
BioMed CentralBMC Medical Genomics

ss
Open AcceResearch article
Transcriptional profiling of mycobacterial antigen-induced 
responses in infants vaccinated with BCG at birth
Helen A Fletcher1, Alana Keyser2, Mark Bowmaker2, Peter C Sayles3, 
Gilla Kaplan4, Greg Hussey2, Adrian VS Hill1 and Willem A Hanekom*2

Address: 1Jenner Institute, ORCRB, University of Oxford, Churchill Hospital, Oxford, OX3 7DQ, UK, 2South African Tuberculosis Vaccine 
Initiative, Institute of Infectious Diseases and Molecular Medicine, and School of Child and Adolescent Health, University of Cape Town, South 
Africa, 3Trudeau Institute Inc., Saranac Lake, NY, USA and 4Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research 
Institute, Newark, NJ, USA

Email: Helen A Fletcher - helen.fletcher@ndm.ox.ac.uk; Alana Keyser - Alana.Keyser@uct.ac.za; Mark Bowmaker - M.Bowmaker@uct.ac.za; 
Peter C Sayles - psayles@trudeauinstitute.org; Gilla Kaplan - kaplangi@umdnj.edu; Greg Hussey - ghussey@rmh.uct.ac.za; 
Adrian VS Hill - adrian.hill@ndm.ox.ac.uk; Willem A Hanekom* - Willem.Hanekom@uct.ac.za

* Corresponding author    

Abstract
Background: Novel tuberculosis (TB) vaccines recently tested in humans have been designed to
boost immunity induced by the current vaccine, Mycobacterium bovis Bacille Calmette-Guérin
(BCG). Because BCG vaccination is used extensively in infants, this population group is likely to be
the first in which efficacy trials of new vaccines will be conducted. However, our understanding of
the complexity of immunity to BCG in infants is inadequate, making interpretation of vaccine-
induced immune responses difficult.

Methods: To better understand BCG-induced immunity, we performed gene expression profiling
in five 10-week old infants routinely vaccinated with BCG at birth. RNA was extracted from 12
hour BCG-stimulated or purified protein derivative of tuberculin (PPD)-stimulated PBMC, isolated
from neonatal blood collected 10 weeks after vaccination. RNA was hybridised to the Sentrix®

HumanRef-8 Expression BeadChip (Illumina) to measure expression of >16,000 genes.

Results: We found that ex vivo stimulation of PBMC with PPD and BCG induced largely similar
gene expression profiles, except that BCG induced greater macrophage activation. The
peroxisome proliferator-activated receptor (PPAR) signaling pathway, including PPAR-γ, involved
in activation of the alternative, anti-inflammatory macrophage response was down-regulated
following stimulation with both antigens. In contrast, up-regulation of genes associated with the
classic, pro-inflammatory macrophage response was noted. Further analysis revealed a decrease in
the expression of cell adhesion molecules (CAMs), including integrin alpha M (ITGAM), which is
known to be important for entry of mycobacteria into the macrophage. Interestingly, more
leukocyte genes were down-regulated than up-regulated.

Conclusion: Our results suggest that a combination of suppressed and up-regulated genes may be
key in determining development of protective immunity to TB induced by vaccination with BCG.
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Background
World-wide, two million people die from tuberculosis
(TB) every year, and an estimated two billion people, a
third of the world's population, are latently infected with
Mycobacterium tuberculosis (M.tb). TB is the leading identi-
fiable cause of death among HIV-infected people [1]: an
estimated quarter of a million deaths in HIV-infected per-
sons per year are TB-associated. An improved vaccine
against TB would be the most effective intervention for
disease control. Bacille Calmette-Guérin (BCG), first used
as a human vaccine in 1921, is one of the most widely
administered vaccines in the world. BCG affords 80% pro-
tection against severe infant TB; however, protection
against lung TB is variable and mostly poor, in all ages [2].
There is therefore an urgent need to develop improved TB
vaccines. Multiple novel vaccine candidates which dem-
onstrate some protection in mice challenged with virulent
M.tb have emerged [3]. Most novel vaccine candidates are
designed to boost immunity that was primed by prior
BCG vaccination; however, not enough is known about
immunity induced by BCG in adults. Even less is known
about immunity in vaccinated neonates. This study
attempted to address some of the gaps in our knowledge,
by exploring mRNA expression profiles following BCG
vaccination of newborns.

DNA microarrays are increasingly being used to assess
mRNA expression profiles associated with host-pathogen
interactions. In the TB research field, microarrays have
been used to explore changes in gene expression in TB
infected macrophages [4,5]. Also, differences in host
responses between tuberculoid and lepromatous leprosy
patients [6], and between patients with pulmonary and
disseminated TB, have been studied [7]. Overall, reports
of applications of arrays in infants are scanty, and include
an assessment of differences in transcriptional profiling
between acute and convalescent infant influenza infec-
tion, as a tool to discriminate acute infection states in
infants [8,9]. Moreover, microarray analysis of infant
PBMC has not been used in tuberculosis research, perhaps
due to the large volumes of blood typically required for
array analysis. PBMC are increasingly being used as a sur-
rogate tissue for the molecular diagnosis of diseases
involving less accessible tissues such as lung, kidney and
heart. This is because changes in PBMC probably reflect
pathological and immunological changes that occur else-
where in the body [10]. Similarly, whole PBMC popula-
tions have been found useful for the assessment of
differences in transcriptional responses induced by
diverse mycobacterial antigens [7,11]. Here, we describe
the development of a gene expression assay for the detec-
tion of antigen-specific responses in the PBMC of BCG
vaccinated infants. Our aim was to assess specific differ-
ences in mRNA expression profiles induced by 2 myco-
bacterial antigens, M. bovis BCG and M.tb purified protein
derivative of tuberculin (PPD), to guide antigen use in

future, more detailed studies. The former antigen consists
of a whole, viable avirulent mycobacterium, which can be
phagocytosed and processed by monocytes in PBMC to
present both protein and non-protein antigens. By con-
trast, PPD consists of only soluble proteins from virulent
M.tb.

Methods
Study participants and blood collection
Healthy 10-week old infants, from the Cape Town region
of South Africa were enrolled. All infants were routinely
vaccinated with intradermal BCG (Statens Serum Insti-
tute, Copenhagen) within 48 hours of birth. Infants born
to HIV-positive mothers, infants known to be HIV posi-
tive, infants with suspected or confirmed TB disease, and
infants with any other active or chronic illnesses at the
time of enrollment, were excluded. Human participation
was according to the US Department of Health and
Human Services and good clinical practice guidelines.
This included protocol approval by the University of Cape
Town research ethics committee and the UMDNJ Institu-
tional Review Board (IRB). Written informed consent was
obtained from all mothers whose babies took part in the
study. Up to 10 ml whole blood was collected from each
healthy infant.

PBMC isolation, incubation and RNA purification
PBMC were isolated from peripheral venous blood by
density gradient centrifugation, and cryopreserved. Later,
PBMC were thawed, washed in RPMI 1640 (Biowhittaker,
Walkersville, MD, USA), and "rested" for 6 hours at 1 ×
106 cells in 1 ml 10% pooled human AB serum in RPMI
1640 supplemented with L-glutamine at 2 mM (Biowhit-
taker), at 37°C and in 5% CO2. PPD (20 μg/ml) or BCG,
reconstituted from the vaccine vial as previously described
[12], at an MOI of 0.18, was then added to the cells.
PBMC incubated with medium alone served as negative
(unstimulated) control. Incubation was continued for 12
hours at 37°C and in 5% CO2, after which the cells were
harvested and processed with the QIAamp RNA Blood
Mini Kit (Qiagen, Hilden, Germany), according to the
manufacturer's instructions, to isolate RNA. RNA was
DNAse treated using the on-column DNAse digestion kit
(Qiagen, Hilden, Germany). A median of 0.37 μg (0.19–
0.52 μg) RNA was obtained from 1 × 106 PBMC. The dose
of BCG and the duration of incubation were found opti-
mal in pilot experiments, which assessed up-regulation of
multiple T-helper type 1 (Th1) cytokine, apoptosis and
regulatory genes by real time RT-PCR (data not shown).
The RNA was cryopreserved at -80°C for later use in DNA
micro-array and RT-PCR experiments.

RNA amplification protocol
A median 124 ng (range 63–174 ng) extracted RNA was
amplified using the Illumina RNA Amplification Kit
(Ambion, Austin, TX, USA), based on the Eberwine proto-
Page 2 of 13
(page number not for citation purposes)



BMC Medical Genomics 2009, 2:10 http://www.biomedcentral.com/1755-8794/2/10
col [13]. A Biotin-16-UTP label was incorporated into
amplified RNA during the in vitro transcription process
(Perkin Elmer Life and Analytical Sciences, Woodbridge,
Ontario, Canada). Amplification gave yields ranging from
1 μg to 25 μg. Amplified RNA (1000 ng per array) was
hybridized to the Illumina HumanRefSeq-8 BeadChip
according to the manufacturer's instructions (Illumina,
San Diego, CA, USA). The HumanRefSeq-8 bead chip
comprises of 24,000 sequences representing 16,238 genes
from the curated portion of the NIH Reference Sequence
Database http://www.ncbi.nlm.nih.gov/RefSeq/. Each
sequence is represented at least 30 times on the array.
Arrays were scanned with an Illumina bead array reader
confocal scanner, according to the manufacturer's instruc-
tions. Array data processing and analysis was performed
using Illumina BeadStudio software.

Real-Time RT-PCR
A median 124 ng (range 63–174 ng) RNA was reverse
transcribed to cDNA using oligo-dT and the Omniscript
Kit (Qiagen). cDNA was stored at -20°C until use. Real
time PCR was performed using the Roche LightCycler®

and Quantitect mastermix (Qiagen).

Quantified, purified and diluted PCR product was used to
generate external standard curves for each primer pair.
Cycle number values were converted to copy number
using these curves post amplification. All primers (synthe-
sized by Integrated DNA Technologies, Toronto, Canada)
were designed to span intron-exon sequences to distin-
guish between mRNA and genomic DNA (Additional file
1). 1 μl cDNA was used in each reaction. Cycling condi-
tions consisted of an initial activation step of 15 minute at
95°C followed by 45 cycles of 15 seconds at 94°C, 20 sec-
onds at 60°C and 15 seconds at 72°C, were used for each
primer pair. To control for variation in cDNA quantity
between samples the copy number of the gene of interest
was divided by the copy number of the house keeping
gene HPRT. All PCR reactions were performed in dupli-
cate.

Data analysis
Data was normalized using the VSN2 software "Variance
stabilization and calibration for microarray data", which
is available as part of the BioConductor project (an open
source software project to provide tools for the analysis of
genomic data) [14] Data files are available at the Gene
Expression Omnibus data repository: GSE14408. Prior to
the identification of differentially expressed genes, K-
means cluster analysis (kmeans software, BioConductor)
was performed to identify outlier samples. Unstimulated
samples were found to cluster together and stimulated
samples clustered together (with little differentiation
between BCG and PPD), with no outliers, therefore all
samples were included in subsequent analysis.

Differentially expressed genes were identified using
eBayes which is a component of the Limma software pack-
age: Linear Models for Microarray data (BioConductor)
[15]. eBayes is an empirical Bayes model which estimates
the true expression signal by borrowing information
across genes and increasing the stability of the analysis
[16]. The statistics for differential expression provided by
eBayes include the (log) fold change, moderated t-statistic
(same as t-statistic except that the standard errors have
been moderated across genes), p-value (based on moder-
ated t-statistic), adjusted p-value (false discovery rate
adjusted p-value) and B-statistic (log-odds that the gene is
differentially expressed).

The expression level of genes differentially expressed by
BCG stimulation (with an adjusted p-value <0.01) were
compared to genes differentially expressed by PPD stimu-
lation (with an adjusted p-value <0.01) using a 2-tailed
Spearmans correlation (SPSS).

A sub-set of genes with an adjusted p-value of <0.01 and a
>2 fold differential expression in PPD and BCG stimu-
lated PBMC were selected for confirmation of expression
by real-time RT-PCR. Differentially expressed genes were
also assessed according to Gene Ontology (GO) categories
(Onto-Express) and pathway analysis was performed
using Pathway-Express [17].

Results
Genes up or down-regulated following incubation of 
PBMC with BCG or PPD
Five 10-week old infants, routinely vaccinated with BCG at
birth, were enrolled. DNA micro-array analysis was per-
formed using amplified RNA, purified from cryopreserved
PBMC that were later thawed and incubated with BCG,
PPD or medium only (unstimulated) for 12 hours. Using
K-means clustering, by the 3 incubation conditions and
using all genes, unstimulated samples clustered away from
BCG and PPD stimulated samples (Figure 1). However,
BCG and PPD stimulated samples were not separated by
this analysis (Figure 1). Overall, BCG induced differential
expression of 411 genes (p < 0.01, eBayes), compared with
the unstimulated control. Of the 411 genes, 136 were
upregulated and 275 downregulated (Additional file 2).
PPD induced differential expression in 291 genes (p < 0.01,
eBayes, Additional file 2). Of the 291 genes, 95 were upreg-
ulated and 196 were downregulated. Of the significantly
differentially expressed genes, 74 and 73 genes were up-reg-
ulated >2-fold by BCG and PPD, respectively; 201 and 127
genes were down-regulated >2-fold by these respective con-
ditions (Additional file 2). We concluded that gene expres-
sion profiles obtained by stimulating PBMC with BCG were
not sufficiently different from expression profiles obtained
by stimulating cells with PPD to enable the samples to fall
into separate clusters.
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Detailed comparison of expression profiles induced by 
BCG and PPD
Under both stimulation conditions interleukin 6 (IL-6),
granulocyte monocyte colony stimulating factor (GM-
CSF) and interleukin 1 family member 8 (IL1F9) showed
the greatest increase in expression. Genes with the greatest
decrease in expression, under both conditions, include
fatty acid binding protein 4 (FABP4), colony stimulating
factor 1 (CSF1)-receptor, and transforming growth factor
beta 1 (TGF-β1) (Additional file 2).

Next, we compared differential gene expression following
BCG stimulation (411 genes) and PPD stimulation (291
genes) relative to un-stimulated controls. A large propor-
tion of genes were expressed under both stimulation con-
ditions with only 33 genes expressed in response to PPD
only (Figure 2 and Additional file 3). The majority of
genes were expressed to an equivalent degree, and a strong
correlation between PPD and BCG stimulation was seen
(r = 0.965, P < 0.000001; Figure 3). Only 29 genes were

differentially expressed >2-fold between the two stimula-
tion conditions (Additional file 4). BCG induced a >2 fold
change in the expression of granulocyte colony stimulat-
ing factor (G-CSF), matrix metalloproteinase 1 (MMP1),
guanylate binding protein 1(GBP1) and GM-CSF, com-
pared with PPD. In turn, PPD induced a >2 fold increase
in expression in chemokine (CXC motif) ligand 5
(CXCL5), thrombomodulin (THBD), cytokine-like
nuclear factor n-pac (N-PAC) and thrombospondin 1
(THBS1), compared with BCG. A greater difference was
seen in the number of genes down-regulated by BCG and
PPD. BCG reduced the expression of 21 genes >2 fold
when compared with PPD (Additional file 4).

We concluded that the majority of genes up-regulated or
down-regulated by BCG stimulation were also up-regu-
lated or down-regulated by PPD stimulation, when com-
pared with un-stimulated controls.

Confirmation of expression patterns with real-time RT-
PCR
To confirm the expression patterns of genes identified
using the array, real time RT-PCR for specific genes was
performed using total RNA from the 5 infants used for
array analysis, and using RNA from 10 additional 10-week
old infants, routinely vaccinated with BCG at birth (total
of 15 infants for RT-PCR analysis). PBMC from the latter
infants were processed identically to PBMC from infants

Heatmap of gene expression profiles with a >2 fold change in expression in response to BCG stimulation, compared with the unstimulated controlFigure 1
Heatmap of gene expression profiles with a >2 fold 
change in expression in response to BCG stimula-
tion, compared with the unstimulated control. Genes 
were ordered according to their cluster determined by the 
k-means algorithm. Values increase from green to red, via 
black. The incubation conditions and the participant identifi-
ers are given below the heatmap, e.g., "UNS.028" refers to 
PBMC incubated without any specific antigens (unstimulated) 
in participant 28.
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Proportional Venn distribution of genes with a p-value <0.01 expressed in response to either BCG or PPD stimulationFigure 2
Proportional Venn distribution of genes with a p-
value <0.01 expressed in response to either BCG or 
PPD stimulation. The Venn diagram shows the overlap in 
gene expression between the 411 genes induced by BCG and 
291 genes induced by PPD stimulation.
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whose RNA was examined in the array study. Primers were
designed against selected transcripts and the copy number
of each gene relative to the housekeeping gene HPRT was
determined. There was concordance between DNA micro-
array and real-time RT-PCR results regarding expression of
both highly and moderately expressed genes in response
to both BCG (Figure 4A) and PPD (Figure 4B). When the
median array expression from the 5 infants selected for
array analysis was compared with the median RT-PCR
expression from the total cohort of 15 infants, a signifi-
cant correlation was found following both PPD (r = 0.806,
p = 0.005, Spearman's test) and BCG stimulation (r =
0.697, p = 0.025, Spearman's test). Although the magni-
tude of the response was greater to BCG than PPD, the var-
iability of response to stimulation with BCG was also
greater.

We concluded that the patterns of gene expression
detected by array analysis could be confirmed by real-time
RT-PCR analysis.

Ontology of genes differentially expressed in response to 
stimulation with BCG
Transcripts differentially expressed in response to stimula-
tion with both BCG and PPD were analysed using the

Gene Ontology (GO) tool Onto-Express an analysis tool
available in the Onto-Tools ensemble [18]. As there was
little differential gene expression between the two stimu-
lation conditions the GO results obtained for BCG and
PPD were highly similar (Additional file 5). Therefore,
only GO results for the 411 genes expressed in response to
BCG are shown in Figure 5.

The GO database allows for the classification of a gene
based on its function, i.e., biological, cellular or molecular
function. The greatest proportion of genes mapped to GO:
Response to external stimulus (120 genes), p = < 1.0 × 10-

5 (Figure 5A). Sub-mapping revealed a strong statistical

Comparison of gene expression induced in response to stim-ulation with PPD and with BCGFigure 3
Comparison of gene expression induced in response 
to stimulation with PPD and with BCG. Data was nor-
malized using a variance stabilization method (VSN2) and 
genes significantly induced by stimulation with PPD and BCG, 
as compared with the unstimulated control, were combined 
into a single gene list: the scatter of these genes in response 
to either stimulation is shown. Spearman's rank test was used 
to assess the correlation (r = 0.965, p < 0.000001). The lines 
indicate a greater than 2 fold difference in expression.
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Comparison of expression of highly and moderately expressed genes using DNA microarray and real time RT-PCRFigure 4
Comparison of expression of highly and moderately 
expressed genes using DNA microarray and real 
time RT-PCR. Gene expression shown is that in relation to 
media, for BCG (A), and PPD (B). Microarray analysis 
involved 5 infants, whereas real time RT-PCR analysis 
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significance to GO: Response to stress (74 genes), p = < 1.0
× 10-5 (Figure 5B) which comprises of a large number of
genes in the inflammatory immune response (Additional
file 5).

Pathway analysis of differentially expressed genes
Pathway-Express (PE) is a pathway analysis tool in the
Onto-Tools ensemble utilizing the available Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway infor-
mation [17,19]. This tool generates, firstly, a probability
(p) value based on the number of genes present in a par-
ticular pathway. Secondly, a perturbation factor (gamma
p) is calculated taking into consideration the (i) normal-
ized fold change of the gene and (ii) the number of genes
upstream of its position on a pathway based. The p value
and gamma p value are then combined to obtain an
impact factor which can be used to rank pathways in order
of biological relevance. Following BCG stimulation, 21
pathways had a statistically significant gamma p value
<0.01 and 17 pathways had a gamma p value <0.01 fol-
lowing PPD stimulation (Table 1). The pathway with the
highest impact factor following BCG stimulation was Cell

Adhesion Molecules (CAMs) with 4 genes down-regulated
following stimulation with BCG (Additional file 6). The
pathway with the highest impact factor following stimula-
tion with PPD was the Hematopoietic cell lineage path-
way (Additional file 6). Four pathways were significant
following BCG stimulation, but not following PPD (Table
1).

We concluded that BCG stimulation down-regulated the
expression of proteins important for cell adhesion, and
that pathway analysis is a useful tool for analyzing expres-
sion profiles induced by mycobacterial antigens.

Expression of macrophage related genes
Mycobacteria are intracellular pathogens that primarily
infect macrophages. The macrophage (Mφ) response to
mycobacterial infection may be crucial in determining
whether an infection is cleared or whether infection
progresses to disease. Macrophages comprise a heteroge-
neous population of cells with diverse functions. Mφ1
support a protective Th1 response whereas Mφ2 display
poor antigen-presentation capacity and suppress Th1
function [20-23]. We found that many genes up-regulated
by both BCG and PPD in our infants' PBMC have previ-
ously been associated with adult Mφ1 macrophages,
including IL-1β, IL-8, IL-6, tumour necrosis factor alpha
(TNF-α), interferon-inducible protein 10 (IP10), macro-
phage inflammatory protein (MIP)-1β and macrophage
derived chemokine (MDC) (Table 2) [4,21,24-26]. By
analysing genes down-regulated by mycobacterial anti-
gens, we revealed further evidence of macrophage polari-
zation: genes in the peroxisome proliferator-activated
receptor (PPAR) signaling pathway, associated with the
polarization of macrophages into a Mφ2 phenotype, were
down-regulated following stimulation with PPD and
BCG, (Additional files 2 and 3) [22,23]. BCG stimulation
down-regulated CD36, PPAR-γ, and retinoid × receptor
(RXR) in the PPAR signaling pathway, presumably skew-
ing monocytes towards the development of a Mφ1 pheno-
type.

We concluded that PPD and BCG stimulation of PBMC
results in gene modulation that supports development of
a Mφ1 phenotype.

Discussion
BCG is likely to remain the cornerstone of future TB vacci-
nation strategies. We therefore used microarray analysis to
determine gene expression profiles of BCG vaccinated
infant PBMC following ex vivo stimulation with BCG or
PPD. Overall, we demonstrated a remarkably similar
expression profile following stimulation with the two rea-
gents. Our study, the first investigation of mycobacteria-
induced gene expression in such a young vaccinated
infant population, shows that a greater number of genes

Gene ontology analysis of genes differentially expressed in response to stimulation with BCG, as compared with the unstimulated control (n = 411)Figure 5
Gene ontology analysis of genes differentially 
expressed in response to stimulation with BCG, as 
compared with the unstimulated control (n = 411). 
(A) Gene ontology terms for Response to stimulus parent 
term. (B) Gene ontology terms for the Response to external 
stimulus parent term.
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Table 1: Pathway level analysis of genes differentially expressed following stimulation with BCG.

BCG stimulation PPD stimulation

Pathway 
Name

Rank aImpact 
Factor

b#Genes in 
Pathway

cp-value dgamma 
p-value

Rank aImpact 
Factor

b#Genes in 
Pathway

cp-value dgamma 
p-value

Cell adhesion 
molecules 
(CAMs)

1 45.4 4/133 0.153 9.00E-19 - - - - -

Cytokine-
cytokine 
receptor 
interaction

2 34.6 34/259 1.31E-12 3.51E-14 15 7.2 27/259 -5.50E-14 0.006

Hematopoietic 
cell lineage

3 30.6 14/88 8.34E-11 1.57E-12 1 27.3 12/88 2.68E-10 3.86E-11

Toll-like 
receptor 
signaling pathway

4 26.4 14/102 6.39E-10 9.56E-11 4 18.3 9/102 2.11E-06 2.14E-07

Fc epsilon RI 
signaling pathway

5 21.6 2/77 0.336 9.24E-09 11 10.2 2/77 0.211 4.24E-04

Jak-STAT 
signaling pathway

6 21.3 13/153 8.33E-07 1.22E-08 6 14.0 8/153 3.24E-04 1.21E-05

Graft-versus-
host disease

7 20.1 5/42 4.65E-04 4.03E-08 3 18.6 5/42 9.93E-05 1.67E-07

MAPK signaling 
pathway

8 17.0 13/265 2.78E-04 7.67E-07 5 16.0 9/265 0.003 1.98E-06

TGF-beta 
signaling pathway

9 16.9 1/89 0.752 8.29E-07 10 10.6 3/89 0.079 3.01E-04

GnRH signaling 
pathway

10 15.8 1/97 0.781 2.29E-06 2 26.2 1/97 0.662 1.15E-10

Apoptosis 11 14.1 6/84 0.002 1.13E-05 7 13.4 4/84 0.014 2.24E-05

Type I diabetes 
mellitus

12 13.9 6/44 5.76E-05 1.33E-05 8 12.9 5/44 1.25E-04 3.43E-05

T cell receptor 
signaling pathway

13 13.1 6/93 0.003 2.84E-05 13 8.8 3/93 0.085 0.001

PPAR signaling 
pathway

14 12.5 8/69 1.14E-05 5.14E-05 9 12.0 7/69 1.16E-05 8.11E-05

Natural killer cell 
mediated 
cytotoxicity

15 11.4 5/131 0.054 1.34E-04 14 7.9 3/131 0.179 0.003

Type II diabetes 
mellitus

16 9.0 3/44 0.031 0.001 17 6.6 1/44 0.388 0.009

Adipocytokine 
signaling pathway

17 9.0 4/72 0.026 0.001 - - - - -
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were down-regulated in response to ex vivo stimulation
with either antigen, compared with up-regulated genes. In
the absence of a better biomarker the measurement of
IFN-γ protein following stimulation with mycobacterial
antigen remains the assay of choice for the assessment of
TB vaccine "take" and TB vaccine efficacy [27]. In our
study IFN-γ mRNA was up-regulated 2.12 fold in response
to PPD stimulation and 2.19 for BCG stimulation but did
not reach an adjusted p-value of <0.01. It was somewhat
surprising that we did not see a stronger induction of IFN-
γ mRNA in response to PPD and BCG stimulation. How-
ever, we have consistently observed in our studies that the
fold increase in antigen specific IFN-γ mRNA is lower than
that of IFN-γ protein. This is most likely due to the basal
level of IFN-γ mRNA expression masking the increase in
IFN-γ mRNA production by antigen specific cells. Others
have also found that IFN-γ protein expression is not
always directly correlated with IFN-γ mRNA expression
[28]. IFN-γ can be controlled at the transcriptional, post-
transcriptional and translational levels which may also
account for the discrepancy in IFN-γ protein and mRNA
production [29,30].

In our study, for both BCG and PPD, genes with the great-
est increase in expression included IL-6, GM-CSF and
IL1F9. IL-6 and GM-CSF are well-known proinflamma-
tory proteins, and IL1F9, a member of the pro-inflamma-
tory IL-1 family of proteins binds to the receptor IL-1
receptor related protein 2 (IL-1Rrp2) and induces nuclear
factor kappa B (NFκB) [31]. NFκB is a transcription factor
that acts as a master regulator of the proinflammatory
immune response, orchestrating induction of many type 1
cytokines, including IL-6 and IL-8.

Genes with the greatest decrease in expression included
FABP4, M-CSF receptor, GSN and TGF-β1. FABP is
strongly upregulated in human bronchial epithelial by the

Th2 cytokines IL-4 and IL-13, and is down-regulated by
IFN-γ [32]. We postulate that the down-regulation of
FABP4 in our study may be due to the induction of IFN-γ
protein by PPD and BCG stimulation. As regards M-CSF,
monocytes infected with mycobacteria and cultured with
this cytokine produce high levels of IL-10 and fail to stim-
ulate T cells [33]. Down-regulation of the M-CSF receptor
may prevent the M-CSF driven differentiation of mono-
cytes into IL-10 producing cells. GSN is required for rapid
motile responses in cells involved in inflammation, and
wound healing and down-regulation of this gene may
lead to suppression of inflammatory immune responses
[34]. As TGF-β1 is a key cytokine in the maintenance of
tolerance [35-37], TGF-β1 down-regulation may result in
a lesser immune suppression of effector T cell responses.

We had expected to find large differences between the
responses to ex vivo stimulation with BCG and PPD, given
that BCG is a live bacterium and PPD is a mixture of
secreted proteins from M.tb. However, few genes were dif-
ferentially expressed >2 fold in response to stimulation
with BCG, when compared with PPD. Stimulation with
BCG induced >2 fold more G-CSF and GM-CSF, both
cytokines involved in the activation and differentiation of
monocytes into macrophages. Stimulation with PPD
induced higher levels of thrombomodulin (THBD) and
thrompospondin (THBS1), both involved in immune reg-
ulation [38,39]; for example, mice with a mutation in the
THBD gene have uncontrolled lung inflammation in
response to mycobacterial infection [39]. Overall, the
magnitude of response to BCG stimulation was greater
than that seen with PPD, which may be due to differences
in antigen composition and concentration or may be a
reflection of increased activation of toll like receptors by
the lipid components of the BCG cell wall. Pathway anal-
ysis reveals a decrease in the expression of cell adhesion
molecules (CAMs) in response to ex vivo BCG, but not to

Epithelial cell 
signaling in 
Helicobacter 
pylori infection

18 8.6 4/69 0.022 0.002 12 9.5 3/69 0.041 7.85E-04

Complement 
and coagulation 
cascades

19 7.6 6/69 7.06E-04 0.004 - - - - -

Bladder cancer 20 6.9 3/42 0.027 0.008 16 6.9 3/42 0.011 0.008

Acute myeloid 
leukemia

21 6.8 5/57 0.002 0.008 - - - - -

a calculated on basis of proportion of differentially expressed genes in a pathway and gene perturbation factors of all genes in the pathway
b number of genes in a particular pathway
c P value for pathways that contain a proportion of differentially expressed genes that is significantly different from what is expected by chance
d This perturbation factor takes into consideration the (i) normalized fold change of the gene and (ii) the number of genes upstream of its position 
on a pathway

Table 1: Pathway level analysis of genes differentially expressed following stimulation with BCG. (Continued)
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Table 2: Genes identified as up-regulated response to antigen stimulation in previous studies with mycobacterial antigens.

Genbank Symbol *Fold PPD *Fold BCG *BCG over PPD Cell type Stimulus Reference

NM_000600 IL-6 67.97 83.42 1.23 Mφ1, Mφ, DC M.tb, BCG Chaussabel et. al. 
2003
Verrek et. al. 2006
Begum et. al. 2004

NM_000576 IL-1 β 17.34 15.10 0.87 Mφ1, Mφ, DC, 
Guinea-pig 
splenocytes

M.tb, BCG, PPD Chaussabel et. al. 
2003
Verrek et. al. 2006
Begum et. al. 2004
Khajoee et. al. 2006
Tree et. al. 2006

NM_001511 GRO-1, CXCL1 27.12 16.89 0.62 Mφ1, Mφ, DC M.tb, BCG Chaussabel et. al. 
2003 Khajoee et. al. 
2006

NM_002421 MMP1 7.21 17.18 2.38 Mφ1, Mφ, DC M.tb, BCG Chaussabel et. al. 
2003

NM_002089 GRO-2, CXCL2, 
MIP-2A

19.24 24.10 1.25 Mφ1, Mφ, DC M.tb Chaussabel et. al. 
2003

NM_002090 GRO-3, CXCL3 15.94 9.91 0.62 Mφ1 M.tb Chaussabel et. al. 
2003

NM_000594 TNF-α 4.86 9.49 1.95 Mφ1, Mφ, DC M.tb, BCG Chaussabel et. al. 
2003
Verrek et. al. 2006
Begum et. al. 2004

NM_000963 PTGS2, COX2 10.35 13.17 1.27 Mφ, DC M.tb Chaussabel et. al. 
2003

NM_002984 MIP-1β, CCL4 4.19 5.47 1.31 Mφ1, Mφ, DC M.tb Chaussabel et. al. 
2003
Verrek et. al. 2006 
Cliff et al. 2004

NM_007115 TNFAIP6. 9.10 7.12 0.78 Mφ, DC M.tb, BCG Chaussabel et. al. 
2003 Khajoee et. al. 
2006

NM_000584 IL-8 3.62 3.60 0.99 Mφ1, Mφ, DC, 
Guinea-pig 
splenocytes, CD4+

M.tb, BCG, PPD Chaussabel et. al. 
2003
Verrek et. al. 2006 
Khajoee et. al. 2006
Tree et. al. 2006
Cliff et al. 2004

NM_139266 STAT-1 2.41 4.52 1.88 Mφ, DC
Mφ

M.tb
PPD

Chaussabel et. al. 
2003, Begum et. al. 
2004

NM_015714 GOS-2 4.36 4.26 0.98 Mφ, DC M.tb Chaussabel et. al. 
2003

NM_004184 WARS 1.52 2.29 1.51 Mφ, DC
Guinea-pig 
splenocytes

M.tb
PPD

Chaussabel et. al. 
2003 Tree et. al. 
2006
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ex vivo PPD stimulation. The genes in this pathway
include CD86, activated leukocyte cell adhesion molecule
(ALCAM), ITGAM and claudin 1 (CLDN1). CD86 is a cos-
timulatory molecule, important for T cell activation.
ALCAM interaction with CD6, present on mature T cells,
is important for T cell proliferation [40]. Downregulation
of CD86 and ALCAM may therefore represent immuno-
suppressive mechanisms employed by infecting mycobac-
teria. ITGAM is a subunit of the complement receptor
CR3, is expressed on monocytes and macrophages and is
one of multiple receptors used by mycobacteria to gain
entry into the macrophage [41]. Down-regulation of
ITGAM may therefore help protect cells from infection

with mycobacteria. The cell adhesion molecule CLDN1
has recently been described as a receptor for hepatitis C
virus entry into the cell [42]; its role in mycobacteral
pathogenesis is unclear. It is possible that differences in
innate responses to BCG versus PPD would have been
noted if the PBMC tested had been obtained prior to BCG
vaccination and induction of an acquired mycobacteria
specific T cell response. However, in this study as infants
were vaccinated within 48 hours of birth we were not able
to collect a blood sample prior to BCG vaccination.

The PPAR signaling pathway, associated with the develop-
ment of alternative (Mφ2) macrophages, was down-regu-

NM_000595 LTA 2.31 2.28 0.99 Mφ, DC M.tb Chaussabel et. al. 
2003

NM_001955 EDN1 1.93 3.41 1.77 Mφ, DC M.tb Chaussabel et. al. 
2003

NM_001565 IP-10, CXCL10 2.28 3.56 1.56 Mφ, DC M.tb Chaussabel et. al. 
2003

NM_002462 MX1 1.26 1.59 1.26 Mφ, DC M.tb Chaussabel et. al. 
2003

NM_002164 INDO 3.01 2.42 0.80 Mφ, DC Chaussabel et. al. 
2003

NM_002460 IRF4 1.56 1.89 1.21 Mφ, DC M.tb Chaussabel et. al. 
2003

NM_002990 MDC, CCL22 3.53 3.12 0.88 Mφ1 M.tb Verrek et. al. 2006

NM_005746 PBEF 3.36 2.37 0.71 Mφ BCG Begum et. al. 2004

NM_002187 IL-12p40 1.98 2.66 1.35 Mφ BCG Begum et. al. 2004

NM_004591 CCL20, MIP3A 24.49 37.96 1.55 Mφ2 BCG Khajoee et. al. 2006

NM_000636 SOD2 4.25 3.61 0.85 Mφ1 BCG Khajoee et. al. 2006

NM_004049 BCL2A1 2.75 2.55 0.93 Mφ1
CD8+

BCG, M.tb Khajoee et. al. 2006
Cliff et. al. 2004

NM_002053 GBP1 2.31 5.25 2.28 Bovine PBMC PPD Meade et. al. 2006

NM_000758 GM-CSF 36.79 77.65 2.11 Guinea-pig 
splenocytes

PPD Tree et. al. 2006

NM_000575 IL-1alpha 21.60 22.38 1.04 Guinea-pig 
splenocytes

PPD Tree et. al. 2006

NM_003745 SOCS-1 1.65 2.37 1.44 CD8+ M.tb Cliff et al. 2004

NM_172219 CSF3, G-CSF 2.93 9.17 3.13 CD8+ M.tb Cliff et al. 2004

Genes reported as differentially expressed in previous studies and also differentially expressed in this current study are listed. * Median fold change 
in normalised expression.

Table 2: Genes identified as up-regulated response to antigen stimulation in previous studies with mycobacterial antigens. (Continued)
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lated by both BCG and PPD. Genes associated with Mφ1
cells were up-regulated, suggesting a strong bias towards
the development of Mφ1 cells in infants vaccinated with
BCG. Mφ1 and Mφ2 macrophages can be generated in
vitro through the culture of CD14+ positive cells with
GM-CSF and M-CSF, respectively. We found strong up-
regulation of GM-CSF and down-regulation of the M-CSF
receptor in PBMC stimulated with BCG and PPD. These
findings strongly suggest induction of conditions favora-
ble for the development of protective Mφ1, rather than
inhibitory Mφ2.

Many of the infant PBMC genes up-regulated in our study
have also been recognized as up-regulated in response to
mycobacterial antigen stimulation in previous studies of
adult macrophages [4,21,24,26], adult dendritic cells [4],
and CD4 and CD8 T cells [25], as well as guinea pig splen-
ocytes [43] and bovine PBMC [11] (Table 2). There was a
particularly striking similarity between the gene lists
obtained from our BCG vaccinated infants and those gen-
erated by Chaussabel, et al., who incubated M.tb with
monocytes and dendritic cells [4]. Wu, et al. used real time
RT-PCR to study 17 immune genes in infants vaccinated
with different strains of BCG at birth and found that Dan-
ish BCG induced IFN-γ, IL-12β and IL-27 [44]. Danish
BCG was also used to vaccinate the infants in our study
and we saw a modest (~2 fold) increase in IFN-γ and IL-
12β, but not in IL-27, in response to stimulation with
BCG and PPD. The difference in our results may be due to
the time point at which PBMC were isolated: 10 weeks
post-BCG vaccination in our study versus 12 months after
vaccination by Wu, et al. In addition, we restimulated with
BCG or with PPD, whereas Wu, et al. used culture filtrate
proteins of M. tb as antigen in their assays.

Conclusion
The early identification of promising vaccine candidates
in phase I and II clinical trials is essential if we are to expe-
dite the development of new TB vaccines and use precious
resources most effectively. The first wave of new TB vac-
cines to reach clinical trials have been designed as booster
vaccines for BCG and initial phase II efficacy trials with
these vaccines will be conducted in BCG vaccinated pop-
ulations prior to TB exposure. Infants in Africa are a good
target population for such efficacy trials as they will have
been recently vaccinated with BCG. Infants are less likely
to have had exposure to TB, compared with older children
or adults. Understanding base-line responses to BCG vac-
cination will aid the design of new vaccine strategies. We
have successfully used microarray analysis to study
immune responses of healthy infants vaccinated with
BCG at birth. Analysis of expression profiles, in particular
down-regulated genes, has given fresh insight into path-
ways activated by ex vivo exposure to BCG and PPD that

add to our knowledge of the infant immune response to
BCG vaccination.
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