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Abstract: In statistical practice, incomplete measurement sequences are the rule

rather than the exception. Fortunately, in a large variety of settings, the stochas-

tic mechanism governing the incompleteness can be ignored without hampering

inferences about the measurement process. While ignorability only requires the

relatively general missing at random assumption for likelihood and Bayesian in-

ferences, this result cannot be invoked when non-likelihood methods are used. A

direct consequence of this is that a popular non-likelihood-based method, such as

generalized estimating equations, needs to be adapted towards a weighted version

or doubly-robust version when a missing at random process operates. So far, no

such modification has been devised for pseudo-likelihood based strategies. We pro-

pose a suite of corrections to the standard form of pseudo-likelihood to ensure its

validity under missingness at random. Our corrections follow both single and dou-

ble robustness ideas, and is relatively simple to apply. When missingness is in the

form of dropout in longitudinal data or incomplete clusters, such a structure can

be exploited toward further corrections. The proposed method is applied to data

from a clinical trial in onychomycosis and a developmental toxicity study.

Key words and phrases: Double robustness, frequentist inference, generalized esti-

mating equations, ignorability, inverse probability weighting, likelihood, missing at

random, missing completely at random, pseudo-likelihood.

1. Introduction

The applied statistician often encounters correlated outcome data. Common
situations include multivariate, clustered, and longitudinal data. Frequently in
such settings not all of the planned measurements of subject i’s outcome vector yi

are actually observed, turning the statistical analysis into a missing-data problem.
For example, in a longitudinal study, a subject’s response vector may terminate
early for a number of reasons outside the control of the investigator. It is almost
always necessary to reflect on the nature of the missingness process and its impact
on inferences.

When referring to the missing-value, or non-response, process we use termi-
nology of Little and Rubin (2002, Chap. 6). A non-response process is said to be
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missing completely at random (MCAR) if missingness is independent of both un-
observed and observed data, and missing at random (MAR) if, conditional on the
observed data, the missingness is independent of the unobserved measurements.
A process that is neither MCAR nor MAR is termed non-random (MNAR).

Early work on missing values was largely concerned with the practical con-
sequence of missing-data induced imbalance (Little and Rubin (2002), Molen-
berghs and Kenward (2007), and Kenward and Molenberghs (2009)). Over the
last three decades, a number of developments have taken place, allowing the use
of MAR based methods. These include multiple-imputation strategies (Rubin
(1987)), and so-called direct-likelihood or direct Bayesian analysis. These rest
on ignorability , the property ensuring that such analyses are valid under MAR,
supplemented with mild regularity conditions, even without explicitly modeling
the missing-data mechanism, provided that all incomplete sequences are sub-
jected to analysis (Rubin (1976), Little and Rubin (2002), Molenberghs and
Kenward (2007), Fitzmaurice et al. (2009)). The practical implication for likeli-
hood inference is that, as soon as a module is available to handle measurement
sequences of unequal length, valid inferences are obtained without any additional
work. Thanks to the availability of flexible software, linear and generalized linear
mixed models can be fitted to incomplete sets of data.

For non-Gaussian outcomes, apart from random-effects models, non-likeli-
hood models have also become popular (Molenberghs and Verbeke (2005)). Be-
cause these models specify, in principle, the full likelihood, they can be used
to analyze incomplete data as well, under MAR assumptions and making use
of the ignorability property. However, marginal models for non-Gaussian data
imply complex and hard to manipulate likelihoods. In many practical settings in-
volving outcome sequences of moderate to large length, direct likelihood may be
prohibitive. Some authors have voiced concern over these models’ vulnerability
to mis-specification. In response, a number of alternatives have been formulated,
the most popular one undoubtedly being generalized estimating equations (GEE;
Liang and Zeger (1986), Diggle et al. (2002), Molenberghs and Verbeke (2005)).
By transforming the score equations into estimating equations, this method es-
sentially allows one to confine attention to the specification of the first moments
of the outcome sequence only (i.e., the mean structure), thereby circumventing
the need to address the association structure while still leading to valid inferences.
A more detailed review of GEE is provided in Section 3. A number of variations
to this theme exist, such as GEE2 (also specifying the second moments; Liang,
Zeger, and Qaqish (1992) and alternating logistic regressions (Carey, Zeger, and
Diggle (1993)). When data are incomplete, GEE suffers from its frequentist
nature and is in its basic form valid only under MCAR. Therefore, Robins, Rot-
nitzky, and Zhao (1995) have developed so-called weighted generalized estimating
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equations (WGEE), as well as a number of refinements and extensions in subse-
quent papers, to allow usage of GEE under not only MAR, but even under MNAR
settings. The method rests on Horvitz-Thompson ideas (Cochran (1977)), weigh-
ing contributions by the inverse probability of being observed. The method is
elegant and enjoys good properties, but requires specification of a model for the
weights. More recently, these WGEE have been extended toward so-called dou-
bly robust estimating equations, where the weighting idea is supplemented with
the use of a predictive model for the unobserved responses, given the observed
ones. Excellent reviews can be found in Scharfstein, Rotnitzky and Robins (1999)
and, more recently, Van der Laan and Robins (2003), Bang and Robins (2005),
and Rotnitzky (2009).

Next to GEE, pseudo-likelihood methods (PL; le Cessie and van Houwelin-
gen (1991), Geys, Molenberghs and Lipsitz (1998), Geys, Molenberghs and Ryan
(1999), Aerts et al. (2002)) have become popular as an alternative to full like-
lihood, and therefore also to GEE and GEE2. Rather than replacing the score
equations with alternative functions, the likelihood itself is replaced by a more
tractable function. A detailed discussion is given in Section 3.3. In so-called
marginal pseudo-likelihood, the likelihood for an ni-dimensional response vector
is replaced by the product of all pairs, or all triples, or all p-tuples (with p a pre-
specified number, corresponding to the highest order of association that is still
of scientific interest) of outcomes. Computational and statistical performance
(e.g., efficiency) have been shown to range from acceptably good to excellent.
Evidently, conditional versions of pseudo-likelihood are also possible, where the
contributions take the form of conditional densities of a subset of outcomes within
a sequence, given another subset of outcomes.

Because pseudo-likelihood is not a full likelihood method, there is no a priori
guarantee that the method would be valid under MAR. (Note that Rubin (1976)
provided sufficient conditions only, without claiming their necessity.) In this
paper, we show that a correction is necessary to allow for the use of pseudo-
likelihood, and that both singly robust as well as doubly robust versions of PL
can be considered, including from a practical standpoint.

Of course, whatever MAR developments are made, one can never exclude the
operation of an MNAR mechanism. A number of modeling strategies have been
proposed, but at the same time it has been reported that such strategies are very
sensitive to unverifiable modeling assumptions. A number of sensitivity analysis
tools have been proposed, but because this paper is devoted to ignorability in
the PL context, MNAR and the surrounding issues are considered to be outside
of its scope. For reviews on the sensitivity issues, see Molenberghs and Kenward
(2007) and Fitzmaurice et al. (2009).
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General concepts are formally introduced in Section 2. The likelihood, GEE,
and pseudo-likelihood inferential paradigms are sketched in Section 3. Pseudo-
likelihood approaches to incomplete data are presented in Section 4. The pro-
posed methods are applied to two case studies in Section 5.

2. Concepts

Let the random variable Yij denote the response for the ith study subject at
the jth occasion (i = 1, . . . , N , j = 1, . . . , ni). Independence across subjects is
assumed. We group the outcomes into a vector Y i = (Yi1, . . . , Yini)

′ and define a
further vector of missingness indicators Ri = (Ri1, . . . , Rini)

′ with Rij = 1 if Yij is
observed and 0 otherwise. In the specific case of dropout in longitudinal studies,
Ri can be replaced by the dropout indicator Di = 1 +

∑ni
j=1 Rij . The vector Y i

is divided into observed (Y o
i ) and missing (Y m

i ) components, respectively.
As stated in the introduction, one needs to consider the density of the full

data f(yi, ri|β, ψ), where the parameter vectors β and ψ describe the measure-
ment and missingness (non-response) processes, respectively. When appropriate,
we introduce separate association parameters α. Covariates are assumed to be
measured and grouped into xi although, for notational simplicity, this is some-
times dropped. The full density function can be factored as (Rubin (1976), Little
and Rubin (2002)):

f(yi, ri|xi,β, ψ) = f(yi|xi, β)f(ri|xi, yi,ψ). (2.1)

The first factor is the marginal density of the measurement process, and the
second one is the density of the missingness process, conditional on the outcomes.

3. Inferential Frameworks

3.1. Likelihood

When data are incomplete, subject i’s likelihood contribution is

Li =
∫

f(yi|β)f(ri|yo
i , y

m
i , ψ) dym

i . (3.1)

In general, (3.1) does not simplify but, under MAR, we obtain Li = f(yo
i |β)

f(ri|yo
i ,ψ). Hence, likelihood and Bayesian inferences for the measurement

model parameters β can be made without explicitly formulating the missing-data
mechanism, provided that some mild regularity conditions hold (Rubin (1976)).
It is precisely this result that makes so-called direct likelihood analyses, valid
under MAR, appealing in a variety of settings (Molenberghs et al. (2004)).
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3.2. Generalized estimating equations

A detailed account in given in the Appendix. When inferences focus on
population averages, one can directly model all of the marginal expectations
E(Yij) = µij in terms of covariates of interest, through h(µij) = x′

ijβ, with
h(·) some known link function. The marginal variance depends on the marginal
mean according to Var(Yij) = v(µij)φ, where v(·) is a known variance function
and φ is a scale parameter. The correlation between Yij and Yik is expressed
via a correlation matrix Ri(α) where α is a vector of nuisance parameters; the
covariance matrix Vi = Vi(β, α) = φA

1/2
i RiA

1/2
i , with Ai the diagonal matrix of

marginal variances. Generalized estimating equations take the form (Liang and
Zeger (1986))

U(β) =
N∑

i=1

∂µi

∂β′ V
−1
i (yi − µi) = 0. (3.2)

The variance obtains from the information sandwich

Var (β̂) = I−1
0 I1I

−1
0 , (3.3)

where

I0 =
N∑

i=1

∂µi
′

∂β
V −1

i

∂µi

∂β′ , I1 =
N∑

i=1

∂µi
′

∂β
V −1

i Var(yi)V −1
i

∂µi

∂β′ . (3.4)

As stated earlier, GEE is not likelihood based and therefore ignorability (Rubin
(1976)) cannot be invoked to establish the method’s validity under MAR. Thus,
apart from special cases, GEE in its basic form is valid only under MCAR.

In response to this, Robins, Rotnitzky, and Zhao (1995) proposed a class
of so-called weighted estimating equations. The idea is to weight each subject’s
contribution to the GEE by the inverse probability, either of being fully observed,
or of being observed up to a certain time. Let πi be the probability for subject
i to be completely observed, and π′

i the probability for subject i to drop out on
occasion di. These can be written as

πi =
ni∏

`=2

(1 − pi`), π′
i =

[
di−1∏
`=2

(1 − pi`)

]
· pidi

, (3.5)

where pi` = P
(
Di = `|Di ≥ `, Yi ` , Xi `

)
are the component probabilities of drop-

ping out at occasion `, given the subject is still in the study, the covariate history
Xi ` , and the outcome history Yi ` . In such a case, one can opt either for WGEE
based on the completers only:

U(β) =
N∑

i=1

R̃i

πi

∂µi

∂β′ V
−1
i (yi − µi) = 0, (3.6)
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with R̃i = 1 if a subject is fully observed and 0 otherwise, or, upon using (3.5),
for WGEE using all subjects:

U(β) =
N∑

i=1

1
π′

i

∂µo
i

∂β′ (V
o
i )−1(yo

i − µo
i ) = 0. (3.7)

Here the superscript ‘o’ indicates the portion corresponding to the observed data
in the corresponding matrix or vector. Of course, with (3.6), the incomplete
subjects also contribute through the model for the dropout probabilities πi.

As stated earlier, (3.6) has been extended to so-called double robustness
(Scharfstein, Rotnitzky and Robins (1999), Van der Laan and Robins (2003),
Bang and Robins (2005)). We focus on longitudinal data with monotone miss-
ingness on the one hand and on incomplete clustered data on the other, each
time under MAR. Double robustness is taken up in Section 4.1.

3.3. Pseudo-likelihood

Using Arnold and Strauss (1991), we introduce pseudo-likelihood, the princi-
pal idea of which is to replace a numerically challenging joint density by a simpler
function assembled from suitable factors.

3.3.1. Definition and properties

Let S be the set of all 2n − 1 vectors of length n consisting solely of zeros
and ones, with each vector having at least one non-zero entry. Denote by y

(s)
i

the subvector of yi corresponding to the components of s that are non-zero. The
associated joint density is fs(y

(s)
i ; β). To define a pseudo-likelihood function,

one chooses a set δ = {δs|s ∈ S} of real numbers with at least one non-zero
component. The log of the pseudo-likelihood is then

p` =
N∑

i=1

∑
s∈S

δs ln fs(y
(s)
i ;β). (3.8)

Adequate regularity conditions have to be invoked to ensure that (3.8) can be
maximized by solving the pseudo-likelihood (score) equations, the latter obtained
by differentiating the logarithmic pseudo-likelihood and equating its derivative to
zero. These regularity conditions are spelled out in the Appendix. In particular,
when the components in (3.8) result from a combination of marginal and con-
ditional distributions of the original distribution, then a valid pseudo-likelihood
function results. In particular, the classical log-likelihood function is found by
setting δs = 1 if s is the vector consisting solely of ones, and 0 otherwise. More
details can be found in Varin (2008), Lindsay (1988), and Joe and Lee (2008).
Note that Joe and Lee (2008) use weighting for reasons of efficiency in pairwise
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likelihood, similar in spirit to Geys, Molenberghs and Lipsitz (1998), but differ-
ently from its use here, which focuses on bias correction when data are incomplete.
Another important reference is Cox and Reid (2004).

Be θ0 the true parameter. Under suitable regularity conditions (see also
Arnold and Strauss (1991) Geys, Molenberghs and Ryan (1999) Aerts et al.
(2002)), it can be shown that maximizing (3.8) produces a consistent and asymp-
totically normal estimator β̃0 so that

√
N(β̃N −β0) converges in distribution to

Np[0, I0(β0)
−1I1(β0)I0(β0)

−1]. (3.9)

Precise statements and additional discussion are given in Supplementary Mate-
rials B and C.

4. Pseudo-likelihood For Incomplete Data

In the above, it is assumed that data are completely observed according to
the study design. Otherwise, PL is valid under the assumption of an MCAR
mechanism operating, but this does not generally extend to MAR mechanisms,
excepting a limited number of special cases, such as full exchangeability, as is
shown in Section 4.3. The reason for this is twofold. First, in line with Kenward
and Molenberghs (1998), even likelihood methods commonly have frequentist
elements, such as the expected information matrix. Second, because pseudo-
likelihood is not a genuine likelihood but rather a modification of it, it no longer
enjoys the results derived for the likelihood by Rubin (1976). This second issue
is shared with GEE.

Unlike for GEE, little work has been done for PL estimation with incomplete
data. A noteworthy exception is Parzen et al. (2006) who apply PL ideas not
just to the vector of outcomes, but to the entire vector of outcomes, covariates,
and missing-data indicators. In what follows, we follow a different route, using
inverse probability weighting and double robustness ideas (Scharfstein, Rotnitzky
and Robins (1999), Van der Laan and Robins (2003), Bang and Robins (2005),
and Rotnitzky (2009)).

We first present general expressions and establish their validity, and then
apply them to pseudo-likelihood. This implies that they hold, beyond pseudo-
likelihood, for a large class of estimating equations, in line with the work of
Robins, Rotnitzky, and colleagues. Thereafter, we pay particular attention to
two special PL families: (1) marginal and (2) full conditional. In the first case,
the multivariate normal and models for binary data are considered in more detail.
In the second case, an exponential family model for binary clustered data is
scrutinized further.
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While our results are general, their implementation for general missing-data
patterns is more complicated than when missingness is confined to dropout, or
arises in a clustered-data setting.

4.1. General forms of estimating equations for incomplete data

Assume that we have a set of estimating equations, whether resulting from
full likelihood or pseudo-likelihood, of a conventional generalized estimating equa-
tions type, or beyond:

U =
N∑

i=1

U i(β|Y i, xi)
notation=

N∑
i=1

U i(Y i). (4.1)

Assume that E(U) = 0.
First consider two obvious ‘naive’ estimating equations that originate from

(4.1):

Unaive, CC =
N∑

i=1

R̃iU i(Y i), (4.2)

Unaive, AC =
N∑

i=1

U i(Y o
i ). (4.3)

Here, R̃i = 1 if subject i is fully observed and 0 otherwise, and U i(Y o
i ) is the

score pertaining the the observed outcomes on subject i. Further, ‘naive’ refers to
the fact that these estimating equations would generally be biased under MAR;
‘CC’ denotes complete cases, i.e., subjects with all measurements taken, and
‘AC’ stands for available cases. For the latter, it is necessary to derive the
score contribution of the sub-vector of observed components of Y i. Because this
involves integration over the incomplete data, it is trivial in the marginal case
but less so, for example, for conditionally specified PL functions.

Singly robust versions of (4.2) and (4.3) are:

U IPWCC =
N∑

i=1

R̃i

πi
U i(Y i), (4.4)

U IPWAC =
N∑

i=1

1
π′

i

· EY m|yoU i(Y i), (4.5)

U IPWAC,seq =
N∑

i=1

ni∑
j=1

Rij

πij
· Ui(Yij |Y i j ). (4.6)
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Here Rij is the indicator for a subject to be observed at occasion j, and πij is the
probability of being observed up to and including occasion j, πij =

∏j
`=1(1−pi`).

Further, Y i j is shorthand for the history (Yi1, . . . , Yi,j−1), and the corresponding
function Ui(Yij |Y i j ) is the score for the outcome at occasion j given the history.
Recall that πi and π′

i have been defined in (3.5). Doubly robust versions are

U IPWCC,dr =
N∑

i=1

[
R̃i

πi
Ui(Y i) +

(
1 − R̃i

πi

)
EY m|yoU i(Y i)

]
, (4.7)

U IPWAC,dr =
N∑

i=1


ni∑

j=1

[
Rij

πij
· U i(Yij |Y i j )

+
(

1 − Rij

πij

)
· EY m|yoU i(Yij |Y i j )

]}
. (4.8)

Here U i(Yij |Y i j ) is the score pertaining to outcome Yij given the history, denoted
by Y i j . It is easy to show single and double robustness for the above definitions.
Details can be found in Supplementary Materials D and E.

The predictive model may show varying degrees of complexity, depending on
the type of PL function considered. For example, marginal models for continuous
data, marginal models for binary data, and conditional models for binary data,
may all pose specific challenges. This means that, in some settings, the predic-
tive model might be of higher dimension than the components of the actual PL
function and/or contain components of the full likelihood that are not needed for
it. While this may seem to defeat the purpose of using PL methodology, there
are several practically useful strategies to handle this. To see this, it helps to
distinguish between two uses of the likelihood within the framework: estimation
and prediction. It is predominantly for estimation that PL leads to important
economies by not having to manipulate the full likelihood; for prediction, several
alternative strategies are available.

First, even though using the entire joint distribution is often prohibitive for
estimation, it may be tractable for prediction purposes if all the necessary pa-
rameters are obtained from the likelihood. An example is provided by a full
conditional PL, with a counterexample being a purely marginal PL for binary
data, consisting of lower-order margins only. Second, a sufficiently rich predic-
tive model could be used, such as logistic regression for example. Evidently, such
a predictive model would, strictly speaking, be incompatible with the actual
model under consideration but, as Bang and Robins (2005) point out, virtually
all parametric models are mis-specified to some extent. In this sense, a reason-
able predictive model, coupled with a sensible missingness model for the weights,
often considerably increases efficiency and reduces bias. Bang and Robins’ sim-
ulation results were encouraging in this respect. In a similar vein, with multiple
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imputation, Meng (1994) shows that so-called uncongenial imputation models
can still lead to inferences that are practically acceptable. We return to this in
Section 4.3.

4.2. Precision estimation

General expressions for the precision of the estimates obtained using gener-
alized estimating equations and pseudo-likelihood are given in (3.3) and (3.9),
respectively.

When the single or doubly robust versions of the previous sections are used,
with a parametric model for dropout, then the uncertainty induced by estimation
of the ψ parameters needs to be accommodated. As shorthand for any of the
forms (4.4), (4.5), (4.7), and (4.8), we write U =

∑N
i=1 V i(β), and the parameters

ψ are estimated from score or estimating equations W =
∑N

i=1 W i(ψ). The
entire score for subject i is Si = (V ′

i,W
′
i)
′. The asymptotic variance-covariance

matrix can then be consistently estimated by Î0
−1

Î1Î0
−1

, with

I0 =
N∑

i=1

 ∂V i

∂ β
∂V i

∂ ψ

0 ∂W i

∂ ψ

 , (4.9)

I1 =
N∑

i=1

Si(β̂, ψ̂)S′
i(β̂, ψ̂). (4.10)

See also Bang and Robins (2005) and Rotnitzky (2009).

4.3. The case of pseudo-likelihood

In the previous section, we focused on estimating equations in the broadest
sense. When we turn to pseudo-likelihood, the generic forms can be made more
specific and expanded further:

Unaive, CC =
N∑

i=1

Ri

∑
s∈S

δsU s(Y
(s)
i ), (4.11)

Unaive, CS =
N∑

i=1

∑
s∈S

Ri,sδsU s(Y
(s)
i ), (4.12)

Unaive, AC =
N∑

i=1

∑
s∈S

δsEY m|yoU s(Y
(s)
i ), (4.13)

U IPWCC =
N∑

i=1

R̃i

πi
·
∑
s∈S

δsU s(Y
(s)
i ), (4.14)



PSEUDO-LIKELIHOOD ESTIMATION FOR INCOMPLETE DATA 197

U IPWCS =
N∑

i=1

∑
s∈S

Ri,s

πi,s
· δsU s(Y

(s)
i ), (4.15)

U IPWAC =
N∑

i=1

∑
s∈S

δs

ni∑
j=1

I(j ∈ s) · Rij

πij
· U s(Yij |Y (s)

i j
), (4.16)

U IPWCC,dr =
N∑

i=1

{
R̃i

πi

[∑
s∈S

δsU s(Y
(s)
i )

]

+

(
1 − R̃i

πi

)
· EY m

i |Y o
i

[∑
s∈S

δsU s(Y
(s)
i )

]}
, (4.17)

U IPWCS,dr =
N∑

i=1

∑
s∈S

{
Ri,s

πi,s
· δsU s(Y

(s)o
i )

+
(

1 − Ri,s

πi,s

)
· δsEY m

i |Y o
i
U s(Y

(s)
i )

}
, (4.18)

U IPWAC,dr =
N∑

i=1

∑
s∈S

δs

ni∑
j=1

I(j ∈ s)
[
Rij

πij
· U s(Yij |Y (s)

i j
)

+
(

1 − Rij

πij

)
· EY m

i |Y o
i
U s(Yij |Y (s)

i j
)
]

, (4.19)

where Ri, πi, Rij , and πij retain their former meaning. Similarly, Ri,s and πi,s are,
respectively, the indicator for, and the probability of, observing the corresponding
sub-vector Y

(s)
i of Y i. Further, ‘CS’ stands for ‘complete sets’.

When the outcome sequence is fully exchangeable, in the sense that the
distribution of any sub-vector of Y i is that of any other sub-vector of equal
length or a permutation thereof, then U IPWCS,dr simplifies considerably:

EY m
i |Y o

i
U s(Y

(s)
i ) = EY m

i |Y o
i

[
U s(Y

(s)o
i ) + U s(Y

(s)m
i |Y (s)o

i )
]
.

Now, the expectation over the second term on the right side can be replaced
by E

Y (s)m
i |Y (s)o

i

U s(Y
(s)m
i |Y (s)o

i ), due to full exchangeability and the fact that
the score contributions arise from derivatives of sub-vectors of Y i. Upon this
replacement, the conditional expectation vanishes. As a consequence, under ex-
changeability, there is no need to explicitly model the missing data mechanism.
Hence, (4.18) reduces to

U IPW, exch =
N∑

i=1

∑
s∈S

δsU s(Y
(s)o
i ). (4.20)
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Thus, in this special but important case, neither the weights nor the conditional
expectation are necessary to obtain valid inferences.

We now focus on special cases of pseudo-likelihood. First, we consider the
case of pairwise pseudo-likelihood, and then apply this to normally distributed
and binary data. Second, we consider a conditional pseudo-likelihood for binary
outcomes.

Specific details for pairwise and full conditional pseudo-likelihood are given
in Supplementary Material G.

5. Case Studies

With our case studies we aim to illustrate both marginal and conditional
pseudo-likelihood, and similarities and differences between the various types of
pseudo-likelihood.

5.1. A clinical trial in onychomycosis

The data come from a randomized, double-blind, parallel group study for the
comparison of two oral treatments (coded as A and B) for toenail dermatophyte
onychomycosis (TDO), described in full detail by De Backer et al. (1996). See
also Verbeke and Molenberghs (2000) and Molenberghs and Verbeke (2005). The
aim was to compare the efficacy and safety of 12 weeks of continuous therapy
with treatment A, or with treatment B. We consider data from 146 patients in
arm A and 148 in arm B, for whom the big toenail was the target nail. Patients
were assessed at 0, 1, 2, 3, 6, 9, and 12 months. The response is the unaffected
nail length, measured from the nail bed to the infected part of the nail, which is
always at the free end of the nail, expressed in mm.

The design and data type of this study were sufficiently simple to allow
for full likelihood, providing a basis for comparison with the proposed pseudo-
likelihood methods. We used several forms of pairwise marginal likelihood, as
described in Section G.1, in particular with the multivariate normal versions as
in Section G2.

For the unaffected nail length Yij , measured at time occasion j for patient i,
we specified a linear mixed-effects model:

Yij |bi ∼ N [bi + β0 · I(Ti = 0) + β1 · I(Ti = 1) + β2tj · I(Ti = 0)

+β3tj · I(Ti = 1), σ2], (5.1)

bi ∼ N(0, τ2),

where Ti = 0 if patient i received standard treatment and 1 for experimental
therapy (i = 1, . . . , 298). Further, tj is the time at which the jth measurement
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Table 1. Toenail Data. (Unaffected nail length outcome). Parameter esti-
mates (purely model-based standard errors; empirically corrected standard
errors) for full likelihood, and naive, singly robust, and doubly robust pair-
wise likelihood.

Effect Par. U full.lik. Unaive, CC Unaive, CP Unaive, AC

Int.A β0 2.52 (0.247;0.228) 2.77 (0.086;0.272) 2.70 (0.081;0.248) 2.56 (0.075;0.231)
Int.B β1 2.77 (0.243;0.249) 2.82 (0.083;0.271) 2.81 (0.078;0.254) 2.77 (0.073;0.250)
Sl.A β2 0.56 (0.023;0.045) 0.55 (0.011;0.046) 0.56 (0.011;0.045) 0.57 (0.011;0.045)
Sl.B β3 0.61 (0.022;0.043) 0.60 (0.011;0.044) 0.61 (0.011;0.043) 0.61 (0.010;0.043)
R.I.v. τ2 6.49 (0.628;0.633) 6.71 (0.226;0.731) 6.67 (0.213;0.680) 6.41 (0.200;0.645)
Res.v. σ2 6.94 (0.248;0.466) 7.31 (0.150;0.520) 7.13 (0.140;0.483) 7.05 (0.137;0.472)
Effect Par. Uwt.lik. U IPWCC U IPWCP U IPWAC

Int.A β0 1.85 (0.092;0.303) 2.71 (0.074;0.266) 2.77 (0.079;0.270) 2.59 (0.069;0.237)
Int.B β1 2.65 (0.089;0.517) 2.78 (0.073;0.265) 2.82 (0.077;0.269) 2.77 (0.069;0.249)
Sl.A β2 0.68 (0.014;0.068) 0.54 (0.010;0.046) 0.53 (0.010;0.044) 0.55 (0.010;0.045)
Sl.B β3 0.73 (0.013;0.101) 0.60 (0.010;0.044) 0.59 (0.010;0.044) 0.60 (0.010;0.043)
R.I.v. τ2 6.21 (0.235;1.032) 6.66 (0.195;0.717) 6.72 (0.209;0.753) 6.44 (0.187;0.669)
Res.v. σ2 5.05 (0.088;0.603) 7.29 (0.130;0.513) 7.59 (0.142;0.562) 7.35 (0.130;0.514)
Effect Par. U IPWCC,dr = U IPWCP,dr = U IPWAC,dr

Int.A β0 2.52 (0.074;0.226)
Int.B β1 2.77 (0.072;0.247)
Sl.A β2 0.56 (0.011;0.046)
Sl.B β3 0.61 (0.011;0.044)
R.I.v. τ2 6.23 (0.197;0.636)
Res.v. σ2 7.09 (0.139;0.483)

is taken (j = 1, . . . , 7). Finally, I(·) is an indicator function. Parameter esti-
mates and standard errors, obtained through maximum likelihood and pairwise
likelihood, are presented in Table 1.

Observe that all point estimates are relatively close to each other, except for
some deviation in the weighted likelihood analysis, a weighted version of conven-
tional likelihood analysis. Note that, with likelihood, there is little rationale for
using weights, here leading to a worse fit.

The purely model-based standard errors are meaningful only in the stan-
dard likelihood case, where they are reasonable close to the empirically corrected
ones. They are not meaningful in the weighted analyses, as they are based on
the incorrect assumption that the weights represent replication at the subject (or
pair) level. Furthermore, naive standard errors in the pseudo-likelihood case are
based on the entirely incorrect assumption that every pair results from indepen-
dent replication whereas, for example in a completely observed sequence every
measurement is used in six different pairs. It is important therefore to use the
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empirically corrected standard errors for inferential purposes.
It is clear that using complete cases only resulted in a small loss of efficiency

in the naive and IPW cases, whereas the available-case approach makes optimal
use of the data. Turning to the doubly robust versions, not only was it confirmed
that all three coincide, they were also very close to full likelihood, both in terms
of point estimates and precision.

In a relatively large dataset with continuous outcomes, like this one, treating
the weights in the weighted analysis as either fixed or random leads to the same
standard errors. In the next example, however, this is not the case. The weights
were based on a logistic model for dropout in the toenail study:

logit[P (Di = j|Di ≥ j, Ti, tj , Yi,j−1)]

= −3.17(0.24) − 0.28(0.24)Ti + 0.072(0.036)tj − 0.035(0.036)Yi,j−1. (5.2)

Note that, while the effect of the previous measurement was not significant, the
weighted analyses were different from the unweighted ones. In this sense, it is
an advantage that the doubly robust versions obviate the need for using weights,
as long as the expectations are included. This is not always the case, as it is a
consequence of the pairwise marginal nature of the likelihood contributions.

5.2. The national toxicology program data

This developmental toxicity study investigated the dose-response relation-
ship in mice of the potentially hazardous chemical compound di(2-ethylhexyl)
phthalate (DEHP), used in vacuum pumps (Windholz (1983)) and as plasticizers
for numerous plastic devices made of polyvinyl chloride. The study was con-
ducted in timed-pregnant mice during the period of major organogenesis (Tyl et
al. (1988)). The doses selected for the study were 0, 0.025, 0.05, 0.1, and 0.15%,
corresponding to a DEHP consumption of 0, 44, 91, 191, and 292 mg/kg/day,
respectively. The dams were sacrificed, slightly prior to normal delivery, and the
status of uterine implantation sites recorded. A total of 1082 live fetuses were
examined for ‘malformation,’ coded as a binary indicator. Fetuses were clustered
within mothers; hence the implied association needs to be accommodated in the
analysis. Summary data can be found in Molenberghs and Verbeke (2005).

We fit the models described in Section G.4 to the binary malformation out-
come NTP data, with further specification: θi = β0 + β1xi and δi = βd. Here
xi is rescaled dose, in the sense that the DEHP consumption doses of 0, 44,
91, 191, and 292 mg/kg/day are replaced by unit-interval standardized values
0.0000, 0.1507, 0.3116, 0.6541, and 1.0000, respectively. Given the conditionally
specified nature of the model, the conditional version of PL was a more natural
choice than the marginal pairwise version.
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Table 2. Developmental Toxicity Study (DEHP). Parameter estimates (stan-
dard errors) for full likelihood, and naive, singly robust, and doubly robust
pseudo-likelihood.

Effect Par. U full.lik. U full.lik., AC Unaive, CC Unaive, AC

Int. β0 -1.992 (0.340) -2.460 (0.535) -1.772 (2.005) -1.749 (0.344)
Dose βd 2.955 (0.510) 3.207 (0.674) 2.363 (2.644) 2.925 (0.552)
Assoc. βa 0.164 (0.027) 0.053 (0.041) 0.163 (0.155) 0.200 (0.029)
Effect Par. U IPWCC U IPWAC U IPWAC,exch

Int. β0 -2.888 (3.825) -1.335 (0.831) -1.470 (0.164)
Dose βd 2.145 (5.969) 4.588 (1.021) 2.225 (0.293)
Assoc. βa 0.130 (0.275) 0.314 (0.055) 0.184 (0.022)

We considered, apart from full likelihood, naive CC, naive AC, IPWCC,
IPWAC, and exchangeable IPWAC. Given the equivalence of the latter to double
robustness in the case of exchangeability, there was no need to consider further
the other doubly robust versions.

Estimated parameters and standard errors are presented in Table 2. For
IPWAC and IPWCC, where explicit models for the weights were needed, we
considered (S.62), with parameter estimates (standard errors), ψ̂0 = 1.960(0.110),
ψ̂1 = 0.018(0.419), and ψ̂2 = −2.558(0.391).

There are 23 complete litters in the data, where the number of implants
equals the number of viable fetuses, out of 108 litters with at least one viable
fetus. This dramatic reduction of sample size is reflected in greatly inflated
standard errors from Unaive, CC and U IPWCC, up to the point where an otherwise
highly significant dose effect is wiped out. Also, the weighted version U IPWAC

shows a decreased efficiency. In contrast, U IPWAC, exch is efficient and, while
doubly robust, does not need an explicit model for the missingness probabilities;
hence, it may be preferable.

While in this case it is obviously possible to specify full likelihood, there
may be reasons to select one of the singly or doubly robust available-case ver-
sions. Indeed, in the case of likelihood, the model parameters are interpreted
conditionally on the number of viable fetuses, and this itself is driven by the dose
assignment, an experimental variable. The available-case versions take into ac-
count the number of implants, mi. Of course, an available-case likelihood version
is in principle possible as well; this was done, labeled U full.lik., AC, and based on
the following modification of (S.49):

fi(yi;Θi, ni) =
mi−ni∑
k=0

(
mi

zi + k

)
×

× exp {θi(zi + k) − δi(zi + k)(mi − zi + k) − A(Θi)} . (5.3)
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Again, this expression has the advantage of properly acknowledging the discrep-
ancy between the number of implants and the number of viable fetuses.

6. Concluding Remarks

In this paper, we have laid out a general framework for handling incomplete
data predominantly within the pseudo-likelihood setting. Our methodology, ap-
plicable under MAR, employs ideas from inverse probability weighting and dou-
ble robustness. After general development, we focused on the pseudo-likelihood
setting, elucidating in detail specific marginal and conditional instances.

Having shown that, under MAR, naive complete-case and available-case es-
timating equations are biased, we have formulated several alternative versions
that overcome this problem, including both singly and doubly robust forms. The
second of these requires evaluation of conditional expectations of the unobserved
outcomes given the observed ones, which in turn may require joint distributions
of a higher order than those used in the singly robust version. While at first
sight this seems to undermine the appeal of pseudo-likelihood, the rôle of such
joint distributions is solely to construct expectations, and with considerably less
computational burden. Sometimes, this might still be impractical, but then the
model-based expectation can be replaced by a simpler, but sufficiently rich, model
in line with Bang and Robins (2005) and Meng (1994).

While in general doubly robust versions require the specification of both
a weight and a predictive model, considerable simplification applies to the im-
portant special case of marginal pairwise (or, more generally, n-way) likelihood,
also known as composite likelihood. In this case, the doubly robust versions
merely require the formulation of a predictive model. In many models these
are relatively easy to compute or approximate, as was illustrated for the normal
and binary cases. This is a strong asset of the combined use of doubly-robust
and composite likelihood ideas. In some cases, though, the formulation of the
margins (pairs) may be challenging in its own right. For example, when the
conditionally specified model of Section G.4 is used, formulating the full condi-
tional pseudo-likelihood is much easier than the pairs. Thus, there is a tradeoff
between simplicity in terms of weights and predictive terms on the one hand, and
the pseudo-likelihood contributions themselves on the other.

For the estimation of precision we have indicated how a conventional sandwich-
type estimator can be used. Should the derivation of explicit forms be deemed
cumbersome, one could resort to such sampling-based methods as stochastic EM,
multiple imputation, the bootstrap, and MCMC machinery.

While our work focuses on the MAR setting, in practice one cannot rule
out the possibility of an MNAR mechanism. Furthermore, even when MAR is
deemed plausible, it is of interest to conduct some form of sensitivity analysis
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(Molenberghs and Kenward (2007), Fitzmaurice et al. (2009). Obvious routes
include the comparison of PL-based results with those obtained under different
paradigms, such as full likelihood and fully Bayesian analyses, the extension of
PL to MNAR, advocated by Parzen et al. (2006), and the extension of our results
along the lines of Vansteelandt, Rotnitzky and Robins (2007).

We have provided examples of the method, using continuous data from a
clinical trial in onychomycosis and binary outcomes from a developmental toxicity
study. A simulation study of these methods’ operating characteristics is currently
ongoing.

The advantage of a variety of proposals is that the user has freedom of se-
lection. Of course, more work is needed to provide further guidance toward such
a choice. In particular, small-sample efficiency will be studied in future research.
We have indicated, for some specific cases, how standard errors can be derived.
These have also been implemented for the data analysis. In the future, standard-
error calculations will be undertaken for a variety of other choices. In this re-
spect, it is important to consider methods that do not involve tedious analytical
considerations, such as, for example, the jackknife-based method of Heagerty
and Lele (1998). While single robustness requires the correct specification of the
weights, this requirement is less critical in the doubly robust version, because it
is also possible to attain unbiasedness through the predictive term. That said,
this result is in need of further qualification. Kang and Schafer (2007) showed
empirically that there exist situations where severe biases may occur even when
both weight and predictive models are only slightly misspecified. These authors
also showed that widely varying weights are a potential risk for bias as well. This
underscores that, like any tool in statistics, the user ought to be aware of the
relative merits and advantages of the doubly robust method. In this respect, it
is highly relevant that, in a number of settings we considered, such as (S.32), the
weights cancel from the estimating equations, thereby increasing robustness. A
further numerical study of the effect of misspecification of weights and/or pre-
dictive terms will be reported elsewhere. Similar issues have been considered
by Bang and Robins (2005), Davidian, Tsiatis and Leon (2005), and Rotnitzky
(2009).

The case studies were analyzed using a combination of SAS and GAUSS
code, which can be obtained from the authors upon request.
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53, 233-243.

Bang, H. and Robins, J. M. (2005). Doubly robust estimation in missing data and causal

inference models. Biometrics 61, 962-972.

Carey, V. C., Zeger, S. L. and Diggle, P. J. (1993). Modelling multivariate binary data with

alternating logistic regressions. Biometrika 80, 517-526.

Cochran, W. G. (1977). Sampling Techniques. Wiley, New York.

Cox, D. and Reid, N. (2004). A note on pseudolikelihood constructed from marginal densities.

Biometrika 91, 729-737.

Dale, J. R. (1986). Global cross-ratio models for bivariate, discrete, ordered responses. Biomet-

rics 42, 909-917.

Davidian, M., Tsiatis, A. A. and Leon, S. (2005). Semiparametric estimation of treatment effect

in a pretest-posttest study with missing data (with discussion). Statist. Sci. 20, 261-301.

De Backer, M., De Keyser, P., De Vroey, C. and Lesaffre, E. (1996). A 12-week treatment for

dermatophyte toe onychomycosis: terbinafine 250mg/day vs. itraconazole 200mg/day-a

double-blind comparative trial. British J. Dermatology 134, 16-17.

Diggle, P. J., Heagerty, P., Liang, K-Y. and Zeger, S. L. (2002). Analysis of Longitudinal Data.

Oxford University Press, New York.

Fitzmaurice, G., Davidian, M., Verbeke, G. and Molenberghs, G. (2009). Longitudinal Data

Analysis. CRC/ Chapman & Hall, Boca Raton.

Geys, H., Molenberghs, G. and Lipsitz, S. R. (1998). A note on the comparison of pseudo-

likelihood and generalized estimating equations for marginal odds ratio models. J. Statist.

Comput. Simulation 62, 45-72.

Geys, H., Molenberghs, G. and Ryan, L. (1999). Pseudo-likelihood modelling of multivariate

outcomes in developmental toxicology. J. Amer. Statist. Assoc. 94, 34-745.

Heagerty, P. J. and Lele, S. R. (1998). A composite likelihood approach to binary spatial data.

J. Amer. Statist. Assoc. 93, 1099-1111.

Joe, H. and Lee, Y. (2008). On weighting of bivariate margins in pairwise likelihood. J. Multi-

variate Anal. 100, 670-685.

Kang, J. D. Y. and Schafer, J. L. (2007). Demystifying double robustness: A comparison of

alternative strategies for estimating a population mean from incomplete data (with discus-

sion). Statist. Sci. 22, 523-580.

Kenward, M. G. and Molenberghs, G. (1998). Likelihood based frequentist inference when data

are missing at random. Statist. Sci. 12, 236-247.

Kenward, M. G. and Molenberghs, G. (2009). Last observation carried forward: A crystal ball?

J. Biopharm. Statist. 19, 872-888.

le Cessie, S. and van Houwelingen, J. C. (1991). A goodness-of-fit test for binary regression

models, based on smoothing methods. Biometrics 47, 1267-1282.

Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models.

Biometrika 73, 13-22.

Liang, K. Y., Zeger, S. L. and Qaqish, B. (1992). Multivariate regression analyses for categorical

data. J. Roy. Statist. Soc. Ser. B 54, 3-40.



PSEUDO-LIKELIHOOD ESTIMATION FOR INCOMPLETE DATA 205

Lindsay, B. G. (1988). Composite likelihood methods. Contemporary Mathematics 80, 221-239.

Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data. Wiley, New

York.

Meng, X.-L. (1994). Multiple-imputation inferences with uncongenial sources of input. Statist.

Sci. 9, 538-558.

Molenberghs, G. and Kenward, M. G. (2007). Missing Data in Clinical Studies. Wiley, Chich-

ester.

Molenberghs, G. and Ryan, L. M. (1999). Likelihood inference for clustered multivariate binary

data. Environmetrics 10, 279-300.

Molenberghs, G., Thijs, H., Jansen, I., Beunckens, C., Kenward, M.G., Mallinckrodt, C. and

Carroll, R. J. (2004). Analyzing incomplete longitudinal clinical trial data. Biostatistics 5,

445-464.

Molenberghs, G. and Verbeke, G. (2005). Models for Discrete Longitudinal Data. Springer, New

York.

Parzen, M., Lipsitz, S. R., Fitzmaurice, G. M., Ibrahim, J. G. and Troxel, A. (2006). Pseudo-

likelihood methods for longitudinal binary data with non-ignorable missing responses and

covariates. Statist. in Medicine 25, 2784-2796.

Robins, J. M., Rotnitzky, A. and Zhao, L.P. (1995). Analysis of semiparametric regression

models for repeated outcomes in the presence of missing data. J. Amer. Statist. Assoc. 90,

106-121.

Rotnitzky, A. (2009). Inverse probability weighted methods. In: Longitudinal Data Analysis

(Edited by G. Fitzmaurice, M. Davidian, G. Verbeke, and G. Molenberghs), 453-476.

CRC/Chapman & Hall, Boca Raton.

Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-592.

Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley, New York.

Scharfstein, D. O., Rotnitzky, A. and Robins, J. M. (1999). Adjusting for nonignorable drop-out

using semi-parametric nonresponse models. J. Amer. Statist. Assoc. 94, 1096-1120 (with

Rejoinder, 1135-146).

Tyl, R. W., Price, C. J., Marr, M. C. and Kimmel, C. A. (1988). Developmental toxicity evalua-

tion of dietary di(2-ethylhexyl)phthalate in Fischer 344 rats and CD-1 mice. Fundamental

and Applied Toxicology 10, 395-412.

Van der Laan, M. J. and Robins, J. M. (2003). Unified Methods for Censored Longitudinal Data

and Causality. Springer, New York.

Vansteelandt, S., Rotnitzky, A. and Robins, J. (2007). Estimation of regression models for the

mean of repeated outcomes under nonignorable nonmonotone nonresponse. Biometrika 94,

841-860.

Varin, C. (2008). On composite marginal likelihoods. Adv. Statist. Anal. 92, 1-28.

Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. Springer,

New York.

Windholz, M. (1983). The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals.

10th edition. Merck and Co, Rahway, NJ.



206 G. MOLENBERGHS, M. G. KENWARD, G. VERBEKE AND T. BIRHANU

I-BioStat, Universiteit Hasselt, B-3590 Diepenbeek, Belgium.

E-mail: geert.molenberghs@uhasselt.be geert.molenberghs@med.kuleuven.be

Medical Statistics Unit, London School of Hygiene and Tropical Medicine, London WC1E7HT,

UK.

E-mail: mike.kenward@lshtm.ac.uk

I-BioStat, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.

E-mail: geert.verbeke@med.kuleuven.be

I-BioStat, Universiteit Hasselt, B-3590 Diepenbeek, Belgium.

E-mail: birhanu.teshomeayele@uhasselt.be

(Received February 2009; accepted September 2009)

file:geert.molenberghs@uhasselt.be
file:geert.molenberghs@med.kuleuven.be
file:mike.kenward@lshtm.ac.uk
file:geert.verbeke@med.kuleuven.be
file:birhanu.teshomeayele@uhasselt.be

	1. Introduction
	2. Concepts
	3. Inferential Frameworks
	3.1. Likelihood
	3.2. Generalized estimating equations
	3.3. Pseudo-likelihood
	3.3.1. Definition and properties

	4. Pseudo-likelihood For Incomplete Data
	4.1. General forms of estimating equations for incomplete data
	4.2. Precision estimation
	4.3. The case of pseudo-likelihood

	5. Case Studies
	5.1. A clinical trial in onychomycosis
	5.2. The national toxicology program data

	6. Concluding Remarks

