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Abstract. Most mathematical models for acquired immunity to Plasmodium falciparum consider effects of immunity
on duration of infection and infectiousness, but do not consider the most evident effect of immunity, which is to reduce
parasite densities. Few attempts have been made to fit such models to field data. We propose a stochastic simulation
model to predict the distributions of P. falciparum parasite densities in endemic areas, in which acquired immunity acts
by reducing parasite densities. We have fitted this model to age-specific prevalence and geometric mean densities from
settings in Ghana, Nigeria, and Tanzania. The model appears to reproduce reasonably well the parasitologic patterns
seen in malariologic surveys in endemic areas and is appropriate for predicting the impact of interventions such as
vaccination in the context of continual exposure to P. falciparum.

INTRODUCTION

In areas endemic for Plasmodium falciparum malaria,
many people are subjected to frequent re-infection; thus, they
develop partial immunity that leads to control of parasite
densities and to reduction in the frequency of clinical epi-
sodes.1 However, the level of acquired immunity does not
reach a state of absolute resistance to infection. Mathematical
models that capture these effects of immunity are needed to
predict the potential epidemiologic impact of partially effec-
tive interventions against the parasite, such as current formu-
lations of malaria vaccines.2

Within-host models for individual P. falciparum infections
have considered how partial immunity affects parasite densi-
ties as an explicit consequence of differential survival of the
circulating asexual parasites as the infection develops.3,4

However, models for the dynamics of P. falciparum in popu-
lations, including those modeling acquired immunity,5–7 have
generally not considered the densities of asexual parasites.
We are aware of only one population model for P. falciparum
malaria that explicitly considered the effects of immunity on
parasite densities.8 The lack of models of parasite density is
surprising because effects on densities are the clearest evi-
dence for an effect of naturally acquired immunity. The ex-
istence of such natural immunity represents some of the
strongest evidence that development of an efficacious malaria
vaccine is possible.

One of the major effects of immunity in most epidemiologic
models of malaria6,7,9 is to reduce the duration of infections
and consequently the number of infections of the vector re-
sulting from one human infection. This quantity, following the
report of Macdonald,10 is generally assumed to be propor-
tional to infection duration, which leads to a formula that
makes the basic reproductive number proportional to the in-
fection duration. However, there is little empirical evidence
on the effect of acquired immunity on duration of infection.11

Some models12 and empirical studies13,14 have even suggested
that in the semi-immune host, chronic malaria infection may
persist longer than in naive hosts.

We now propose a new model for natural immunity to the

asexual blood stages of P. falciparum that specifically focuses
on the effect on parasite densities, since it is undoubtedly the
case that the major impact of acquired immunity is to reduce
the overall parasite load in infected individuals. This model
makes predictions of the age patterns of patent parasitemia
and of the geometric mean parasite density. Infections in na-
ive hosts mimic the levels of parasitemia reached by P. falci-
parum infections induced to treat neurosyphilis in the United
States (Milledgeville Hospital, Milledgeville, GA and Na-
tional Institutes of Health Laboratories, Columbia, SC from
1940 to 1963, Figure 1).15 In previously exposed hosts, we
model a reduction in the densities that depends on the host’s
history of infection. This simulated acquired immunity does
not affect the duration of the infections although it can reduce
the period for which parasite density is above the detection
limits used in field malariology.

We implement the model by stochastic simulation of each
individual infection in a human population using a five-day
time-step, and introduce infections by a process dependent on
the temporal pattern of the entomologic inoculation rate
(EIR) modulated as described.16
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FIGURE 1. Parasite density as a function of time since infection in
malaria-naive individuals. Geometric mean parasite density as a func-
tion of time since start of patency and depending on the duration of
patent infection. The figure shows examples from five individual pa-
tients.
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Here, we present how the model has been fitted to preva-
lence, density, and multiplicity data of P. falciparum obtained
from different epidemiologic settings in Ghana, Nigeria, and
Tanzania, and show that it gives realistic predictions of age-
prevalence and age-density relationships across a range of
transmission intensities. This model forms one component of
a comprehensive dynamic model for the transmission cycle of
the P. falciparum parasite, and of malaria morbidity, and mor-
tality, as well as of cost-effectiveness of control strategies.

METHODS

Epidemiologic data. The model was fitted simultaneously
to six datasets of pre-intervention cross-sectional malariologic
surveys from four different field studies of P. falciparum ma-
laria in Africa (Tables 1 and 2) that were chosen to represent
a range of transmission intensities. In addition, datasets from
Saradidi, Kenya and from interventions carried out in Matsari
village (Garki project), Nigeria were used to fit the model for
the incidence of infection, as described in the accompanying
paper.16 Data from the pre-intervention phase of the Garki
project collected in Rafin Marke, Matsari, and Sugungum vil-
lages, and from Navrongo, Idete, and Namawala were used to
fit the model for three distinct cross-sectional outcomes in the
absence of intervention: 1) age-specific prevalence of patent

parasitemia, 2) age-specific geometric mean density of para-
sitemia in positive individuals, and 3) age-specific multiplicity
measured by polymerase chain reaction–restriction fragment
length polymorphisms (PCR-RFLP) of the merozoite surface
protein 216 gene (data from Navrongo only).

In all of these field studies, entomologic surveys had been
carried out to determine the annual cycle of the inoculation
rate (Figure 2 and Table 1) and these entomologic data were
used as input to the simulation model. In all sites except Idete,
the health system at the time of the surveys treated only a
small proportion of the clinical malaria episodes; in the Idete
study, we calculate from the published results17,18 that the
village dispensary treated approximately 64% of clinical ma-
laria attacks and our simulations assume this coverage of ef-
fective treatment. Parasite densities in the Garki dataset were
recorded by scanning a predetermined number of microscope
fields on the thick blood film and recording how many had
one or more asexual parasites visible. We converted these
values to numbers of parasites/microliter by assuming a Pois-
son distribution for the number of parasites per field and a
blood volume of 0.5 mm3 per 200 fields.9 In the other field
studies, parasites were counted against leukocytes and con-
verted to nominal parasites/microliter assuming the usual
(though biased) standard of 8,000 leukocytes/microliter.19

The biases in density estimates resulting from these different

TABLE 1
Datasets included in the fitting of the model to field data*

Site/reference Description of the data Purpose of inclusion EIR Quantities fitted

Rafin-Marke, Garki, Nigeria
(pre-intervention phase)‡9

8 cross-sectional surveys of entire
village population, at 10-week
intervals (total 2,593 blood slides)

Age-prevalence and density at
lowest EIR in the Garki
project

9 Age- and season-specific
parasite prevalence,† age-
specific parasite density†

Matsari, Garki, Nigeria
(pre-intervention phase)‡9

8 cross-sectional surveys of entire
village population, at 10-week
intervals (total 2,963 slides)

Age-prevalence and density at
circa the median EIR for the
Garki project

9 Age- and season-specific
parasite prevalence,† age-
specific parasite density†

Sugungum, Garki, Nigeria
(pre-intervention phase)‡9

8 cross-sectional surveys of entire
village population, at 10-week
intervals (total 4,487 blood slides)

Age-prevalence and density at
highest EIR in the Garki
project

9 Age- and season-specific
parasite prevalence,† age-
specific parasite density†

Saradidi, Kenya25 21 cohorts each of approximately
50 children between 6 months
and 6 years of age whose para-
sites were cleared and who were
then followed-up with 2 weekly
surveys.

Incidence of infection in relation
to EIR

21 Incidence risk of infection
over 2-week periods

Matsari, Garki, Nigeria
(intervention phase)9

8 cross-sectional surveys of entire
village population, at 10-week
intervals. Mass treatment with
sulfamine-pyrimethamine 10-
weeks prior to each survey (total
2,663 blood slides)

Incidence of infection allowing
for patency of infections

9 Age- and season-specific
incidence risk of patent
infection†

Namawala, Tanzania24 12 cross-sectional surveys of an age-
stratified sample, at 2-month
intervals (total 3,901 blood slides)

Age-prevalence and density at
very high EIR

24 Age- and season-specific
parasite prevalence,† age-
specific parasite density†

Idete, Tanzania17,45 Surveillance of a rolling cohort of
infants (1,382 blood slides over
16 months). Also 1 cross-sec-
tional survey of 312 children 1–5
years old§

Effects of maternal immunity 23 Age- and season-specific
parasite prevalence,† age-
specific parasite density†

Navrongo, Ghana31 6 cross-sectional surveys of an age-
stratified sample, at 2-month
intervals (total 522 slides/DNA
samples)

Age-multiplicity and seasonality
of multiplicity

¶ Age-specific parasite preva-
lence and density,* age-
specific multiplicity of msp-2,
by PCR-RFLP

* EIR � entomologic inoculation rate (inoculations per person per year, estimated for adults as described in the cited references); msp-2 � merozoite surface protein 2; PCR-RFLP �
polymerase chain reaction–restriction fragment length polymorphism.

† By microscopy. The simulations assumed limits of detection of parasites by microscopy to be 2 parasites/�L of blood for the Garki study, and 40 parasite/�L of blood for the other sites,
corresponding to the nominal limits of methods for quantifying parasitemia used in the sites.

‡ These surveys were carried out prior to the introduction of residual insecticide spraying and of mass anti-malarial treatment in some of the villages.
§ Placebo group from the trial of Alonso and others.45

¶ Owusu-Agyei and others, (unpublished data).
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techniques was accounted for by multiplying the observed
parasite densities with constant values estimated for Garki
(�0) and non-Garki (�1) field studies to rescale them to the
values in the malariatherapy patients (determined using the
methods of Earle and Perez20).

Hypothesized set of processes controlling asexual parasit-
emia. For every individual in the simulated population each
discrete infection is characterized by simulated duration and
densities at each five-day time point. The host acquires im-
munity as a function of exposure and this in turn modifies the
density of subsequent infections.

Durations of infection. We treat each infection as mono-
clonal, but note that the infection process allows multiple
infections during the same time interval. Each new infection
j, initiated in individual i at time t0, is assigned a duration, i.e.,
tmax(i,j). The duration is defined as the time interval between
the first and last days of patent parasitemia that would be
observed in the absence of adjustments to allow for host im-
munity. The present model does not allow the immune status
of the host to affect the simulated period for which the infec-
tion persists, although the immune status does affect the du-
ration of patent infection by modifying the proportion of time
points for which the parasites are at detectable densities.

The simulated infection starts after the pre-erythrocytic la-
tent period lp, set to three time intervals, i.e., 15 days that
correspond to the hepatic stage of the life cycle plus the pre-
patent blood stage infection. We use the index � to denote the
time since the start of patent infection, i.e., � � 1 corresponds
to the first five-day interval when the infection becomes pat-
ent, three time units after the infection event.

The duration of infection is randomly sampled from a dis-
tribution equivalent to that of malariatherapy patients treated
in Milledgeville, Georgia.15 Infections in patients from this
hospital persisted for longer than those in South Carolina,
and this appears to reflect more conservative policies (more
treatment) in the latter hospital. We therefore assume that
the Georgia infections were more similar to untreated natural
infections in a typical malaria-endemic setting of Africa. The
period of follow-up after the last positive slide also varied.
Thus, confidence that an infection was spontaneously cleared
also varied. We considered only patients who did not receive
any anti-malarial treatment on their last day of positivity, and
for each of these determined t1 (i), the duration of follow-up
after the last recorded day of positivity. For a series of cutoffs,

t1*, we considered that subset of patients for whom t1 (i)> t1*,
and calculated the mean of the logarithm of the observed
durations for those patients who were included. We surmise
that the subset giving the highest value of this mean best
approximates the behavior of untreated natural infections.
The maximum value of this mean was 5.13 (corresponding to
a geometric mean of 169.0 days), which was computed from a
subset comprising those 47 patients for whom t1 (i) > 2
months. In this set of patients, the standard deviation of the
natural log of the duration was 0.80, and the distribution of
durations in this subset of patients was approximately log
normal. In the simulations we therefore sampled the dura-
tions of untreated infections using

ln��max�i, j�� ∼ Normal�5.13, 0.80� (1)

Expected densities of single infections. At each time point,
� � 0,1, . . . �max(i,j), the density, y(i,j,�), of the infection j in
host i, is set by first determining the expected log density,
E(ln(y0(i,j,�))), that would apply in the absence of previous
exposure. To determine E(ln(y0(i,j,�))), we first determine
the mean logarithm of the densities of malariatherapy pa-
tients in the Georgia hospital specific for the age of the in-
fection (�) and for the pre-defined duration (tmax). The dis-
tributions of densities for the Georgia patients were summa-
rized by grouping the data into five-day categories according
to the time since the first day of patent asexual parasitemia
and according to durations, and then using moving average
smoothing of the logarithmically transformed densities to ob-
tain a function, yG(�,tmax) (Figure 1), which is a simple de-
scription of average densities experienced in the course of a
single malaria infection of a previously naive host.

The actual densities experienced by different malaria
therapy patients varied widely even when the inocula were of
the same strain, and were not greatly affected by the size of
the inoculum.21 In our model this between-host variation is
captured by assigning to each individual i in the simulated
population a value, (d(i)), drawn from a log-normal distribu-
tion (geometric mean 1, variance �i

2), which multiplies the
densities so that

E�ln�y0�i, j, ���� = lnd�i� + ln�yG��, tmax�� (2)

This empirically determined function provides a descrip-
tion of single infections that thus captures the effects of blood

TABLE 2
Overall data summary and log likelihoods for each site*

Data summary Loss functions for best fitting model

Annual
EIR

%
Prevalence†

Geometric
mean density

(parasites/�L)‡
Log likelihood
for prevalence

Log likelihood
for geometric
mean density

Log likelihood
for multiplicity

Sugungum 132 48.3 22.4 −2,830.4 −116.6 –
Rafin Marke 18 44.2 17.8 −1,722.4 −131.2 –
Matsari (pre-intervention phase) 68 41.6 18.4 −1,895.9 −122.8 –
Matsari (intervention phase) 5.5§ 8.5 – −782.4 – –
Idete¶ 584 59.6 3,146.8 −1,124.3 −132.7
Navrongo 405 54.8 336.1 −341.7 −116.1 −276.8
Namawala 329 77.3 1,111.3 −2,007.7 −92.1 –

* EIR � entomologic inoculation rate.
† Overall proportion of slides positive for Plasmodium falciparum.
‡ Geometric mean of recorded parasite densities on positive slides. The substantial difference between the Garki study and other datasets partly reflects different parasitologic methods and

is allowed for by the bias adjustment in the models.
§ Arithmetic mean of estimated daily inoculation rate for the whole intervention period based on re-analysis of the original data.
¶ Average parasite densities in Idete are much higher because this dataset comprises predominantly data for very young children. In all cases the models were fitted to the age group– and

survey-specific data, not to the overall means. The data from Saradidi and the fit to those data are described in an accompanying paper.16
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stage immunity that the infection stimulates against itself.
This includes effects of innate immunity, antigenic variation,
and variant independent anti-merozoite immunity.3

Adjustments are then applied to E(ln(y0(i,j,�))) to allow for
immunity acquired as a result of exposure to previous infec-
tions and for co-infection in hosts with multiple infections.
These determine the adjusted expected value, E(ln(y(i,j,�))).
The simulated density y(i,j,�) is then determined by sampling
its logarithm using normal distributions centered on
E(ln(y(i,j,�))).

Effects of acquired immunity on the expected parasite den-
sity. Acquired immunity to erythrocytic stages of the parasite
is related to cumulative exposure to asexual parasites. In our
model the extent of acquired immunity depends both on the
diversity of the parasites to which the host has been exposed
and on the cumulative density of total parasitemia. In the
current version we assume no decay of this component of
natural immunity in the absence of infections.

The first trigger function is the cumulative density (para-
sites/microliter of blood × days) of asexual parasitemia since
birth up to time t for individual i, i.e.,

Xy�i, j, t� = �
t−a

t
Y�i, �� d� − �

t0,j

t
y�i, j, �� d� (3)

where Y(i,�) is the total parasite density of individual i at time
�, and a is the age at time t. Xy(i,j,t) measures the total anti-
genic stimulus to which the host has been exposed less the
exposure due to infection j, which is measured by the term
∫tt0,j

y(i, j, �) d�. The latter term must be subtracted to avoid
allowing twice for acquired immunity stimulated by infection
j itself.

We parameterize the effect (Dy) of this exposure on para-
site densities with a Hill function of the form

Dy =
1

1 +
Xy

X*y

(4)

where we omit the indices from Xy(i,j,t) to simplify the nota-
tion, and where X*y is a parameter to be estimated, which
takes a real positive value, and where Dy consequently takes
a value 1 when Xy � 0, and is small but positive when Xy is
large.

The second trigger function is the cumulative number of
prior infections that the host has experienced, i.e.,

Xh�i, t� = �
t−a

t
h�i, �� d� − 1 (5)

This term monotonically increases with the size of the rep-
ertoire of non-variant polymorphic antigens to which the host
has been exposed, and therefore provides a measure of the
antigenic stimulus that they provide. We assume that the ef-
fect of this on parasite densities can be measured by a further,
one-parameter sigmoidal function where the further param-
eter X*h is constrained to take a positive value, i.e.,

Dh =
1

1 +
Xh

X*h

. (6)

The third trigger function is the age of the host a, which is
inversely related to the extent of maternally derived protec-
tion. We treat the level of maternal protection as independent
of maternal exposure. In case of a low transmission level, few
infants will be exposed during the first few months of life, so
maternal immunity is irrelevant. If transmission is frequent,
then all mothers will have similar immune status.22

We parameterize the multiplication factor that models the
effect of maternal immunity Dm with a decay function that
lies between 0 (maximal effect, corresponding to the status at
birth), and 1 (no reduction in density), such that

Dm = 1 − �m exp�−
0.693a

a*m
� (7)

where a*m, the half-life of the maternal immunity, and �m, the

FIGURE 2. Entomologic input data Annual cycle of the entomologic inoculation rate. a, West African sites. b, East African sites.
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maternal protection at birth, are additional parameters to be
estimated. We then compute the expected density for single
infections as

E�ln�y�i, j, ���� = DyDhDm � ln�y0�i, j, ��� (8)

Effects of concurrent infections. When the host is infected
with more than one infection at the same time, innate immu-
nologic responses, together with other density-dependent
regulatory mechanisms, lead to a reduction in the overall den-
sity to below that expected if the infections did not interact.
We estimate this effect by assuming the density of each com-
ponent infection to be multiplied by a term constrained to
take a value between 1 (no interaction between co-infections)
and 1/M(t), where M (t) is the total multiplicity of concurrent
infections at time t. The value 1/M(t) corresponds to reduc-
tion of the total density to that expected if there was only a
single infection. To achieve this we define a further parameter
Dx, constrained to be between 0 and 1 and set

E�ln�y�i, j, ���� = DyDhDm � ln�y0�i, j, ��� + ln� Dx

M�t�
+ 1 − Dx�

(9)

Distributions of parasite densities and determination of ex-
pected prevalence. The predicted densities for each individual
in the simulated population, y(i,j,�), are sampled around the
expectations of their logarithms, using log-normal distribu-
tions. The variance of these log-normal distributions, which is
estimated from the field data during the fitting process, com-
prises both variation between hosts, and variation within in-
dividual hosts.

Variation between hosts is quantified by the term �i
2, while

variation within individual hosts is quantified by a term
�y

2(i, j, �), which includes an effect of the cumulative exposure
of the host, and is necessary to obtain a good fit. Thus,

�y
2�i, j, �� =

�0
2

1 +
Xh�i, t�

X*
v

(10)

where the parameters �2
0 and X*v need to be estimated.

It follows that the simulated densities are distributed as

ln�y�i,j,��� ∼ Normal�E�ln�y�i,j,����, �y
2�i,j,��� (11)

The total density at time t in host i is then the sum of the
densities of the various co-infections j.

Y�i,t� = �
j

y�i,j,��i,j�� (12)

Entomologic inoculation rate. The input to the model is the
annual cycle of the EIR. In the case of the Garki sites in
Nigeria, the EIR was assessed using human night bait collec-
tions and dissections of the salivary glands of the Anopheles
mosquitoes to give the sporozoite rate. A random effects lo-
gistic model was used to give season- and village-specific es-
timates of the sporozoite rate. The EIR values were then
rescaled so the annual totals corresponded to the published
values of 18, 68, and 132 for the villages of Rafin Marke,
Matsari, and Sugungum, respectively9.

In the cases of Idete (annual EIR � 584) and Namawala
(annual EIR � 329) in Tanzania and Navrongo in Ghana
(annual EIR � 418), the human biting rate was calculated

using light trap collections, with adjustment for the relative
numbers of mosquitoes caught by human landing and light
traps.23,24 The sporozoite rates were estimated by using an
enzyme-linked immunosorbent assay (ELISA) to test the
heads and thoraces of the captured anophelines for sporozo-
ites.

For each of the sites, which were assumed to be at equilib-
rium, an estimate of the daily inoculation rate was assigned to
each five-day period, based on re-analysis of the original data,
and averaging estimates for the same season, where data were
available from multiple years. Where the observed dry season
biting rate was too low for an estimate of the EIR to be made,
a value was assigned equal to 1% of the average rate for the
rest of the year. The inoculation rate estimates for Saradidi in
Kenya, based on human landing collections and sporozoite
ELISA techniques, were taken directly from the report by
Beier and others.25

Implementation and fitting of the model. Since the model
parameters are not identifiable from the data from single
transmission settings or from single outcome measures, esti-
mates were made by maximizing the joint likelihood for all of
the quantities listed in Table 1. Each likelihood evaluation
required a stochastic individual-based simulation of a human
population comprising 10,000 individuals for each of the 6
datasets (corresponding to the malariologic patterns in 6 dif-
ferent African villages). These simulations were implemented
in Fortran 95 using five-day time steps, with as input the EIR
for each five-day period. Each simulation began by simulating
the exposure of the population over a whole lifetime prior to
the period for which the data applied (to ensure the correct
values of the cumulative exposure variables at the start of the
monitoring period). For this warm-up period the same aver-
age annual cycle of the EIR (estimated from the available
entomologic data) was assumed to have recurred since the
birth of the oldest member of the simulated population. A
demographic model was used that ensured that the simulated
population remained stable with the same age-distribution
throughout (Appendix).

The actual surveys carried out in the six villages were simu-
lated, and predictions thus made for the distribution of para-
site densities in each age group at each survey. Simulated
prevalence was defined by comparing each predicted parasite
density with the limit of detection used in the actual field
study. By comparing observed and simulated geometric mean
densities we were able to optimize the parameters of our
model for immunologic control of parasite densities. The
comparison of the observed with simulated prevalence al-
lowed us at the same time to estimate the variances of the
parasite density distributions.

The likelihood was computed for each of the outcomes
listed in Table 1 separately for each age group and each sur-
vey. Binomial likelihoods were used for the prevalence of
patent parasitemia, and a normal likelihood for the mean log
parasite density among slides positive by microscopy. For the
Navrongo dataset Poisson likelihoods were calculated for the
total numbers of distinct parasite infections detected by poly-
merase chain reaction–restriction fragment length polymor-
phism in the sampled individuals in each age group, and at
each survey.

The overall loss function was computed as a weighted sum
of the negative log likelihoods for each of these components
across all age-groups, surveys, and sites (Tables 1 and 2).

MODEL FOR P. FALCIPARUM PARASITEMIA 23



Each age-specific prevalence or multiplicity assessment was
given unit weight, but we weighted the log likelihoods for
parasite densities by a factor of 10 (so that the prevalence and
density had roughly equal weight in the final loss function).
We also included in the fitting process simulation of the in-
fection process during the intervention phase in Matsari vil-
lage16 (model B). The log-likelihood for the prevalence data

from this simulation was also subtracted from the overall loss
function (Table 2). The goodness of fit of the model to the
data was assessed graphically.

Simulated annealing26,27 was used to identify the values of
the parameters that minimized the loss function (Table 3).
Approximate confidence intervals were obtained by estimat-
ing the Fisher information for the parameters. This was done

TABLE 3
Fitted values of the parameters*

Parameter Process quantified Units/dimension Equation Point estimate (95% CI)

Y*h Critical value of exposure to parasites for liver stage immunity Parasite-days/�L equation 916 �
X*y Effect of exposure on parasite density, critical value Parasite-days/(�L × 10−7) 3 3.5 (2.9, 4.2)
X*h Effect of exposure on number of infections, critical value Infections 5 97.3 (20.0, 474.5)
�m Maternal protection at birth Proportion 7 0.90 (0.88, 0.93)
a*m Decay of maternal protection Per year 7 2.53 (2.33, 2.75)
Dx Effects of concurrent co-infections on density Dimensionless 8 0
�2

i Variation between individuals in densities Dimensionless 2 10.2 (9.7, 10.7)
�2

0 Fixed variance component for densities ln(density) 10 0.66 (0.54, 0.79)
X*v Critical value of the exposure in the model of variance Infections 10 0.92 (0.82, 1.03)
v0 Bias adjustment for observed parasite densities in sites from Garki Dimensionless – 4.80 (4.28, 5.38)
v1 Bias adjustment for observed parasite densities in non-Garki sites Dimensionless – 0.18 (0.17, 0.19)

* CI � confidence interval.

FIGURE 3. Effects of acquired immunity on parasite density. a, Cumulative density of asexual parasitemia. Relationship between the cumu-
lative density of parasites experienced and the trigger Dy (equation 4). b, Cumulative number of infections. Relationship between the cumulative
number of infections and Dh (equation 6). c, Age of the host. Age-dependent decay of maternal immunity (equation 7). d, Within-host variation
of parasite densities. Variation around expected parasite densities within individual hosts as function of cumulative parasite densities experienced
(equation 10).
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by least squares fitting of local quadratic approximations to
the (stochastic) log likelihood surface.

Validation of model for age-prevalence. In addition to fit-
ting the model to data we compared the predicted relation-
ship between prevalence in children less than five years of age
and EIR with the meta-analysis of Beier and others.28

RESULTS

We optimized our model for the control of asexual blood
stages of P. falciparum in terms of the biologic plausibility of
the mechanisms for the control of parasites, the agreement

with gross features of the actual field data, and the fit to six
datasets across a range of transmission intensities as mea-
sured by the joint log likelihood. The final model that we
propose incorporates most of the processes that we initially
envisaged. In particular, it includes stochastic variation in the
duration of infections, and in the densities that they achieve at
each time point. These densities decrease in general as a sig-
moidal function of the cumulative density experienced by the
host (equation 4) (Figure 3a), with the critical value of the
curve X*y , which correspond to a mean age of 7.1 years (SD �
10.1) in the lowest EIR setting (Rafin Marke) and 5.3 years
(SD � 8.5) in Navrongo.

FIGURE 4. Comparison of predicted and observed age-prevalence curves. � � data (error bars show 95% confidence intervals); � � model
predictions.
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The densities also decrease with the cumulative numbers of
infections experienced (equation 6) (Figure 3b) with the criti-
cal value of this curve X*h, which corresponded to a mean age
of 27.5 years (SD � 2.5) in Rafin Marke and 11.4 years
(SD � 1.2) in Navrongo. The predicted age pattern of the
effects of maternal immunity on the densities (equation 7)
(Figure 3c) shows the expected decay of this component of
immunity in the first few months of life. The distributions of
the densities vary by individual host (equation 2), and there is
also stochastic within-host variation in the densities by expo-
sure (equation 10) (Figure 3d).

The model did not include any explicit effect of parasite
density on the infections emerging from the liver (see Smith
and others16), and the best fitting value of Dx, explicitly quan-
tifying interactions between co-infections (equation 9), was 0,
which limited the interactions between concurrent infections
to those induced by acquired immunity. We explored several
different parameterizations to try to capture interactions be-
tween co-infections, but we were not able to improve the fit of
our models.

The model also assumed that each inoculation behaves as a
single parasite clone. This is a simplification since many oo-
cysts in the field are heterozygous29,30 and result in mixed
populations of sporozoites (Ranford-Cartwright L, unpub-
lished data). However, we were not able to improve the fit of
the model by allowing for diversity in the inoculum.

A good fit of the model to the parasite densities could only
be achieved by including parameters to allow for biases in-
troduced by different methods for quantifying parasite den-
sities. We aimed to adjust all the modeled densities to the
same scale as that in the malariatherapy studies by introduc-
ing two parameters �, one for the Garki dataset (where the
nominal densities were much lower than our model pre-
dicted), and one for the other field studies, where the nominal
densities were higher than our predictions (Table 3). These
adjustments ensured that our predicted densities in naive in-
dividuals corresponded on average to those in malariatherapy
patients but do not allow us to separate ethnic variations from
effects of differences among study sites in the quantification
of parasitemia. In all settings, P. falciparum showed the char-
acteristic age-prevalence pattern found in malaria-endemic
areas, with the highest prevalence in young children, reaching
almost 100% in those sites with EIRs > 200 infectious bites
per person per year (Figure 4).

The age of peak prevalence was younger in the highest
transmission sites and moves to older ages in lower transmis-
sion settings, but there is little difference between sites in the
prevalence in older children and adults. These patterns were
well reproduced by our model, with clear separation between
the sites in the predicted age-prevalence curves in young chil-
dren at all except the highest transmission rates, with peak
prevalence at the age of one year in the highest transmission
sites and in adolescents in the lowest transmission site of Ra-
fin Marke.

Despite the highest recorded EIR in Navrongo, the preva-
lence of P. falciparum was relatively low in the young chil-
dren; thus, this setting had an anomalously high age of peak
prevalence (Figure 4).31 The age at which the multiplicity
reaches a peak is also anomalously high in Navrongo, in com-
parison to other sites that have been studied (Figure 5).13,31

The highest geometric mean parasite densities rather than
the peaks in prevalence were found in younger children, with

gradual decreases with age in the geometric mean densities
among the infected individuals (Figure 6). There was little
peak shift in the geometric mean densities in either the data
or the model predictions, which suggested that the highest
densities should be found in the 1–2-year-old children. Com-
parison of the model predictions with the summary of field
studies of prevalence in children less than five years found a
good fit, with only a small tendency for the predicted preva-
lence to be below that observed (Figure 7).

Since the model was fitted only to cross-sectional data, it
was not expected to give good predictions of longitudinal
patterns within individual hosts. Comparison of individual
parasitologic profiles with the patterns observed in malaria
therapy patients confirmed that within host variation was less
than that observed in actual infections of naive hosts.

DISCUSSION

The model we present for the processes involved in con-
trolling the asexual blood stages of P. falciparum infections
provides a foundation for estimating the likely impact of
variations in malaria transmission and of control of parasite
densities on the parasitologic burden in endemic areas. It
forms a central component of a comprehensive model to as-
sess and quantify the epidemiologic and economic effects of
introducing malaria vaccines.32 In addition to these applica-
tions, our analyses of models for the control of asexual blood
stages can also be used to test hypotheses about the nature of
acquired immunity and malaria transmission dynamics.

The realism of the model presented here is limited by a
number of gaps in our current knowledge of malaria. For
example, no attempt has been made to simulate detailed im-
munologic processes. This is justified by the lack of agreed
immunologic proxy markers for protection in malaria. Thus,
models of malaria immunity that aim to predict morbidity and
mortality cannot be validated against immunologic data.
Modeling T cell dynamics or antibody levels would thus serve
only to increase the complexity of the models without adding
to the validity. Our model assumed that the main mechanisms
controlling parasite densities do not decay in the absence of

FIGURE 5. Comparison of predicted versus observed multiplicity
of infection. � � data for Navrongo; � � model predictions.
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stimulation because we have no comprehensive database
from which to estimate rates of decay. It would be possible to
analyze predictions from sets of models fitted to the same
data, assuming different rates of decay, but this would require
substantially more computing power than the analysis of a
single model.

Inhabitants of endemic areas who temporarily move away
are more vulnerable to malaria when they return, but it is
unclear whether this results from loss of anti-parasite immu-
nity or of parasitologic tolerance. Some specific immune re-
sponses against P. falciparum have been shown to be highly
labile (e.g., Kinyanjui and others33), but the epidemiologic
consequences of this are yet to be elucidated. Even after sev-

eral decades free of malaria, people in the central highlands of
Madagascar retained some protective immunity to P. falci-
parum.34

To reproduce realistic age-prevalence and age-density
curves, we required only to simulate effects of acquired im-
munity on parasite densities, without any decay in immunity
over time or any explicit effect on duration of infection. In
common with many other diseases with acquired immu-
nity,35,36 as P. falciparum transmission increases, there is a
characteristic decrease in the age at which the maximum
prevalence is reached and increases in the actual peak preva-
lence. Our model was also able to reproduce these shifts.

Terms both in the cumulative parasite load, Xy, and cumu-

FIGURE 6. Comparison of predicted versus observed age-density curves � � data (error bars show 95% confidence intervals); � � model
predictions.
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lative number of infections, Xh, were needed, which con-
firmed that models are inadequate in which acquired immu-
nity is a simple function only of the number of strains to which
the host has been exposed. The quantitative load of parasites
resulting from repeated inoculations is also important in our
proposed model. This could reflect effects of the repertoire of
antigen variants that have been expressed in the host, as well
as undifferentiated effects of the actual number of parasites.
Our formulation differs from models that assume the parasite
population to comprise a limited number of strains, or that
strain-specific immunity can lead to complete protection.

As with all mathematical models for infectious diseases, we
made a number of simplifications. First, we assumed that eth-
nic differences in the response to P. falciparum malaria be-
tween sites are small, although such differences are known to
occur in sub-Saharan Africa.37,38

Although our model showed satisfactory overall fits to the
various datasets across a wide range of transmission intensi-
ties, a somewhat poorer fit was observed with the Navrongo
data. A likely explanation for this relatively poor fit to this
more recently collected dataset is that we assumed that the
impact of anti-malaria treatment was negligible. This assump-
tion is clearly appropriate in the case of the historical data
from sites where there was little or no effective treatment, and
enabled us to avoid the need to model treatment effects.
However, in sub-Saharan Africa early diagnosis and treat-
ment is currently the backbone of malaria control.39 We
needed to use recent data to fit the model to age-multiplicity
patterns because genotyping techniques have only recently
become available. The data from Navrongo that we used for
this come from an area with generally poor access to pri-

mary health services, although there are four health centers
and a hospital. A fraction of the population sleeps under
mosquito nets after a successful trial carried out a decade
ago,40 and a pilot community health program has treated
many of the acute illnesses, including fever episodes, in young
children.41 The poorer fit of our model to the Navrongo data
than to the other datasets suggests that these interventions
have reduced levels of malaria infection in Navrongo below
those to be expected at the high inoculation rates observed
there.

Other limitations arise because our model was fitted to
cross-sectional data, rather than to patterns of variation in
parasitemia within individuals, and therefore it is more suc-
cessful in reproducing the former than the latter. Longitudi-
nal patterns within individuals might be better reproduced by
fitting within-host models explicitly incorporating effects of
antigenic variation to repeated assessments of parasitemia
with short time intervals. Such models have been fitted to
data from malariatherapy patients3,4,42 but there is no agree-
ment that any particular such model is appropriate. By basing
the time course of parasitemia on an empirical description of
the malariatherapy data, we attempted to incorporate the dy-
namics of antigenic variation without explicitly modeling the
processes that lead to it. Because our model is individual
based and therefore makes predictions of sequential patterns
of parasitemia within simulated hosts, it would be possible to
amend it to include a more realistic model of within-host
dynamics but there are few datasets from endemic areas to
which longitudinal patterns of parasitemia with short time-
intervals can be fitted.

We conclude that this model appears to reproduce reason-
ably well the parasitologic patterns seen in malariologic sur-
veys in endemic areas. Development of improved models will
require fitting to data on longitudinal patterns of parasitemia
in semi-immune individuals, in particular to data from people
whose exposure is interrupted by well-documented periods of
protection from infection. Such models are needed to under-
stand the consequences of malaria interventions in areas of
infrequent or unstable transmission. The present model is
appropriate for predicting the impact of interventions such as
vaccination in the context of continual exposure to P. falci-
parum.
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APPENDIX
DEMOGRAPHIC STRUCTURE OF THE

SIMULATED POPULATION

The simulation requires a demographic model for the hu-
man population in which the following are needed.

1) Population size is held constant (this ensures that the com-
putational effort and denominators remain similar through-
out the simulation. In some applications we do not know at
the outset how much time we must simulate; we do not want
the simulated population to be continuously growing).

2) The age distribution remains approximately constant, so
that models for parasite dynamics can reach equilibrium
(assuming constant host/vector ratios). The infectious res-
ervoir depends on the age distribution of the human popu-
lation so a stable age distribution is required for parasito-
logic equilibrium.

3) The age distribution reflects that of actual contemporary
populations to ensure correct overall measures of disease
burden and transmissibility.

Real populations are created by processes that vary over
time, and in sub-Saharan Africa they are growing.43 In a simu-
lated population it is not in general possible to keep the age
distribution stable by applying current birth and death rates.
Usually a stable age distribution can only be maintained by
removing more simulated individuals at each age and time
point than the deaths predicted by a realistic mortality model.
We separate processes maintaining the age-distribution of
the human population from the demographic effects of ma-
laria, which we do not aim to model, by simulating out mi-
gration. We use age-specific out-migration rates to those
needed to maintain a stable population. In fitting our parasi-
tologic model we do not simulate any mortality. The same
approach is used in models that do simulate mortality, in
which the out migration rates are reduced to compensate for
the deaths.

Age distribution of the simulated human population. We
simulate age distributions based on those recorded for Afri-
can demographic surveillance sites.44 Stable life tables cannot
be constructed for these age distributions without including
age-specific immigration. We avoid simulating immigration
because this would require us to clone simulated individuals,
which would alter the variance structure. We fit a continuous
parametric curve to smooth the age distribution because the
distributions summarized in published data are themselves
smooth, and fewer in-migrations are needed. A bathtub func-
tion for mortality rates (higher in infants and older people)
gives a good fit to historical European data (Safan M, unpub-
lished data) and separates parameters of the age distribution
from those of population growth.

If 	 is the Malthusian parameter, corresponding to the ex-
ponent of an exponential growth model, then a stationary
age-distribution is given by f(a) where

f�a� =
e−	a−M�a�

�
0

�

e−	a−M�a�da

and M(a) �0

1 − e−�0a

�0
+ �1

e�1a − 1
�1

FIGURE 8. Age distributions of the population a, Field data from Ifakara, Tanzania.44 b, Simulated population distributions of 1,000 individuals
at 3 cross-sectional time points (t � 10,000, 50,000, and 100,000).
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Fitting the parameters of the age distribution. We set 	,
the population growth rate, to 0 and estimate the parameters
µ0, µ1, �0, and �1 and by least squares fitting of the logarith-
mically transformed percentages of the population in each
age group to those of real African populations. Because the
observed age distribution is aggregated into a limited number
of groups, the parameters µ0 and �0 are difficult to fit. We
require a high number of removals in the first year of life,
so models with high infant mortality do not require immi-
gration of infants. We specify a high removal rate of in-

fants and constrain the age-specific removal rates in the
first year of life so that there are four neonatal removals
for every six post-neonatal one. The age-specific remo-
val rates of the simulated population are then µ(a) �
µ0e-�oa+ �1e�1a.

At each five-day time point, we compare the age-specific
cumulative numbers of individuals to that of the target popu-
lation, and excess individuals are out migrated. After a run-in
period, the age distribution based on Tanzanian data (Figure
8a) is approximately stable (Figure 8b).
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