
Downloaded from: http://researchonline.lshtm.ac.uk/1261605/

DOI: 10.2471/BLT.09.074393

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/
Sharing health data: good intentions are not enough
Elizabeth Pisani & Carla AbouZahr

Abstract Epidemiologists and public health researchers are moving very slowly in the data sharing revolution, and agencies that maintain global health databases are reluctant to share data too. Once investments in infrastructure have been made, recycling and combining data provide access to maximum knowledge for minimal additional cost. By refusing to share data, researchers are slowing progress towards reducing illness and death and are denying a public good to taxpayers who support most of the research.

Funders of public health research are beginning to call for change and developing data sharing policies. However they are not yet adequately addressing the obstacles that underpin the failure to share data. These include professional structures that reward publication of analysis but not of data, and funding streams and career paths that continue to undervalue critical data management work. Practical issues need to be sorted out too: how and where should data be stored for the long term, who will control access, and who will pay for those services? Existing metadata standards need to be extended to cope with health data.

These obstacles have been known for some time; most can be overcome in the field of public health just as they have been overcome in other fields. However no institution has taken the lead in defining a work plan and carving up the tasks and the bill. In this round table paper, we suggest goals for data sharing and a work plan for reaching them, and challenge respondents to move beyond well intentioned but largely aspirational data sharing plans.

Introduction
As they prepare for careers in science, today’s students doubtless hear the same clichés as we did a generation ago: science advances collaboratively; we reproduce and extend the work of others; we stand on the shoulders of giants. In some fields, such as genomics, these axioms are becoming true. In epidemiology and public health, however, data sharing and collaboration remain more aspirational than real.

Students embark on a career in health research in the spirit of sharing: they want to help improve the well-being of others. For all the talk of collaboration, they will enter a world in which another axiom dominates: “publish or perish”. That system puts the interests of public health researchers in direct conflict with the interests of public health.

Benefits of sharing
The situation was not so different in genomics less than 15 years ago. Then, after years of hoarding their findings in individual laboratories and progressing at an expensive snail’s pace, in 1996 researchers agreed to share all their data openly.¹ Now laboratories sequence during the day and post their results that same night; other researchers can begin to stand on their shoulders the very next day. As a result, genetic research is advancing faster than any other area of biomedicine.²

Genomics has taught us that sharing data with other scientists is a way to add value without costing a lot. It allows the same data to be used to answer new questions that may be relevant far beyond the original study. And it allows for meta-analyses that are free from the distortions introduced when only summary results are available.³⁴ We could get far more out of public health research if we followed a similar path, if we squeezed more scientific and policy insights out of data that have already been collected.

Routine health and service use statistics can be just as useful for policy analysis as research data. Many countries are reluctant to release detailed service use data because analysis by disinterested outsiders may contradict politically acceptable interpretations. Most countries do, however, contribute aggregate statistics freely to large international databases maintained by multilateral organizations, although they are not always granted free access to those databases when they want to use them. Such restrictions on access, imposed unnecessarily by agencies wanting to protect their institutional mandates, cripple the potential utility of these expensive resources. Researchers and governments are also reluctant to see the data they provide used and manipulated by others in ways they don’t understand because secondary users (including international agencies) do not always publish their methods.

Research data are desperately underused too, in part because of a critical shortage of competent data managers. In other fields – genetics, banking and retailing – data management is a valuable skill. People are trained and develop careers in the field. In public health research, data management is the poor cousin of analysis. Undervalued and underfunded, inadequate data management undermines the rest of the scientific enterprise. One review in the United Kingdom of Great Britain and Northern Ireland found that many of the variables collected in epidemiological studies were never cleaned and coded, so they could not be used even by the primary researchers, let alone shared.³ In complex population-based surveys in developing countries, data management and analysis skills are in even shorter supply, so a higher proportion of data probably goes to waste.⁷

When we’re dealing with public health research, wasted data can translate into shorter, less healthy lives. Improving data management so that data can be shared is a first step to reducing that waste. But it will not be enough. We need to change the in-

¹ London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, England.
² Department of Health Statistics and Informatics, World Health Organization, Geneva, Switzerland.
 Correspondence to Elizabeth Pisani (e-mail: pisani@ternyata.org).
(Submitted: 18 November 2009 – Revised version received: 5 January 2009 – Accepted: 7 January 2010)
centives that pit the interests of individual researchers against the interests of public health, that pit institutional interests against the more rapid advancement of knowledge and understanding. Governments may hold micro-data back from international organizations, but there’s no excuse for international organizations to limit access to the aggregate data that governments do provide.

It’s easier to understand why individual researchers are reluctant to share data they have collected. That reluctance will certainly remain entrenched as long as their employers – research councils, foundations and universities – regard publication of research papers in peer-reviewed biomedical journals as the main yardstick of success. If, however, “publish [papers] or perish” were to be replaced by “publish [data] or perish,” the picture might change rapidly, as it did in genomics.

What did that experience teach us? That a change in the culture of science requires the buy-in of key research teams, yes, but that it also requires considerable and very concrete commitments from funders. The two largest funders of the Human Genome Project, the Wellcome Trust and the National Institutes for Health, invested massively in the infrastructure needed to share data on a large scale for the long term. They also changed funding mechanisms to emphasize team work and the value of roles such as data management, rather than just looking at publication and citation records. Inevitably the rapid change of culture raised some tensions, but those have now largely been resolved. It would be perfectly feasible for research funders to take similar steps in other fields so that personal and professional incentives are aligned rather than in conflict.

Genomics and the social sciences (which have a dramatically better record of sharing data than most biomedical sciences) have developed techniques to deal with two of the other main obstacles to sharing of public health research data – confidentiality and consent. In part because of the development of research tissue banks (biobanks), broad consent procedures are increasingly becoming a norm. Anonymization removes some of the obstacles associated with consent, and techniques for protecting identities are improving constantly. Despite concerns about the theoretical possibility of identifying individuals in shared data sets, no breaches of confidentiality have yet been recorded in anonymized data sets. Social and economic sciences have also gone further in making the sharing of data sets easy through standard metadata, both for aggregate data through Statistical Data and Metadata Exchange (SDMX) standards and for individual data using Data Documentation Initiative (DDI 3.0) standards. A further lesson from other fields is that it is possible to make data widely available to the research community while still safeguarding integrity, through the use of standardized data use agreements and licences. These define who may use data and how, and may require secondary analysts to contribute both derived data and a record of their analytic methods back to the database, so that primary and other users can both verify and benefit from their work.

The data that we collect and don’t make full use of do not come free. The collection of routine health statistics is paid for by our tax money. Most research aiming to reduce ill-health in the developing world is also funded either from the public purse or by charitable foundations. It is irrational to invest so much in collecting data and yet so little in ensuring that we make the best use of it. It is also ethically unsound: people who participate in research have a right to expect that the results will be used to improve life for them and/or for their communities.

Funders and standard-setters have been aware of this for some time. Gradually, they are urging or adopting policies that aim to increase the use and recycling of data. Although they don’t all yet practice what they preach, several international organizations, including the Organisation for Economic Co-operation and Development and the World Health Organization, have issued statements calling for increased access to routine statistics and other publicly-funded data. Many biomedical journals have recently addressed the importance of data sharing in editorials and commentary articles. A few biomedical journals expect researchers to make the data that underlie research articles available to others on request. An even smaller number of journals have followed the lead of *Annals of Internal Medicine* and now require authors to state whether and how they will make protocols, analysis tools and data available to others. But even *Annals* stops short of requiring authors to publish data sets along with their articles. “If we did that, we’d have a very thin journal,” commented editor Christine Laine at a recent conference on biomedical publication.

There are indications that public and foundation funders of public health research wish to strengthen data sharing policies, shepherding epidemiologists down the road already travelled by geneticists. Many field researchers who have battled difficult climates, erratic electricity supplies, fuel shortages and recalcitrant local authorities will doubtless resent increasing pressure to “give data away”. Some are also apprehensive that people looking at the data in the comfort of some distant, well resourced office will spot the errors that are the inevitable by-product of research in the real world.

Governments are equally reluctant to expose their data to interpretations other than those published by their official statisticians. There is a fear, too, that data may be used by others not just for professional but for economic gain. This is sometimes cast as a “north–south” divide; one spectator raised is of pharmaceutical companies exploiting data from developing countries to develop products that those countries then can’t afford.

Feelings of ownership over hard-won data, viscerally held even by researchers who support the idea of data sharing in principle, are understandable. And peer reviewers, mostly researchers themselves, are reluctant to approve funding for data management if it cuts into budgets for data collection. But funders of science are themselves under pressure to get the most out of expensive research studies. They have to wrestle with two important questions: how much data sharing is desirable and how much is feasible?

Researchers sometimes argue that interpretation of their data is so dependent on understanding local conditions that the data would be worthless to other scientists. This is often a reflection of inadequate documentation, but also a necessary failure of imagination. Sailors keeping log books on whaling boats in the 1600s could not have predicted that, centuries later, the data would be an important source of information for climate change scientists. Most funders have stringent peer-review procedures; few invest in research that they believe is of only very localized importance, and few wish to support research that produces data of such poor quality that it has no further value. Publicly-funded data can also be invaluable to students learning data management and analysis skills. It thus seems
Plan of work
These goals can only be achieved with considerable investment in several practical areas. We propose the following plan of work, necessary to underpin progress towards our stated goals.

Fill the gaps in data management
There is a need to develop metadata standards, which will lead to improved documentation and allow data to be combined more easily across time, locations and sources. This will probably require the extension of DDI and SDMX standards to encompass areas of public health interest. Agreement is also required on standards for anonymization and safeguarding of confidentiality.

We need to develop a search portal that will allow data to be discovered across a range of repositories, and standards for repositories similar to those used for registries of clinical trials.26 Also we need to invest in training in data management for public health, especially in developing countries, and the development of career paths in bioinformatics.

Increase incentives to share data
We need to further develop and adopt reliable citation standards for data sets, such as those proposed by DataCite collaboration,27 and ensure they are indexed in databases such as PubMed. Standards and procedures for peer review or quality control of data sets are also needed. Digital fingerprinting of data would allow tracing of secondary use and procedures for peer review or quality control of data sets.

We need to develop a search portal that will allow data to be discovered across a range of repositories, and standards for repositories similar to those used for registries of clinical trials.26 Also we need to invest in training in data management for public health, especially in developing countries, and the development of career paths in bioinformatics.

Competing interests: None declared.
Résumé

Partage des données sur la santé : les bonnes intentions ne suffisent pas

Les épidémiologistes et les chercheurs en santé publique s’engagent très lentement dans la révolution que subit le partage des données et les agences chargées d’entretenir les bases de données mondiales sur la santé sont réticentes à ce partage. Une fois certains investissements consentis dans les infrastructures, le recyclage et la combinaison des données peuvent donner accès à un maximum de connaissances pour un coût additionnel minimal. En refusant le partage des données, les chercheurs ralentissent les progrès vers la réduction de la morbidité et de la mortalité et interdisent l’accès à l’information à un public tout juste bon à payer les impôts qui financent la plupart de leurs recherches.

Les apporteurs de fonds pour la recherche en santé publique commencent à appeler au changement et à développer des politiques de partage des données. Cependant, ils n’ont pas encore trouvé de moyens adéquats pour aplanir les obstacles responsables de l’échec de ce partage. Il s’agit notamment de structures professionnelles qui récompensent la publication d’une analyse, mais pas celle des données, et de flux de financement et d’évolutions de carrière qui continuent de sous-évaluer le travail essentiel de gestion des données. Il convient aussi de sérérer les problèmes pratiques : où et comment les données doivent-elles être stockées sur le long terme, qui exercera un contrôle sur les accès et qui paiera pour ces services ? Les normes existantes pour les métadonnées doivent être étendues pour couvrir les données relatives à la santé.

Ces obstacles sont connus depuis un certain temps ; la plupart d’entre eux peuvent être surmontés dans le domaine de la santé publique tout comme ils l’ont été dans d’autres secteurs. Néanmoins, aucune institution n’a pris la direction des opérations pour définir un plan de travail et répartir les tâches et la facture. Dans cet article destiné à une table ronde, nous proposons des objectifs pour le partage des données et un plan de travail pour les atteindre et nous sollicitons des réponses pour aller au-delà des plans de partage des données bien intentionnés, mais largement utopistes.
Round table discussion

Sharing research data on a professional basis
Toby Green*

As Pisani & AbouZahr have identified, there are many obstacles to the publishing of data: social (incentives for researchers to make the effort to publish), financial (having adequate financing to cover short-term publishing and long-term curation costs), and technical (standards and systems). This paper looks at some of the technical challenges of publishing data professionally and describes the discoverability and citability benefits that follow.

Let’s take it as read that publishing research data is a “good thing,” that researchers are as willing to publish data as they are research papers and funding is in place to make them available online in the long run. Job done? Well, no, not by a long chalk.

Just as loading a journal article onto a web site somewhere isn’t the same as publishing it properly, so the same is true for data. To be as discoverable and as citable as research articles, data sets need to be published using an infrastructure that is compatible with research articles. It is not enough that data sets hang like dongles off a research article; they need to be discoverable and citable in their own right – just like a journal article. This means the metadata must be compatible with existing bibliographic management and citation systems like RefWorks® and CrossRef®. Users will expect search engines, abstracting and indexing services and library catalogues to reference data sets, so, for example, librarians will need MARC (Machine-Readable Cataloging) records.

Is this overkill? Well, the Organisation for Economic Co-operation and Development (OECD) doesn’t think so. OECD publishes more than 390 data sets as stand-alone objects, as well as thousands of data sets as supplemental data to its books and journal articles. Sub-sets of the data sets are also posted on the web as stand-alone objects too. So it is no surprise that, in the absence of good discovery metadata and systems, the number one complaint from users is the challenge of finding a relevant data set. They know the data is there, but they can’t find it – even with Google’s help.

To solve this problem, OECD’s Publishing Division has spent the past three years grappling with the challenge of how to publish these many thousands of data objects so that users can not only find the data they need, but can then cite and manage the data sets using the same tools that they already use to manage journal articles or book chapters. The first result was a white paper, first released in March 2009, which described this challenge and proposed a set of metadata schema for databases in their own right, sub-sets of databases and supplemental data.

More significantly, was the launch of OECD iLibrary, OECD’s new publishing platform, in July 2009. OECD iLibrary hosts all OECD books, working papers, journals and data sets in a seamless manner. OECD iLibrary puts the white paper’s proposed bibliographic schema for data objects into practice. Search for “health data” and the search results include data sets, book chapters – even individual tables found inside books.

* Organisation for Economic Co-operation and Development, 2 rue André Pascal, 75775 Paris Cedex 16, France.

Correspondence to Toby Green (e-mail: toby.green@oecd.org).
OECD’s data sets can now be discovered more easily and they can be cited as simply and as easily as a research article using the downloadable citation provided. Later in 2010, librarians will be supplied with MARC records and the bibliographic records for OECD data sets will be shared with discovery platforms like RePec (Research Papers in Economics) – the world’s largest collection of economics grey literature – enabling visitors to find data objects alongside working papers and journal articles. Imagine being able to discover and cite data sets as easily and as simply as journal articles. Imagine no more.

Competing interests: None declared.

References

Sharing data for public health: where is the vision?
Alan D Lopez

“By refusing to share data, researchers are slowing progress towards reducing illness and death.” Pisani & AbouZahr are making a big claim in this round table.1 Is this claim sensationalist or does it have some basis? Can we argue that data from public health research really affect the ways prevention and control programmes are designed? Lives have become longer and healthier in the past 50 years, despite an arguably poor evidence base for health and an even poorer appreciation by policy-makers of the value of reliable health information.2–5 Pisani & AbouZahr are arguing that such gains would have been bigger, faster and more equitable had the world had better information about what works and does not work in public health; lost ground is partly due to widespread hoarding of research findings, particularly primary data.

They have a point. Restricting access to data to only those scientists directly engaged in a research project limits the scope of legitimate scientific enquiry and the potential for research to influence policy and practice. No individual scientist who collects or collates data has all the possible analytic methods, expertise and time to extract key public health messages from research or routine data sets.6–7 Lost opportunity for analysis is the main consequence of poor data sharing practices.

Yet, as Pisani & AbouZahr argue, it is unreasonable to expect data collectors to share without adequate incentives. Incentives could include professional recognition for well collected and documented data, appropriately disseminated using good data management practices. Data collectors too need assurance that their efforts will be respected and that errors in data are inevitable and rarely disastrous. Experienced researchers are aware of these risks and can use a range of quality assessment techniques to deal with errors.

Mentoring is one incentive that is missing from the otherwise excellent set proposed by Pisani & AbouZahr. Partnerships between researchers and data collectors, including intensive methodological workshops, are feasible and can help ensure that those who collect data realize the public health potential and value of their efforts. Such an approach could rapidly increase analytical capacity and diversify the analysis of rich, but underutilized, data sets. Funding such collaborations would be an innovative and constructive use of research funds. Competent analysts should be able to resolve potential challenges in interpreting data because of specific local conditions surrounding their collection. Restricting access on this basis reflects a lack of confidence, imagination or trust by those who collect data and should be questioned when used to preclude further analysis.

The authors propose an urgent agenda for action to improve data sharing practices that will benefit all stakeholders – data collectors, analysts, the policy community and, ultimately, the public. This is admirable but, for such a plan to succeed, funders, researchers and data collectors alike need to understand its benefits. That will only happen with effective and committed leadership. What better role for the World Health Organization?2

Competing interests: None declared.

References

Data sharing: reaching consensus
Jimmy Whitworth

Pisani & AbouZahr write passionately about the need to change the culture of data sharing in public health research.1 They explain why this is in everybody’s best interests and outline ways in which the main obstacles can be overcome. This is laudable and much appreciated; it is time for a change, the current situation is unacceptably inefficient in terms of scientific progress and value for money from research.

4 School of Population Health, University of Queensland, Herston Road, Herston, Qld., 4006, Australia (e-mail: a.lopez@sph.uq.edu.au).
5 Wellcome Trust, Gibbs Building, 215 Euston Road, London, NW1 2BE, England (e-mail: j.whitworth@wellcome.ac.uk).
The two authors challenge institutions, in particular research funders, to take charge of the agenda to make these changes happen. They call for leadership but, while funding agencies are clearly influential and can certainly facilitate changes in scientific behaviour and culture, they are unlikely to be able to effect all the changes called for by Pisani & AbouZahr. While funders might support and encourage, we are not in a position to dictate changes to professional structures, to create career paths for scientific disciplines at academic institutions, nor to determine scientific reward mechanisms.

What is required as a first step is the facilitation of dialogue and the building of consensus between all interested parties, including funders, researchers, institutions, journal editors, ethics committees, multilateral agencies and governments. No one agency has the mandate or the legitimacy to take this whole agenda forward unilaterally. A more sustainable and palatable pathway will be to build consensus and to create a broad coalition.

It is worth reflecting on why data sharing is not more commonly practiced among epidemiologists and public health researchers. Pisani & AbouZahr point out many of the constraints, such as the lack of appropriate incentives from employers such as research councils, foundations and universities, the short supply of data managers especially in low- and middle-income countries, and concerns over the control and ownership of data. There are also technical issues, data sets for cohort studies are more complicated than standard genetic data sets because of their longitudinal nature, and there are no off-the-shelf tools available for managing and curating standardized and interoperable longitudinal data sets.

Overcoming these constraints requires a broad consensus among stakeholders. Indeed Pisani & AbouZahr seem to acknowledge this. When they write that “we” need to develop a search portal, invest in training in data management, develop reliable citation standards, develop methods to track the value of data sharing, and so on, these are clearly tasks for the wider scientific community.

Of course, individual institutions – and funders – can take the initiative over certain aspects of the agenda and form alliances with those agencies that can help in other domains. Indeed, the Wellcome Trust has already led various initiatives in this field, including convening international meetings of public health researchers and funding agencies, and has raised these issues at meetings of public health policy-makers and international journal editors. The Trust is currently revising its grant conditions to meet the technical dimension such as data management, repositories and libraries; developing countries are concerned about factors that impede data sharing, in particular, fairness. Pisani & AbouZahr provide clear analyses on barriers but their proposed solutions will not be effective unless they address the fundamental problems.

From the perspective of developing countries, the goal of data sharing is beyond national interests and is for the benefit of all mankind. Without this explicit goal, data sharing more often helps scientists in developed countries get published. While these scientists may have higher analytical capacities, they have neither shared the “legwork” in collecting routine administrative data nor made intellectual contributions to designing and solving problems in conducting field work with scientists in developing countries.

Developing countries need to strengthen capacities in survey design, data management and analysis and policy use. There is clearly an unlevel playing field that impedes data sharing. Scientists from developed countries often take the following approach with researchers in developing countries: “Share your data with me, you do not have analytical capacities. I will analyse and publish papers for global public good.” Instead, their approach should be: “We can analyse the data together and learn from each other for the benefit of all people.” This approach would gradually create equal partnerships, a level playing field, goodwill and trust for collaborations beyond simply sharing data. International data sharing cannot be achieved through forced marriage; as shown by the defeat of the policy proposed by the Annals of Internal Medicine of a publicly accessible database as a condition for journal publication.

The recent sharing of avian flu virus specimens by developing countries through the World Health Organization resulted in the production of avian influenza vaccines at a price of US$10–20 per dose. This is unaffordable in low-income countries where total health expenditure is less than US$30 per person. Should an avian flu pandemic occur, there would be huge death tolls in countries without access to vaccines; while rich countries’ populations would be fully protected, literally from any moral obligations to countries that shared their specimens. Such unilateral benefit inhibits data sharing.

Competing interests: Jimmy Whitworth is employed by the Wellcome Trust, which commissioned Elizabeth Pisani to work on its data-sharing project.

References

Sharing health data: developing country perspectives
Viroj Tangcharoensathien, a Jirawan Boonperm b & Pongpisut Jongudomsuk c

Not only is it difficult to change the “publish or perish” mindset among health researchers, there are other fundamental barriers in data sharing that Pisani & AbouZahr’s paper should have addressed. Sharing data is not only about the technical dimension such as data management, repositories and libraries; developing countries are concerned about factors that impede data sharing, in particular, fairness. Pisani & AbouZahr provide clear analyses on barriers but their proposed solutions will not be effective unless they address the fundamental problems.

From the perspective of developing countries, the goal of data sharing is beyond national interests and is for the benefit of all mankind. Without this explicit goal, data sharing more often helps scientists in developed countries get published. While these scientists may have higher analytical capacities, they have neither shared the “legwork” in collecting routine administrative data nor made intellectual contributions to designing and solving problems in conducting field work with scientists in developing countries.

Developing countries need to strengthen capacities in survey design, data management and analysis and policy use. There is clearly an unlevel playing field that impedes data sharing. Scientists from developed countries often take the following approach with researchers in developing countries: “Share your data with me, you do not have analytical capacities. I will analyse and publish papers for global public good.” Instead, their approach should be: “We can analyse the data together and learn from each other for the benefit of all people.” This approach would gradually create equal partnerships, a level playing field, goodwill and trust for collaborations beyond simply sharing data. International data sharing cannot be achieved through forced marriage; as shown by the defeat of the policy proposed by the Annals of Internal Medicine of a publicly accessible database as a condition for journal publication.

The recent sharing of avian flu virus specimens by developing countries through the World Health Organization resulted in the production of avian influenza vaccines at a price of US$10–20 per dose. This is unaffordable in low-income countries where total health expenditure is less than US$30 per person. Should an avian flu pandemic occur, there would be huge death tolls in countries without access to vaccines; while rich countries’ populations would be fully protected, literally from any moral obligations to countries that shared their specimens. Such unilateral benefit inhibits data sharing.

Competing interests: Jimmy Whitworth is employed by the Wellcome Trust, which commissioned Elizabeth Pisani to work on its data-sharing project.

1 International Health Policy Program, Ministry of Public Health, 376 Mooban Panyan, Pataranakorn Road, Bangkok, 10250, Thailand.
3 Health Systems Research Institute, Bangkok, Thailand.
Correspondence to Viroj Tangcharoensathien (e-mail: viroj@hpp.thaigov.net).
It is important to have evidence on the benefits that populations receive directly as a result of sharing, beyond publications by secondary users. Success in international data sharing may start with efforts at country level or through multi-country research partnerships. Undeniably, multi-country studies provide huge benefit in supporting evidence-based policy. Collaborative partnerships among a number of developed and developing countries, such as for maternal and perinatal health, are foundations for building long-term trust. In research partnerships, there is equitable access to and use of data sets, beyond the conventional practice of passive data sharing without partnership.

In Thailand, rules and procedures for data sharing were developed through a research funding agency and the National Statistical Office. Primary users were granted a reasonable-use period of two years after complete data collection prior to access by secondary users. Good practices are emerging. With the aim of capacity building and mutual benefit, the National Statistical Office grants approval to international secondary users to access nationally representative household data sets on the condition that they develop partnerships with local scientists. Such engagement gradually builds trust and longer-term partnerships between scientists from developed and developing countries.

Competing interests: None declared.

References