Correspondence

We declare that we have no conflicts of interest.

Authors’ reply

We thank Parminder Suchdev and Lynnette Neufeld for their comments on our study1 and the reservations expressed on the conclusions.

First, the quality of evidence is questioned on three points: the trial was not placebo-controlled, the data for morbidity were captured by maternal recall, and the compliance rates of about 50% represent poor behaviour change. The vast majority of micronutrient powder trials to date have not used a placebo because there are challenges in manufacturing a safe placebo formulation for daily use. We acknowledge this limitation, common to most trials of micronutrient powders. We acknowledge (and discuss in our paper) the limitations of morbidity data derived from maternal recall. Many longitudinal studies use maternal reporting of morbidities and in our study1 this was accompanied by corroboration of reported maternal respiratory morbidities and assessment by trained community health workers. Our trial was designed to mimic as closely as possible what is feasible in real-life programmes, and we do not believe that the overall compliance represents poor behaviour change. The compliance observed over a 12-month period is better than that reported in other effectiveness trials of micronutrient powders including the programmatic rollout in Kenya led by Suchdev,2 which only achieved an average consumption of 0.9 micronutrient powder sachet per week. We believe the observed coverage is consonant with what is realistic in real life settings and if anything, makes our findings all the more important.

Second, we did not claim that our findings are generalisable to all populations. We discussed this point in our paper, noting that our findings were from a very poorly malnourished population, similar to many populations in South Asia. The current WHO guidelines on the use of micronutrient powders recommend the use of micronutrient powders for children aged 6–23 months in populations in which the prevalence of anaemia is 20% or higher. In many low-income populations at risk for anaemia and micronutrient deficiencies, the observed rates of stunting and wasting would be similar to those that we encountered. As far as we are aware, there are no excluded subgroups or differential implementation in programmes, and future studies of micronutrient powders might explore this possibility.

Third, as discussed in our paper,4 we are uncertain about mechanisms for the observed respiratory effects, but these findings are by no means unique. In the CIGNIS trial,5 increased rates of lower respiratory tract infections or pneumonia were reported in children receiving micronutrient fortified weaning food. By contrast, the observations on diarrhoea in our study should not come as a great surprise. We disagree with Suchdev and Neufeld that the reported diarrhoea cases were all mild and that mechanisms are unclear. There was an increase in bloody diarrhoea and some evidence of an effect on severe diarrhoea (6+ stools although not achieving p<0.05). A recently published trial6 of micronutrient powders in a malaria endemic area of Africa reported an excess in hospital admissions due to all causes among children taking micronutrient powders containing iron during the 5-month supplementation period, with marginally higher rates of diarrhoea diagnosed in outpatient settings. The statement that there is no clear pathophysiological mechanism for diarrhoea and no increase in specific stool pathogens is incorrect. Among children receiving micronutrient powders we observed an excess of...

Aeromonas, a known pathogen causing diarrhoea. A number of studies have reported and discussed potential mechanisms for excess diarrhoea with use of iron. Future studies should be designed to explore this in greater depth.

Moreover, despite the extra intake in both micronutrient powder groups and the existing programme for vitamin A supplementation, we did not observe any change in biochemical measures.

Fourth, we believe that the argument that the benefits for growth are small but significant while the apparent effects on morbidity are small and therefore not significant is inconsistent. We want to re-emphasize that what we are calling for is a proper discussion of the benefits and potential harms in existing and future programmes of micronutrient powders. We hope that our findings from the largest trial of micronutrient powders in populations representative of urban and rural Pakistan, will spur further robust evaluation of the benefits and risks associated with this intervention.

We also thank Ruoyan Tobe-Gai and Rintaro Mori for their comment. Their point that the same iron dose should not be applied throughout the age range 6–18 months needs further evaluation and consideration by WHO. Changes in intestinal maturation throughout infancy could be important. These might require varying entry criteria for intervention and consideration of iron stores before trials of different doses. We also agree that micronutrient powders alone are not the solution in poorly nourished populations—a point that we noted in recommending alternative and additional strategies in our concluding statements.

We declare that we have no conflicts of interest.

Zulfiqar A Bhutta, Simon Cousins, Sajid Soofi
zulfiqar.bhutta@aku.edu

Aga Khan University, Karachi 74800, Pakistan (ZAB, SS), and London School of Hygiene and Tropical Medicine, London, UK (ZAB, SC)

Retraction of the Jikei Heart Study: misquotation of a Comment

The Lancet Editors recently announced (Sept 7, p 843) the retraction of the Jikei Heart Study. The Editors stated that when the Jikei Heart Study1 was first published, “Staessen and Richart congratulated the investigators on their report.” However, this citation would have been much more balanced had the Editors also quoted the next sentence of our Comment: “Nevertheless, one should not accept at face value the main conclusions of the Jikei report”. We clearly listed the many weaknesses of the study, including inadequate sample size, insufficient dosing of study medications, the weakness of soft endpoints, the open-blinded-label endpoint assessment that did not account for bias in reporting endpoints by unblinded investigators, the between-group differences in blood pressure during the early phase of the randomised follow-up, and the lack of generalisability to general practice. We were the first to show that blood pressure level, not drug class, is key in preventing cardiovascular complications associated with hypertension.4 In our opinion, the Jikei Heart Study1 had no value if marketers would spread the message that valsartan, or for that matter any other antihypertensive drug, might confer benefits beyond blood-pressure lowering. In conclusion, we should have been given full credit for our interpretation of the Jikei results, and we should not have been quoted in a way that might be misinterpreted.

We declare that we have no conflicts of interest.

Kei Asayama, Azusa Hara,
Jan A Staessen jan.staessen@med.kuleuven.be

Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Diseases, University of Leuven, Leuven 3000, Belgium (KA, AH, JAS); Department of Planning for Drug Development and Clinical Evaluation, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan (KA), and Department of Epidemiology, Maastricht University, Maastricht, Netherlands (JAS)

