Kaput, J; Or dov as, JM; Ferguson, L; van Ommen, B; Rodriguez, RL; Allen, L; Ames, BN; Dawson, K; German, B; Krauss, R; Malyj, W; Archer, MC; Barnes, S; Bartholomew, A; Birk, R; van Bladeren, P; Bradford, KJ; Brown, KH; Caetano, R; Castle, D; Chadwick, R; Clarke, S; Clement, K; Cooney, CA; Corella, D; da Cruz, IBM; Daniel, H; Duster, T; Ebbesson, SOE; Elliott, R; Fairweather-Tait, S; Felton, J; Fenech, M; Finley, JW; Fogg-Johnson, N; Gill-Garrison, R; Gibney, MJ; Gillies, PJ; Gustafsson, JA; Hartmann, JL; He, L; Hwang, JK; Jais, JP; Jang, YS; Joost, H; Junien, C; Kanter, M; Kibbe, WA; Koletzko, B; Korf, BR; Kornman, K; Krempin, DW; Langin, D; Lauren, DR; Lee, JH; Leveille, GA; Lin, SJ; Mathers, J; Mayne, M; McNabb, W; Milley, JA; Morgan, P; Muller, M; Nikolsky, Y; van der Ouderaa, F; Park, T; Pensel, N; Perez-Jimenez, F; Poutanen, K; Roberts, M; Saris, WHM; Schuster, G; Shelling, AN; Simopoulos, AP; Southon, S; Tai, ES; Towne, B; Trayhurn, P; Uauy, R; Visek, WJ; Warden, C; Weiss, R; Wiencke, J; Winkler, J; Wolff, GL; XI, ZW; Zucker, JD (2005) The case for strategic international alliances to harness nutritional genomics for public and personal health. The British journal of nutrition, 94 (5). pp. 623-632. ISSN 0007-1145 DOI: 10.1079/bjn20051585

Downloaded from: http://researchonline.lshtm.ac.uk/12451/

DOI: 10.1079/bjn20051585

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/
Horizons in Nutritional Science

The case for strategic international alliances to harness nutritional genomics for public and personal health†

Please see Appendix 1 for details of affiliations.

(Received 21 June 2005 – Revised 5 July 2005 – Accepted 15 July 2005)

Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and, conversely, how genes and their products metabolise these constituents into nutrients, antinutrients, and bioactive compounds. Results from molecular and genetic epidemiological studies indicate that dietary unbalance can alter gene–nutrient interactions in ways that increase the risk of developing chronic disease. The interplay of human genetic variation and environmental factors will make identifying causative genes and nutrients a formidable, but not intractable, challenge. We provide specific recommendations for how to best meet this challenge and discuss the need for new methodologies and the use of comprehensive analyses of nutrient–genotype interactions involving large and diverse populations. The objective of the present paper is to stimulate discourse and collaboration among nutrigenomic researchers and stakeholders, a process that will lead to an increase in global health and wellness by reducing health disparities in developed and developing countries.

Strategic international alliances: Nutrigenomics: Gene–nutrient interactions: Health disparities

Genomes evolve in response to many types of environmental stimuli, including nutrition. Therefore, the expression of genetic information can be highly dependent on, and regulated by, nutrients, micronutrients, and phytochemicals found in food. The study of how genes and gene products interact with dietary chemicals to alter phenotype and, conversely, how genes and their products metabolise nutrients is called nutritional genomics or ‘nutrigenomics’. Unbalanced diets alter gene–nutrient interactions,
forin, the active ingredient in St John’s wort, binds to the ligand gene expression are provided by hyperforin and genistein. Hyper-
mented examples of how nutrient–gene interactions can affect
variable in experimental design even though dietary constituents
(especially single nucleotide polymorphism (SNP) anal-
ysis), nutritional epidemiology, microarray analysis, proteomics,
metabolomics, bioinformatics, pathology, and diverse clinical
assessments, in models ranging from cell culture to experimental
animals and human populations. Significant numbers of investi-
gators are developing nutrigenomics programmes in various
countries, and each of them will probably face similar problems
in developing and adapting cutting-edge technologies for high-
dimensional research efforts. The strategic and technical chal-
lenges of nutritional genomics justify the sharing of resources
and knowledge to avoid duplication in developing experimental
tools, software programs, and computational models.

Nutrition and human genetic diversity

Although there is a growing body of evidence demonstrating the
influence of some food constituents on gene activity, nutrigen-
omics must address how individual genomes respond to the
complex nutrient and chemical mixtures that comprise foods.
The sequencing of the human genome laid the foundation for
one of the most significant scientific contributions to humankind
– an evidence-based understanding that while human individuals
are genetically similar, each retains a unique genetic identity
underlying the wide array of biochemical, physiological, and mor-
phological phenotypes in human populations. However, genetic
variation produces a continuum for each human trait, thus chal-
lenging dichotomous social groupings based solely on external
phenotypes. Recent reviews (Jacobs & Lewis, 2002; Francis
et al., 2003; Davis & Milner, 2004; Kaput & Rodriguez, 2004; Simopoulos
& Ordovas, 2004). Diet–gene interactions are complex and are
likely to require large populations for adequate statistical
power. Resolving experimental design issues that originate from
complexities of gene–environment interactions will probably
require pooling of information from several population groups.

Superimposed are technical challenges of clinical data collec-
tion from individuals of diverse cultures and ecosystems along
with the expense of complex phenotypic assessments and geno-
type analyses. Nutritional genomics requires a systems biology
approach, with the methods and technical skills ranging from gen-
otyping (especially single nucleotide polymorphism (SNP) anal-
ysis), nutritional epidemiology, microarray analysis, proteomics,
metabolomics, bioinformatics, pathology, and diverse clinical
assessments, in models ranging from cell culture to experimental
animals and human populations. Significant numbers of investi-
gators are developing nutrigenomics programmes in various
countries, and each of them will probably face similar problems
in developing and adapting cutting-edge technologies for high-
dimensional research efforts. The strategic and technical chal-
lenges of nutritional genomics justify the sharing of resources
and knowledge to avoid duplication in developing experimental
tools, software programs, and computational models.

Nutrition and human genetic diversity

Although there is a growing body of evidence demonstrating the
influence of some food constituents on gene activity, nutrigen-
omics must address how individual genomes respond to the
complex nutrient and chemical mixtures that comprise foods.
The sequencing of the human genome laid the foundation for
one of the most significant scientific contributions to humankind
– an evidence-based understanding that while human individuals
are genetically similar, each retains a unique genetic identity
underlying the wide array of biochemical, physiological, and mor-
phological phenotypes in human populations. However, genetic
variation produces a continuum for each human trait, thus chal-
lenging dichotomous social groupings based solely on external
phenotypes. Recent reviews (Jacobs & Lewis, 2002; Francis
et al., 2003; Davis & Milner, 2004; Kaput & Rodriguez, 2004; Simopoulos
& Ordovas, 2004). Diet–gene interactions are complex and are
likely to require large populations for adequate statistical
power. Resolving experimental design issues that originate from
complexities of gene–environment interactions will probably
require pooling of information from several population groups.

Superimposed are technical challenges of clinical data collec-
tion from individuals of diverse cultures and ecosystems along
with the expense of complex phenotypic assessments and geno-
type analyses. Nutritional genomics requires a systems biology
approach, with the methods and technical skills ranging from gen-
otyping (especially single nucleotide polymorphism (SNP) anal-
ysis), nutritional epidemiology, microarray analysis, proteomics,
metabolomics, bioinformatics, pathology, and diverse clinical
assessments, in models ranging from cell culture to experimental
animals and human populations. Significant numbers of investi-
gators are developing nutrigenomics programmes in various
countries, and each of them will probably face similar problems
in developing and adapting cutting-edge technologies for high-
dimensional research efforts. The strategic and technical chal-
lenges of nutritional genomics justify the sharing of resources
and knowledge to avoid duplication in developing experimental
tools, software programs, and computational models.

Nutrition and human genetic diversity

Although there is a growing body of evidence demonstrating the
influence of some food constituents on gene activity, nutrigen-
omics must address how individual genomes respond to the
complex nutrient and chemical mixtures that comprise foods.
The sequencing of the human genome laid the foundation for
one of the most significant scientific contributions to humankind
– an evidence-based understanding that while human individuals
are genetically similar, each retains a unique genetic identity
underlying the wide array of biochemical, physiological, and mor-
phological phenotypes in human populations. However, genetic
variation produces a continuum for each human trait, thus chal-
lenging dichotomous social groupings based solely on external
phenotypes. Recent reviews (Jacobs & Lewis, 2002; Francis
et al., 2003; Davis & Milner, 2004; Kaput & Rodriguez, 2004; Simopoulos
& Ordovas, 2004). Diet–gene interactions are complex and are
likely to require large populations for adequate statistical
power. Resolving experimental design issues that originate from
complexities of gene–environment interactions will probably
require pooling of information from several population groups.

Superimposed are technical challenges of clinical data collec-
tion from individuals of diverse cultures and ecosystems along
with the expense of complex phenotypic assessments and geno-
type analyses. Nutritional genomics requires a systems biology
approach, with the methods and technical skills ranging from gen-
otyping (especially single nucleotide polymorphism (SNP) anal-
ysis), nutritional epidemiology, microarray analysis, proteomics,
metabolomics, bioinformatics, pathology, and diverse clinical
assessments, in models ranging from cell culture to experimental
animals and human populations. Significant numbers of investi-
gators are developing nutrigenomics programmes in various
countries, and each of them will probably face similar problems
in developing and adapting cutting-edge technologies for high-
dimensional research efforts. The strategic and technical chal-
lenges of nutritional genomics justify the sharing of resources
and knowledge to avoid duplication in developing experimental
tools, software programs, and computational models.
eight gene associations (Lohmueller et al. 2003). Similarly, non-replicated results associating diet with candidate gene variants are the norm (for reviews, see Loktionov et al. 2000; Loktionov, 2003; Corella & Ordovas, 2004; Ordovas, 2004; Ordovas & Corella, 2004). In addition to population stratification, other confounders include sample sizes lacking statistical power, inappropriately matched controls, overinterpretation of data (Lander & Kruglyak, 1995; Risch, 1997; Cardon & Bell, 2001), and the influence of other environmental factors (see later; p. 629 of proof). There is a growing awareness that epistasis (i.e. gene on gene interactions) (Hartman et al. 2001; Moore, 2003; Carlborg & Haley, 2004), genotype–environment interactions particularly those involving diet (for reviews, see van Ommen & Stierum, 2002; Corella & Ordovas, 2004; Kaput & Rodriguez, 2004; Ordovas, 2004), and health status (for example, Stoehr et al. 2000; Lan et al. 2003) may alter associations of SNP or sets of SNP with disease processes. A lack of consistency in methods of estimating food composition often precludes comparisons between populations. For example, estimates of dietary fibre contents differ if they are defined and analysed as NSP, or according to one of the more recent definitions (for example, Ferguson & Harris, 2003; Devries, 2004). The combinations of study design issues, complex and interacting molecular processes, and diverse environmental influences demand a re-evaluation of how biomedical research is conducted.

Goals and objectives of nutritional genomics research

The purpose here is to stimulate communication and collaboration among nutrigenomic researchers and stakeholders throughout the world. Stakeholders include representatives from academia, industry, government, and public interest groups. To help identify synergies and create the breakthroughs needed to develop more effective nutritional interventions and genome-based dietary recommendations, we are proposing discussions that will lead to sharing ideas, datasets, research results, reagents, samples, and best practices for conducting nutritional genomics research under high scientific standards and in an ethical, socially responsible, and culturally sensitive manner. The needs that have been identified for nutritional genomics research are presented (Muller & Kersten, 2003; Kaput, 2004; Ordovas & Corella, 2004).

Data federation

Development of a scalable database with semantic interoperability that will allow sharing anonymised genetic, phenotypic, dietary, nutritional status, and other environmental and cultural information must have the highest priority. Semantic interoperability will require agreements between independent database developers that all systems share common ‘meanings’ of data elements in a way that define a common ontology, mechanisms to share common data elements, and a means to ‘harmonise’ definitional disagreements. Several biobanks have developed such systems.

Larger study populations are needed

The statistical power of association studies needs to be increased with common phenotypic measurements and combining results from many studies. This can be a two-edged sword; in order to detect the subtle effects of gene variants, large numbers of study participants will be required. However, as the number of individuals in a study increases, the greater the likelihood that variance may be due to differences in environment and population stratification. Stratification occurs when individuals within the study population have different genetic architectures, which arise from their ancestral lineage (for example, African v. Asian ancestries). Analyses of genetic variance in human populations show a greater variation within populations than between populations (for a review, see Jorde & Wooding, 2004). Hence, combining data from multiple ancestral groups may reveal common genotypes and responses to diet. Stratification may be a confounder in standard statistical analyses because allele frequencies may differ between populations (Reich & Goldstein, 2001; Freedman et al. 2004). Genomic controls, such as analysing mitochondrial DNA, Y chromosome, or autosomal (Jorgenson et al. 2005; Tang et al. 2005) markers in participants, provide a measure of population stratification. Dimensionality reduction algorithms may identify clustering due to ancestral origins and associations with groups of SNP and dietary composition.

Improving analyses and consistency of phenotypes

Early molecular epidemiology studies attempted to link one SNP in a gene to a disease state such as cancer. However, variations in different molecular pathways may produce the same phenotype or disease. For example, type 2 diabetes mellitus is currently treated by changing diet or exercise habits and/or by drugs that target insulin secretion from the pancreas, glycose production by the liver, glucose absorption by the intestine, or insulin resistance by PPAR-targeted drugs in peripheral tissues (American Diabetes Association, 2005). Patients respond differently to these treatments or their combinations. Molecular epidemiologists include disease markers such as insulin, glucose, and/or HDL-cholesterol concentrations (rather than diabetes or atherosclerosis alone) to identify ‘subphenotypes’ of disease. Clinical studies should include repeated sampling and analyses that assess phenotypes more accurately (Pereira et al. 2004). Since the molecular basis for many diseases is lacking, the greater the number of accurate clinical measurements analysed, the more powerful the study. Since DNA samples may be shared across studies, common phenotypes for multiple diseases may be developed and measured that would facilitate measurements across studies. For example, serum HDL-cholesterol measurements could also be taken in breast or colon cancer studies.

Capturing and assessing accurate food intakes

Food surveys and dietary histories are often inaccurate because of differences in ability to recall specifics (type and amounts) of food intakes and differences in dietary assessment methods (for example, self-administered v. interviewed; food-frequency questionnaires v. diet diaries), and variations in their definitions and analyses. A major emphasis of this international effort will therefore focus on standardising and improving dietary assessment methodologies. Surveys will also have to capture self-described affiliations to religions, cultures, customs, or ethnic groups because of possible food restrictions and preferences. Confirmation of food intakes might also be accomplished by measuring plasma micronutrient concentrations, assuming funds were available. In addition to accurate food intake information, databases
are needed on the macro- and micronutrient content of local foods, a challenge for the diverse cultures and diets throughout the world. The FAO of the UN (Food and Agriculture Organization, 2005) and various national governments have compiled food composition tables for many countries worldwide, but data must often be extracted from unlinked flat files or from publications. A relational database of food composition must be developed through international collaborations.

Genomic controls

More diverse genetic analyses, that include not only genetic variants in nuclear DNA, but also analyses of mitochondrial DNA are needed. When high throughput methods are further developed, chromosome structure and DNA methylation analyses will also be needed.

Ethical and culturally sensitive recruitment

Ethical and culturally sensitive recruitment of study participants from diverse cultures (International HapMap Consortium, 2004) is needed. Some racial and ethnic populations and the poor suffer disproportionately from chronic diseases and are likely starting populations for nutrigenomic research. However, some cultures and populations may be sceptical of molecular and genetic disease research efforts, particularly because of colonial histories. Addressing the legitimate concerns of these populations will require the input of representatives from diverse communities and cultures to develop standards of collaboration and communication with study participants. To our knowledge, there are no precedents that allow for data sharing across national borders yet protect individuals’ biological information (Austin et al. 2003; Maschke & Murray, 2004). Hence, among the first tasks of the international effort will be to develop protocols for five categories of ethical, legal, and social issues: study sponsorship and benefit sharing, public engagement, consent, and data protection (see Austin et al. 2003). The participation of the international nutrigenomic research community in addressing these issues may help facilitate development of regional, national, and international policies for such research. Such efforts are scientifically justified because comparative analyses among various ancestral populations with different macro- and micronutrient intake levels may be the critical approach to identify gene–nutrient interactions involved in health and disease. Results from comparing physiological and molecular responses between inbred strains of experimental animals fed different defined, reproducible diets identify gene–gene interactions and gene–environment interactions (for example, Park et al. 1997; Kaput et al. 2004) that cannot be revealed in homogeneous or genetically similar populations. Comparative analyses of different ancestral groups may therefore reveal common as well as population-specific nutrient–gene interactions (Tai & Tan, 2004).

Capturing the range of environmental variables

Capturing the range of environmental variables affecting expression of genetic information is an essential component of comprehensive gene–environment experiments and analyses. Although our primary focus is on nutrient–gene interactions, expression of genetic information is influenced by numerous environmental factors. For example, cytokine levels are unusually sensitive to environmental changes and serve as good markers of environmental influences that may alter protein and RNA expression. Some examples of non-nutrient environmental factors are:

1. Overall sleep time and sleep continuity (for example, Redwine et al. 2000; Irwin, 2002);
2. O₂ tension (Prabhakar & Peng, 2004), which is related to altitude;
3. Over-the-counter drugs, for example, non-steroidal anti-inflammatory drugs (Serhan et al. 2000);
4. Water intake relative to tea (Tomita et al. 2002) and other beverages;
5. Physical activity, including genetic fitness to activity (Nieman et al. 2003a,b, 2004; Gleeson et al. 2004);
6. Psychological factors such as stress (Irwin et al. 2003);
7. Exposure to allergens and pollutants (for example, Pandya et al. 2002);
8. Circadian rhythm and seasonal changes (Albrecht & Eichele, 2003);
9. Balance between energy intake and expenditure (for a review, see Seeley et al. 2004).

Each added variable may increase the need for larger populations since small studies may be unable to discriminate between all environmental effects. However, meta-analyses may be possible if studies record similar data elements for their populations. Although developing appropriate environmental survey instruments is challenging, a set of guidelines and suggestions would facilitate the development of common data elements for nutrigenomics studies.

Interactions between academia and industry

In the spirit of creating a truly integrated research initiative in nutrigenomics, the interaction of partners from agriculture, food processing, biotechnology, and pharmaceutical industries with academic centres would accelerate technology development and dissemination of nutrigenomic information to the public. Examples include the development of new crop varieties with enhanced nutritional value, novel food formulations and dietary supplements that promote health and prevent disease, and the development of chip-based diagnostic tests for monitoring genome-specific dietary interventions. An excellent model for this type of interaction is the recently awarded Freedom to Discover grant from Bristol-Myers Squibb Company to the Program in International Nutrition at the University of California (Davis, 2005). The goal of this grant is to explore the implications and applications of nutrigenomics and other ‘omics’ technologies in developing countries. Establishing productive and mutually beneficial relationships with industry for societal benefits and the greater good is a goal shared by the members of the nutrigenomics research community. Addressing the issue of revenue sharing among stakeholders, particularly study participants, will be a high priority for the international nutrigenomics network. One of many possible concepts is to develop novel agreements that ensure revenue sharing with participants or communities (Austin et al. 2003; Maschke & Murray, 2004) and, perhaps more importantly, investments for economic development in developing countries (Sachs, 2005).

Integration of nutrigenomics research

Nutrigenomic research depends upon robust and reliable methods for discovering candidate genes for association analyses, and
results of epidemiological associations that must be understood at the molecular level. Reliable model systems are essential for the development of an effective and successful international nutrigenomics effort. Examples of model systems that can provide valuable insights into molecular mechanisms underlying nutritional genomics research are now described.

Cell culture

Nutrient interactions have been analysed in model systems such as glucose deprivation (a model of energy restriction) in *Saccharomyces cerevisiae* (for example, Lin et al. 2002; Lin & Guarente, 2003) to human cells exposed to purified phytochemicals (for example, Pianetti et al. 2002) or micronutrients (for example, folate (Kimura et al. 2004). Although genetic variation is not typically analysed in such studies, cells in culture allow the dissection of molecular pathways influenced by dietary chemicals. Identifying diet-regulated or diet-influenced genes (and their products) using cell cultures allows for the analyses of gene variants in human or animal studies.

Animal models

Cell cultures do not have livers, microflora in an alimentary tract, nor the full metabolic repertoire of their complementary *in vivo* counterparts. That is, metabolism and regulation of nutrient and bioactive components of food are often affected by metabolism and products in other organs. Animal studies are often necessary to verify the results from cell-culture experiments. A distinct advantage of using animal models is the array of genetically defined mouse strains, the result of a 100-year effort to produce and characterise inbred strains for biomedical research (Jackson Laboratory, 2005). Laboratory animals are excellent models for biomedical research. Comparative genomic analyses (for example, Linder, 2001) have demonstrated that mice and rats share genes and diseases that are similar in other mammals. For example, 99 % of mouse genes have human homologues (Waterston et al. 2002) and obesity-induced diabetes occurs in mice (for example, Hribal et al. 2002; Rossmeisl et al. 2003) and dogs (Fleeman & Rand, 2001). Molecular responses to dietary chemicals can be analysed or compared in strains of known genotypes with differing susceptibility to diet-induced disease, enabling previously unsuspected contributors to the disease process to be identified (for example, Park et al. 1997; Kaput et al. 2004). Breeding strategies permit identification of epistatic interactions likely to influence gene–disease (Reifsnnyder et al. 2000; Cheverud et al. 2004) and nutrient–gene interactions (for example, Cooney et al. 2002). Defined diets, which are reproducible, are critical for diet–gene studies in experimental animals (for example, Park et al. 1997; Kaput et al. 2004).

Studies in humans subjects

Ultimately, candidate genes from cell-culture systems or laboratory animals must be verified in human subjects. The two most common methods are large-scale molecular epidemiological studies and dietary cross-over trials. Ordovas & Corella (2004) critically reviewed the methodology and progress of molecular nutrigenomic epidemiological studies. Although such studies do not prove causality, they provide statistical associations between gene variants and disease, subphenotypes of disease, or changes in physiology caused by diet. Since statistical association studies are based on the analysis of groups or populations, the presence or absence of a particular SNP in an individual may or may not be linked to disease or response to diet. As mentioned previously, dietary surveys or histories fail to accurately determine food intake. Nevertheless, such association studies provide valuable information linking genotype to phenotype. It is likely that panels of SNP in different genes will be needed to improve the probability that a set of gene variants is associated with a physiological process or disease. Randomised double-blind (where possible) cross-over studies may be of value to confirm the validity of nutrigenomics findings reported in genetic epidemiological studies (for example, Dreon et al. 1999).

Models of scientific consortia

Interdisciplinary research is being fostered within institutions (Cech & Rubin, 2004) and through national and international collaborations. Four of these multi-institutional and national initiatives are examples of collaborative efforts for nutritional genomics research. The Pharmacogenetics and Pharmacogenomics Knowledge Base, also known as PharmGKB, developed by Stanford University, is funded by the National Institutes of Health and is part of a nationwide collaborative research consortium called the Pharmacogenetics Research Network (National Institute of General Medical Services, 2005; Pharmacogenetics and Pharmacogenomics Knowledge Base, 2005). PharmGKB is building a knowledge base with accurate and detailed definitions of genotypes and phenotypes involved in individual responses to different medications. Data are generated by the US National Institutes of Health-funded projects in twelve individual laboratories.

A second collaborative project is the Program for Genetic Interaction (PROGENI; Program for Genetic Interaction, 2005). PROGENI is the Administrative and Data Coordinating Center for the ‘Interaction of Genes and Environment in Shaping Risk Factors for Heart, Lung, Blood, and Sleep Disorders’ Study. Five separate National Heart, Lung and Blood Institute-funded studies at different locations (GET READI, GeneSTAR, GOLDN, GenSALT and HAPI Heart) are coordinated through PROGENI, which also pools data from the centres. Communication between subcommittees are maintained and core issues shared by all studies are addressed through the coordinating activities of the Center. The subcommittees include Recruitment, Protection of Human Subjects/Data Sharing, Phenotyping, Laboratory/DNA, Analysis and an overarching Steering Committee. A Data Safety Management Board, which is independent of and external to the Center, was formed to critique protocols, oversee recruitment goals and study progress. Biannual analysis workshops are held to bring together statisticians, and experts in analytic techniques foster cross-study collaboration and sharing of methods, tools, and software.

Scientists from twenty-two organisations in the European Union have formed the European Nutrigenomics Organization (NuGO; www.nugo.org). Approximately 650 scientists belong to this organisation with the key objective of development and promotion of mechanistic nutrition and health research through the application of ‘omics’ technologies. This is achieved through the development of joint research programmes and stimulation of facility sharing, facilitating education, communication, commercialisation, and dissemination of information. Development, data warehousing, and exploitation of nutrition- and health-related
bioinformatics for European nutrition and nutrigenomics researchers and communities are key issues. The formation of NuGO is funded by the European Union. NuGO is fostering collaborations among members through targeted funding and an interactive website, which hosts discussion groups on subjects related to nutrigenomics research methods and results.

A fourth model of a collaborative project is the International HapMap project (International HapMap Consortium, 2003, 2004), which is analysing SNP patterns (haplotypes) of human genetic variations within chromosomal regions. Each haplotype block will be tagged or identified by one or more SNP. A use for this resource will be association studies; candidate disease genes are found within haplotype blocks more frequently associated with subphenotypes of disease (for example, insulin levels or HDL-cholesterol concentrations, etc) in individuals with symptoms compared with individuals who are symptom-free. The HapMap Consortium consists of committees dealing with: ethical, legal, and social issues; population studies; community engagement and public consultation; sample collection; genotyping and SNP analysis; SNP discovery; scientific management and methods; initial planning (International HapMap Consortium, 2004).

There are significant differences between these model collaborative projects and nutrigenomics research. Nutrigenomics will require nutritional, cultural, and other environmental data that may influence nutrient–gene interactions. Populations linked to those variables also need to be identified. For example, food intake and activity levels in urban areas may be significantly different from those in rural areas. Macro- and micronutrient intake levels may vary widely in rural populations because of customs and seasonal availability of different foods. Furthermore, allele frequencies may differ between rural and urban populations within the same country. Although it has been argued that SNP associated with nutrient intakes have low penetrance and are unlikely to be predictive of disease susceptibility (Haga et al., 2003), others contend that combinations of SNP in multiple disease-linked genes will be predictive of a range of susceptibility to chronic diseases (for example, Kaput, 2004). Nutrigenomic studies will eventually resolve these conflicts. Nevertheless, the identification of populations and the possibility of discovering disease susceptibilities linked to genes, environment, and their interactions bring into question ethical issues not faced by the HapMap project, which seeks mainly to catalogue variations linked genes will be predictive of a range of susceptibility to chronic diseases (for example, Kaput, 2004). Nutrigenomic studies will eventually resolve these conflicts. Nevertheless, the identification of populations and the possibility of discovering disease susceptibilities linked to genes, environment, and their interactions bring into question ethical issues not faced by the HapMap project, which seeks mainly to catalogue variations linked genes will be predictive of a range of susceptibility to chronic diseases (for example, Kaput, 2004). Nutrigenomic studies will eventually resolve these conflicts. Nevertheless, the identification of populations and the possibility of discovering disease susceptibilities linked to genes, environment, and their interactions bring into question ethical issues not faced by the HapMap project, which seeks mainly to catalogue variations linked.
diet-influenced genes and genetic markers associated with chronic diseases. Such knowledge is necessary, but not sufficient, to address health disparities among all racial and ethnic populations throughout the world. Social, economic and cultural factors are critical in selecting foods and designing studies to identify causative genes and interacting environmental factors. A comprehensive nutritional genomics approach will yield short- and long-term benefits to human health by: (i) revealing novel nutrient–gene interactions; (ii) developing new diagnostic tests for adverse responses to diets; (iii) identifying specific populations with special dietary needs; (iv) improving the consistency of current definitions and methodology related to dietary assessment; (v) providing the information for developing more nutritious plant and animal foods and food formulations that promote health and prevent, mitigate, or cure disease. Achieving these goals will require extensive dialogue between scientists and the public about the nutritional needs of the individual v. groups, local food availability and customs, analysis and understanding of genetic differences between individuals and populations, and serious commitment of funds from the public and private sectors. Nutritional genomics researchers are seeking collaborations of scientists, scholars, and policy makers to maximise the collective impact on global poverty and health by advancing our knowledge of how genetics and nutrition can promote health or cause disease.

Acknowledgements

Many of the authors of the present paper have already contributed significantly to the field of nutrigenomics, our current understanding of nutrient–gene interactions, and/or the effects of diet on health. It was not possible to reference all of these contributions in the paper. Although many contributed to this paper, primary support was obtained from the National Center for Minority Health and Health Disparities Center of Excellence in Nutritional Genomics, Grant MD 00222; from the New Zealand Foundation for Research Science and Technology Nutrigenomics, Grant MD 0022; from the New Zealand Foundation of Health and Health Disparities Center of Excellence in Nutritional Genomics, Grant MD 00222; from the New Zealand Foundation of Health and Health Disparities Center of Excellence in Nutritional Genomics, Grant MD 0022; and from the European Union, Eu FP6 NoE Grant, Contract No. CT2004-505944.

References

Appendix 1

Affiliations

<table>
<thead>
<tr>
<th>Affiliation no.</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Center of Excellence in Nutritional Genomics, University of California, Davis, CA 95616, USA</td>
</tr>
<tr>
<td>2</td>
<td>Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA</td>
</tr>
<tr>
<td>3</td>
<td>National Centre for Research Excellence in Nutrigenomics, University of Auckland, Auckland, New Zealand</td>
</tr>
<tr>
<td>4</td>
<td>NuGO – TNO Quality of Life, Zeist, The Netherlands</td>
</tr>
<tr>
<td>5</td>
<td>USDA-ARS Western Human Nutrition Research Center at the University of California, Davis, CA 95616, USA</td>
</tr>
<tr>
<td>6</td>
<td>Children’s Hospital of Oakland Research Institute, Oakland, CA 94609, USA</td>
</tr>
<tr>
<td>7</td>
<td>Department of Food Science and Technology, University of California, Davis, CA 95616, USA</td>
</tr>
<tr>
<td>8</td>
<td>Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada</td>
</tr>
<tr>
<td>9</td>
<td>University of Alabama Center for Nutrient–Gene Interactions, University of Alabama, Birmingham, Alabama 35294-0005, USA</td>
</tr>
<tr>
<td>10</td>
<td>Laboratory of Nutrigenomic Medicine, Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA</td>
</tr>
<tr>
<td>11</td>
<td>Department of Biotechnology Engineering, Ben-Gurion University at the Negev, Beer-Sheeva 84105, Israel</td>
</tr>
<tr>
<td>12</td>
<td>Nestlé Research Center, Lausanne, Switzerland</td>
</tr>
<tr>
<td>13</td>
<td>Seed Biotechnology Center, Plant Reproductive Biology, University of California, Davis, CA 95616, USA</td>
</tr>
<tr>
<td>14</td>
<td>Program in International Nutrition, Department of Nutrition University of California, Davis, CA 95616, USA</td>
</tr>
<tr>
<td>15</td>
<td>Department of Health Sciences, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Rua São Francisco, 501 - Bairro São Geraldo Ijuí - RS - Brasil</td>
</tr>
<tr>
<td>16</td>
<td>Department of Philosophy, University of Guelph, Ontario, Canada</td>
</tr>
<tr>
<td>17</td>
<td>ESRC Centre for the Economic and Social Aspects of Genomics (CESAGen), Lancaster University, Lancaster LA1 4YG, UK</td>
</tr>
<tr>
<td>18</td>
<td>Institute for Food Research, Norwich NR4 7UA, UK</td>
</tr>
<tr>
<td>19</td>
<td>INSERM Avenir Nutrition dpt Hôtel-Dieu, EA3502, UMPC Paris 6, France</td>
</tr>
<tr>
<td>20</td>
<td>Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA</td>
</tr>
<tr>
<td>21</td>
<td>Genetic and Molecular Epidemiology Unit, School of Medicine, University of Valencia, Valencia, Spain</td>
</tr>
<tr>
<td>22</td>
<td>Department of Health Sciences, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Rua São Francisco, 501 - Bairro São Geraldo Ijuí - RS - Brasil</td>
</tr>
<tr>
<td>23</td>
<td>NuGO – Molecular Nutrition Unit, Technical University of Munich, Hochfeldweg 2, 85350 Freising-Weihenstephan, Germany</td>
</tr>
<tr>
<td>24</td>
<td>Department of Sociology, New York University, NY, NY 10003 and Institute for the Study of Social Change, University of California, Berkeley, CA 94720-5670, USA</td>
</tr>
<tr>
<td>25</td>
<td>Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA</td>
</tr>
<tr>
<td>26</td>
<td>Institute of Food Research, Norwich NR4 7UA, UK</td>
</tr>
<tr>
<td>27</td>
<td>Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA</td>
</tr>
<tr>
<td>28</td>
<td>CSIRO Health Sciences and Nutrition, Adelaide SA, 5000, Australia</td>
</tr>
<tr>
<td>29</td>
<td>AM Todd, Montgomeryville, PA 18936, USA</td>
</tr>
<tr>
<td>30</td>
<td>Life Science Alliance, Villanova, PA 19085, USA</td>
</tr>
<tr>
<td>31</td>
<td>Scoina, Inc., Boulder, CO 80302, USA</td>
</tr>
<tr>
<td>32</td>
<td>NuGO – Nutrition Unit Department of Clinical Medicine, Trinity College, Dublin, Republic of Ireland</td>
</tr>
<tr>
<td>33</td>
<td>Human Health Sciences, DuPont Nutrition & Health, Newark, DE, Centre of Excellence in Nutrigenomics, Penn State University, University Park, PA, USA</td>
</tr>
<tr>
<td>34</td>
<td>Department of Medical Nutrition, Center for Biotechnology, Karolinska Institutet, Novum, SE-141 86, Huddinge, Sweden</td>
</tr>
<tr>
<td>35</td>
<td>Department of Genetics, University of Alabama, Birmingham, Alabama 35294-0024, USA</td>
</tr>
<tr>
<td>36</td>
<td>Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai 200031, China</td>
</tr>
<tr>
<td>37</td>
<td>Department of Biotechnology, Yonsei University, Seoul, Korea</td>
</tr>
<tr>
<td>38</td>
<td>Department of Biostatistics and Bioinformatics, Hôpital Necker Enfants Malades, Université Paris 5, Paris, France</td>
</tr>
<tr>
<td>39</td>
<td>Department of Internal Medicine, Yonsei University, Seoul, Korea</td>
</tr>
<tr>
<td>40</td>
<td>NuGO – German Institute for Human Nutrition, Potsdam Rehbrücke, Germany</td>
</tr>
<tr>
<td>41</td>
<td>Department of Genetics, Hôpital Necker Enfants Malades, Clinique Maurice Larny, Paris, 75743 France</td>
</tr>
<tr>
<td>42</td>
<td>Cargill, Inc., Wayzata, MN 55305, USA</td>
</tr>
</tbody>
</table>
Appendix 1. Continued

<table>
<thead>
<tr>
<th>Affiliation no.</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>Center of Genetic Medicine, Center for Functional Genomics, Robert Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, IL 60611, USA</td>
</tr>
<tr>
<td>44</td>
<td>Dr von Hauner Children's Hospital, University of Munich, Germany</td>
</tr>
<tr>
<td>45</td>
<td>Interleukin Genetics, Inc., Waltham, MA 02452, USA</td>
</tr>
<tr>
<td>46</td>
<td>Nutrilite Division of Access Business Group, LLC; Buena Park, CA 90622, USA</td>
</tr>
<tr>
<td>47</td>
<td>Obesity Research Unit, Institut Louis Bugnard, French Institute of Health and Medical Research (Inserm), Toulouse University Hospitals, Paul Sabatier University, 31059 Toulouse, France</td>
</tr>
<tr>
<td>48</td>
<td>HorrResearch, Ltd, Hamilton, New Zealand</td>
</tr>
<tr>
<td>49</td>
<td>Department of Food and Nutrition, Yonsei University, Seoul, Korea</td>
</tr>
<tr>
<td>50</td>
<td>Food Systems Design, Denville, NJ 07834, USA</td>
</tr>
<tr>
<td>51</td>
<td>Department of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616, USA</td>
</tr>
<tr>
<td>52</td>
<td>NuGO – Human Nutrition Research Centre, Newcastle University, UK</td>
</tr>
<tr>
<td>53</td>
<td>Institute for Nutrisciences and Health, National Research Council of Canada, Charlottetown, Prince Edward Island, Canada C1A 5T1</td>
</tr>
<tr>
<td>54</td>
<td>AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand</td>
</tr>
<tr>
<td>55</td>
<td>Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA</td>
</tr>
<tr>
<td>56</td>
<td>Rowett Research, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK</td>
</tr>
<tr>
<td>57</td>
<td>NuGO – Dutch Innovative Cluster Nutrigenomics, Wageningen Centre for Food Science and Nutrition, Metabolism and Genomics, Wageningen University, Wageningen, The Netherlands</td>
</tr>
<tr>
<td>58</td>
<td>GenoG, Inc., St Joseph, MI 49085, USA</td>
</tr>
<tr>
<td>59</td>
<td>Unilever Corporate Research, Colworth House, Sharnbrook, Beds MK44 1PY, UK</td>
</tr>
<tr>
<td>60</td>
<td>Department of Food and Nutrition, Yonsei University, Seoul, Korea</td>
</tr>
<tr>
<td>61</td>
<td>Instituto Tecnología de Alimentos, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina</td>
</tr>
<tr>
<td>62</td>
<td>Hospital Universitario Reina Sofia, Unidad Lipidos & Arteriosclerosis, Cordoba, Spain</td>
</tr>
<tr>
<td>63</td>
<td>Food and Health Research Centre, University of Kuopio, Mediteknia, Box 1627, 70211 KUOPIO, Finland</td>
</tr>
<tr>
<td>64</td>
<td>Purina/Nestle, St Louis, MO, USA</td>
</tr>
<tr>
<td>65</td>
<td>NuGO – Nutrition and Toxicology Research Institute NUTRIM, University of Maastricht, The Netherlands</td>
</tr>
<tr>
<td>66</td>
<td>Department of Nutrition, University of California, Davis, CA 95616-8669, USA</td>
</tr>
<tr>
<td>67</td>
<td>Faculty of Medical & Health Sciences, The University of Auckland, Auckland, New Zealand</td>
</tr>
<tr>
<td>68</td>
<td>The Center for Genetics, Nutrition, and Health, Washington, DC 20009, USA</td>
</tr>
<tr>
<td>69</td>
<td>NuGO – Institute of Food Research, Norwich NR4 7UA, UK</td>
</tr>
<tr>
<td>70</td>
<td>Department of Endocrinology, Singapore General Hospital, Singapore 169608, Republic of Singapore</td>
</tr>
<tr>
<td>71</td>
<td>Department of Community Health, Wright State University School of Medicine, Dayton, OH 45401-0927, USA</td>
</tr>
<tr>
<td>72</td>
<td>Obesity Biology Unit, Liverpool Centre for Nutritional Genomics, School of Clinical Sciences, University of Liverpool, Liverpool L69 3GA, UK</td>
</tr>
<tr>
<td>73</td>
<td>Public Health Nutrition, London School of Hygiene and Tropical Medicine, London, and Instituto de Nutricion y Tecnologia de los Alimentos (INTA), University of Chile, Santiago, Chile</td>
</tr>
<tr>
<td>74</td>
<td>Department of Internal Medicine, University of Illinois College of Medicine, Urbana, IL 61821, USA</td>
</tr>
<tr>
<td>75</td>
<td>Neurobiology, Physiology, and Behavior Section of Division of Biological Sciences, University of California, Davis, CA 95616, USA</td>
</tr>
<tr>
<td>76</td>
<td>Viocare Technologies, Inc., Princeton, NJ 08542, USA</td>
</tr>
<tr>
<td>77</td>
<td>Department of Epidemiology and Biostatistics and Division of Neuroepidemiology, University of California, San Francisco, CA 94143-0112, USA</td>
</tr>
<tr>
<td>78</td>
<td>Food and Health Research, London N1 7AB, UK</td>
</tr>
<tr>
<td>79</td>
<td>National Center for Toxicological Research/FDA, Jefferson, AR 72079, USA</td>
</tr>
<tr>
<td>80</td>
<td>BioMarker Pharmaceuticals, Inc., Campbell, CA 95008, USA</td>
</tr>
<tr>
<td>81</td>
<td>LIM&BIO, EPML-CNRS IAPuces, Université Paris XIII, 74 rue Marcel Cachin 93017 Bobigny Cedex, France</td>
</tr>
</tbody>
</table>