom

Abstract. In the past, frequent movements and migration were studied separately in metapopulation models. The levels that exist in a hierarchical metapopulation model were also limited to two and only recently increased to multiple levels. Moreover, a generalisable deterministic model was not available. Here we introduce a novel model incorporating both movement scenarios as well as a multiple-level structure. We describe the system in simple differential equation form. The simulations of different distributions of local contact rates for disease transmission suggest that local information is important for predicting disease dynamics. The comparison between the results from a solely migration-based multilevel model and the model discussed in this paper suggests that diseases with low transmission rates can spread rapidly and infect a large number of susceptible individuals in a short time if they appear in a population where frequent movements are dominant.

Keywords: multilevel system, patch-based system, disease modelling, epidemic, mathematical epidemiology

1 **Introduction**

 $_{2}$ It is now clear that understanding and prediction of the progress of disease requires consideration of

the spatial arrangement of individuals and many recent computational models of disease spreading

 $_{4}$ place a strong emphasis on the role of the spatial heterogeneity of human populations [1–3]. It is

 $_{\scriptscriptstyle 5}$ $\,$ clear that the distribution of individuals within a population significantly affects the process of

⁶ pathogen dispersal, but the exact operating functions linking transmission and spatial pattern are

7 still unknown. However, even when using pathogen-related parameters that are invariant, e.g. a

⁸ model where pathogen infectivity and virulence are kept constant throughout the simulations, the

⁹ results generated by spatial models simulate the real epidemics very well [2, 4–6].

There are various ways to integrate spatial heterogeneity into models. One popular method is to build metapopulation models, where the population is divided into a network of smaller subpopulations on patches [2,7,8]. Individuals within each subpopulation are assumed to be well mixed. Metapopulation models allow explicit mathematical expressions and straightforward numerical solutions [9], and hence play an important role in mathematical epidemiology. Hierarchical metapopulation models are a special type of general metapopulation models [2,10]. They consider the hierarchy involved in human movements (i.e. that subpopulations have some non-random pattern of connections) [11, 12] and simulations from these models show that disease spreading is significantly influenced by multilevel movements [2,6]. New studies based on real human mobility data also provide evidence to support the argument that individual movements occur at different levels [11, 12].

Another thing to consider is that the ways individuals interact with each other. Interactions 2 between individuals involve both within-patch interactions and between-patch interactions. It is 22 assumed that the contacts between individuals on each patch are frequent and hence random mix-23 ing applies within the subpopulation. Between-patch interactions are of more interest and usually 24 modelled by two methods, depending on the frequency of movements. If the interaction between 25 two patches is dominated by frequent movements (e.g. people commuting to and from work), the 26 subpopulations are said to be interacting with each other in a way like particles randomly bumping 27 into each other. In other words, any infection occurring on one patch has the force of infection on 28 the susceptible individuals in the closely related patches [1,13,14]. The force of infection is defined 29 as the per capita rate that the infected individuals transmit the disease to susceptible individu-30 als [15]. Alternatively, if the movements between two patches mainly take the form of migration, 3 it means that individuals migrate to the host population with the disease status they get from the 32 home patch first and then take part in the disease transmission process in the host patch [1, 9]. 33 These two scenarios were studied separately in the past [1, 13]. In real populations, it is obvious 34 that both scenarios occur simultaneously. 35

Here we build a metapopulation model based on multilevel movements including both patch-36 coupling and migration. At the lowest level, where the population movements between the patches 37 are most frequent, the patches are coupled by the force of infection; while patches with less 38 frequent movements in between are linked by migration. In this paper, these two kinds of patch 39 relationships are referred to as close-related patches and not close-related patches. Moreover, it 40 does not necessarily mean that well-connected patches are geographically close, in contrast to 41 previous work [2]. Human mobility tends to be more complex than animal migration or plant 42 dispersal and is not necessarily related to geographic distances [16, 17]. 43

44 2 The model

The hierarchical system we set up to describe the metapopulation model consists of L levels of movements. The number of patches at the same level is denoted by a fixed branching ratio B

for simple indexing. Therefore the total number of patches is B^L , denoted by n. We assume that 47 the fewer the movements between two patches, the larger level difference (D) between them. The 48 level difference is the number of levels to reach the common ancestor node in the hierarchy. The 40 level difference between close-related patches, i.e. the first level when counting levels, is defined 50 as 0. One possible system is illustrated in Figure 1 as an example. Individuals are assumed to be 5: homogeneously mixed within each patch. All patches are assumed to have identical within-patch 52 population dynamics and environmental conditions [8]. Person-to-person contact, which leads to 53 disease transmission, takes place when individuals meet in one of the n patches. Patches interact 54 with each other through either coupling or migration. Initially the total population is distributed 55 evenly across all n patches and one infectious individual is introduced to the system. Individuals in 56 each patch are classified in terms of their infection status: susceptible, infected or recovered, within 57 which the numbers of individuals are denoted by S, I and R respectively. The susceptible class 58 includes all healthy people with no immunity to the disease, the infected class includes people 59 who have caught the disease. For simplicity, infected individuals are assumed to be infectious 60 immediately. R denotes the recovered group, with lifelong immunity [13, 15]. We model a non-6 fatal, communicable disease, such as the common cold or influenza virus, spreading much faster 62 than the natural demographic process. Therefore our basic framework is the simple SIR model 63 (Equation 1) [15, 18]:64

$$\frac{dS}{dt} = -\beta IS
\frac{dI}{dt} = \beta IS - \gamma I
\frac{dR}{dt} = \gamma I$$
(1)

where disease is transmitted through person-to-person contact which is modelled by the adequate 65 contact rate for disease transmission (β) and recovery rate (γ). This is the normalised form, 66 i.e. all the variables are proportions. It models the pure disease transmission process within a 6 homogeneously mixed population without considering other effects, such as demographic effects, 68 spatiotemporal effects and so forth. In our system, where the interactions between patches take 69 two different forms, we need to consider both effects. The force of infection for the simple SIR70 model is βI . To generalise it to the single patch in our model, we need to consider that the force of 71 infection on patch i is affected by the sum of the infection situations on the patches close-related 72 to it, i.e. $\sum_{i} \beta_{j,i} I_j$, where $j \in J$, J: the set of indices of the patches close-related to patch i. In this 73 model, we allow the adequate contact rate to vary between close-related patches [13] and therefore 74

⁷⁵ we can examine the effects of different contacting rules on disease dynamics. The range of values ⁷⁶ of β is consistent with that for influenza [15].

The other process that changes the number of infected individuals in patch is migration. Both 77 emigration and immigration are assumed to operate between two patches which are not close-78 related. The per capita migration rates of infected, susceptible and recovered groups in the whole 79 system are denoted by θ , ϕ and ξ respectively. The immigration rate of susceptible individuals 80 from another patch to patch i is calculated by a function $\theta_{ki} = \theta C e^{-CD}$, where $k \in K, K$: the set 8 of indices of the patches linked to patch i by migration. The subscript ki indicates immigration 82 and ik emigration. Ce^{-CD} is a normalised general exponential function. It is the simplest form 83 for representing the mechanism that the migration rate decays as the level difference between 84 two patches increases. C is a constant, which scales the function and D is the level difference 8 (described above). Similarly, $\phi_{ki} = \phi C e^{-CD}$ and $\xi_{ki} = \xi C e^{-CD}$ describe the rates of movement for 86 infected and recovered individuals respectively. Finally, all the immigrants from different patches 8 are summed and all the emigrants to different patches are subtracted for each disease group to get 88 the total proportion of immigrants and emigrants. 89

As we described above, because all the patches are homogeneous in population distributions, disease spreading behaviours and patterns of between-patch movements, we are able to express the population dynamics on an arbitrary patch i into a differential equation form (Equation 2):

$$\frac{dS_i}{dt} = -\left(\sum_j \beta_{ji} I_i\right) S_i + \sum_k \theta_{ki} S_k - \sum_k \theta_{ik} S_i$$

$$\frac{dI_i}{dt} = \left(\sum_j \beta_{ji} I_i\right) S_i - \gamma I_i + \sum_k \phi_{ki} I_k - \sum_k \phi_{ik} I_i$$

$$\frac{dR_i}{dt} = \gamma I_i + \sum_k \xi_{ki} R_k - \sum_k \xi_{ik} R_i$$
(2)

All migration parameters have very small values in this paper and therefore have little effect on the variability of local population dynamics during the simulation. All simulations are run until equilibrium is reached. Here we use two systems with the same number of patches in total: 1) branching ratio of four (B = 4) and level of three (L = 3); 2) branching ratio of two (B = 2) and level of six (L = 6).

98 **3** Results

⁹⁹ Figure 2 shows the time series of proportion of infected individuals for β being uniformly dis-¹⁰⁰ tributed and normally distributed. More fluctuations and different sizes and durations of the in-¹⁰¹ fection changes are observed with the uniform distribution. It shows smaller but longer epidemics ¹⁰² in the uniform distribution based model than those when β is drawn from a truncated normal ¹⁰³ distribution.

In previous work using hierarchical metapopulation models, contacts between patches are based solely on migration behaviours [2, 6] and comparison results with and without patch-coupling is shown in Figure 3. It clearly shows that patch-coupling accelerates the spread of the disease through the system and leads to more cases, even with a smaller contact rate for disease transmission.

108 4 Discussion

Combining close-related patches and migration-related patches, we obtain behaviours not observed 109 in previous studies [2,6]. A uniform distribution of β means that we have little prior knowledge of 110 the adequate contact rates on patches, so the random chosen value has equal opportunities to stay 111 at any point within the lower and upper bounds. We have 64 uniformly distributed random num-112 bers and we expect strong stochasticity. The results illustrated in Figure 2 confirm this. On the 113 other hand, 64 normally distributed random numbers tend to surround the mean. Consequently 114 we observe some randomness but still see the three-level pattern. In conclusion, estimating the 115 adequate contact rates in real life is an important step towards choosing right models for predic-116 tions. 117

It was shown by previous studies that patch-coupling is a quick way for the disease dynamics on each patch to synchronise [13, 14], but observing the effects in a multilevel metapopulation model was not realised. We obtained a larger epidemic with even smaller contact rates for transmission in a model including patch-coupling. Therefore it demonstrates that epidemics are likely to be much worse in a large population where movements are frequent between sub-populations. We suggest that health authorities cannot ignore an infectious disease with low transmission rate that occurs in a large population where people have more frequent short-trips between sub-populations.

We promote a model based on both frequent movements and long-lived travels and it shows that differentiated contact rates make the disease dynamics more complicated but still tractable. Since local information of contact rates are not usually collected [14], we expect that investigations

Fig. 1. One example of the multilevel system (B = 2, L = 4). The small ellipses represent the patches, the black nodes illustrate the different levels and the dashed ellipse represent one example of close-related patches. *SIR* means that the simple Susceptible-Infected-Recovered process applies within each patch. It also shows an example of calculating the value of D, the level difference between any two patches (see method for description). D = 3 for patch 2 and patch 9 (anticlockwise numbering) according to the levels they belong to (i.e. you have to move up three levels before these two patches share a common node).

Fig. 2. The effects of two different distributions of β on disease spreading. B = 4, L = 3. (Top): two simulations based on a uniform distribution of β ($0.0 < \beta < 0.6$); (Bottom): two simulations based on a truncated normal distribution of β (mean = 0.3, standard deviation = 0.1, $0.0 < \beta < 0.6$). It shows that we get smaller but longer epidemic from the uniform distribution based model then those from the normal distribution. Moreover, the results from the uniform distribution are more stochastic.

Fig. 3. Comparison between migration-based model and patch-coupling-migration-based model for two systems: B = 4, L = 3 (Left); B = 2, L = 6 (Right). For migration-based simulations (dashed line), $\beta = 0.3$ is used; whereas $0.1 < \beta_{ki} < 0.3$ is applied for patch-coupling-migrationbased simulations (solid line), which means the adequate contact rate on average is smaller than three. It shows that even with a smaller contact rate, the size of epidemic is not reduced for patch-coupling-migration-based model. It also shows that the synchronisation of the system is more rapid in the patch-coupling-migration-based model.

- on such data will be helpful both for validating the model and for facilitating better prediction of
 the spread of diseases through human populations.

130 5 Acknowledgements

- ¹³¹ We thank Graham R. Law and Kate E. Pickett for persistent support, Alun L. Lloyd, Roby
- ¹³² Muhamad and Duncan J. Watts for answering questions. XW is funded by a studentship from the
- ¹³³ Department of Health Sciences at the University of York.

134 References

- Lloyd, A.L., Jansen, V.A.A.: Spatiotemporal dynamics of epidemics: synchrony in metapopulation
 models. Math Biosci 188 (2004) 1–16
- 2. Watts, D.J., Muhamad, R., Medina, D.C., Dodds, P.S.: Multiscale, resurgent epidemics in a hierar-
- chical metapopulation model. Proc Natl Acad Sci U S A **102**(32) (Aug 2005) 11157–11162
- ¹³⁹ 3. Volz, E., Meyers, L.A.: Susceptible-infected-recovered epidemics in dynamic contact networks. Proc
- ¹⁴⁰ Biol Sci **274**(1628) (Dec 2007) 2925–2933
- 4. Gandon, S., Mackinnon, M., Nee, S., Read, A.: Imperfect vaccination: some epidemiological and
- evolutionary consequences. Proc Biol Sci **270**(1520) (Jun 2003) 1129–1136

- 5. Boots, M., Mealor, M.: Local interactions select for lower pathogen infectivity. Science **315**(5816)
 (Mar 2007) 1284–1286
- 6. Wang, X., Dytham, C., Law, G.R.: The effects of multilevel metapopulation structure and migration
 kernels on disease spread. under review (August 2008)
- 7. Levins, R.: Some demographic and genetic consequences of environmental heterogeneity for biological
 control. Bull. Entomolog. Soc. America 15 (1969) 237–240
- 8. Hess, G.: Disease in metapopulation models: Implications for conservation. Ecology 77(5) (1996)
 1617–1632
- Jansen, V.A., Lloyd, A.L.: Local stability analysis of spatially homogeneous solutions of multi-patch
 systems. J Math Biol 41(3) (Sep 2000) 232–252
- 10. Hufnagel, L., Brockmann, D., Geisel, T.: Forecast and control of epidemics in a globalized world. Proc
 Natl Acad Sci U S A 101(42) (Oct 2004) 15124–15129
- Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439(7075) (Jan 2006) 462–465
- 157 12. González, M.C., Hidalgo, C.A., Barabási, A.: Understanding individual human mobility patterns.
 158 Nature 453(7196) (Jun 2008) 779–782
- 13. Lloyd, A.L., May, R.M.: Spatial heterogeneity in epidemic models. J Theor Biol 179(1) (Mar 1996)
 1-11
- 14. Keeling, M.J., Rohani, P.: Estimating spatial coupling in epidemiological systems: a mechanistic
 approach. Ecology Letters 5 (2002) 20–29
- 15. Anderson, R.M., May, R.M.: Infectious diseases of humans : dynamics and control. Oxford University
 Press (1991)
- 16. Brown, D.H., Bolker, B.M.: The effects of disease dispersal and host clustering on the epidemic
 threshold in plants. Bull Math Biol 66(2) (Mar 2004) 341–371
- 167 17. Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: The role of the airline transportation network
- in the prediction and predictability of global epidemics. Proc Natl Acad Sci U S A 103(7) (Feb 2006)
 2015–2020
- 170 18. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc.
- 171 Royal Soc. London **115**(1-2) (1927) 700–721