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Abstract

Background: Molecular markers of insecticide resistance can provide sensitive indicators of resistance
development in malaria vector populations. Monitoring of insecticide resistance in vector populations is
an important component of current malaria control programmes. Knockdown resistance (kdr) confers
resistance to the pyrethroid class of insecticides with cross-resistance to DDT through single nucleotide
polymorphisms (SNPs) in the voltage-gated sodium channel gene.

Methods: To enable detection of kdr mutations at low frequency a method was developed that uses
polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA)-based technology,
allowing rapid, reliable and cost-effective testing of large numbers of individual mosquitoes. This was used
to assay mosquitoes from sites in lower Moshi, Tanzania.

Results: Sequence-specific oligonucleotide probes (SSOP) were used for simultaneous detection of both
East and West African kdr mutations with high specificity and sensitivity. Application of the SSOP-ELISA
method to 1,620 field-collected Anopheles arabiensis from Tanzania identified the West African leucine-
phenylalanine kdr mutation in two heterozygous individuals, indicating the potential for resistance
development that requires close monitoring.

Conclusion: The presence of the West African kdr mutation at low frequency in this East African
population of An. arabiensis has implications for the spread of the kdr gene across the African continent.
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Introduction

With efforts to scale-up the coverage of insecticide-treated
nets (ITN) in Africa [1] there is increasing concern regard-
ing the potential impact of insecticide resistance on
malaria control [2,3]. The knockdown resistance (kdr)
mechanism confers resistance to pyrethroid insecticides
and DDT through point mutations in the voltage-gated
sodium channel gene [4,5]. Resulting single amino acid
changes in the domain II region of the sodium channel
reduce the sensitivity of the insect nervous system to these
compounds. Two different kdr mutations have been iden-
tified in resistant Anopheles gambiae s.l. populations from
East and West Africa. The West African kdr is characterized
by a leucine to phenylalanine substitution at position 104
of the voltage-gated sodium channel sequence (L104F)
[4], while the East African kdr involves a serine substitu-
tion at the same position (L104S) [6]. Recent reports of
both kdr mutations in An. gambiae from Uganda [7]indi-
cate, however, that this geographic distinction may be too
simplified. While the kdr allele has predominantly been
found in An. gambiae s.s. [8-10], several reports have also
identified the presence of kdr in the sibling species Anoph-
eles arabiensis [7,11,12].

Models of antimalarial drug resistance spread have dem-
onstrated the potential for a rapid increase in the fre-
quency of resistance, rising quickly from undetectable
levels to levels that result in control failure [13]. Models of
insecticide resistance show an equally rapid rise when the
frequency reaches levels as low as 0.1% [14]. Since the kdr
allele is incompletely recessive, conventional bioassay
methods that measure phenotypic resistance cannot relia-
bly detect the heterozygous proportion of the population
[8]. A more sensitive approach is direct genotyping, which
can identify heterozygotes and, thus, facilitate early detec-
tion of resistance development.

However, current methods for kdr genotyping have limita-
tions for testing large numbers of individuals, which is
often needed in routine monitoring programmes. Multi-
plex polymerase chain reaction (PCR) methods [4,6] are
time consuming and the visualization of the PCR product
by gel electrophoresis uses toxic reagents. The PCR-dot
blot method [15] is also relatively time consuming, and
scoring of the product is subjective if done by eye, or
requires costly equipment for automated scoring. The
HOLA technique [16] allows more simple and reliable
detection of kdr mutations, but requires two thermal
cycling steps, necessitating additional time and cost. The
FRET/MCA technique requires costly real-time PCR equip-
ment [7], which is not affordable by most resource poor
laboratories.

A rapid, high-throughput method for kdr screening was
developed that is appropriate for use in laboratories in
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malaria endemic countries. This method combines a PCR
assay with visualization of the product using sequence-
specific oligonucleotide probes (SSOP) in an enzyme-
linked immunosorbent assay (ELISA) format. It is based
on the SSOP-ELISA method of Alifrangis et al. [17] for
detecting drug resistance mutations in Plasmodium falci-
parum, with some modifications. The is rapid, allowing
analysis of more than 150 samples in a single day, con-
venient, using a 96-well plate format for easy transfer of
reagents and samples with multichannel pipettes, and
cost-effective, amounting to roughly 1 USD per sample.
Following optimization, the method was evaluated by
analysis of field-collected material from northern Tanza-
nia, where insecticide resistance monitoring and ITN eval-
uation activities are ongoing.

Methods

Anopheles gambiae reference strains

Three laboratory reference strains of An. gambiae s.s. were
used to verify the specificity and sensitivity of the assay,
and these were used as controls in subsequent experi-
ments. R70 from Tanzania possesses the wildtype suscep-
tible (104L) genotype; VKPR, homozygous for the L104F
West African kdr allele; and RSP, homozygous for the
L104S Fast African kdr allele. In addition, artificial hetero-
zygotes were created by combining DNA extracted from
individuals of susceptible and resistant strains, L(R70)/
F(VKPR) for the West African kdr and L(R70)/S(RSP) for
the East African kdr.

Field-collected samples

Field studies were conducted in villages in the lower
Moshi area on the slopes beneath Mt Kilimanjaro in
northeast Tanzania.

Mabogini

Female An. arabiensis were collected by indoor-resting
catch from houses in Mabogini village (3°22'S,37°19'E)
during June/July 2004, and exposed to 0.75% permethrin
in WHO susceptibility tests [18]. Survivors and dead indi-
viduals from these tests (n = 822) were processed for cir-
cumsporozoite protein (CSP) ELISA for detection of P.
falciparum sporozoites, i.e. head and thorax of individual
mosquitoes homogenized in grinding buffer [19], then
stored in 96-well plates in grinding buffer at -20°C. Exper-
imental hut trials conducted in the same area to evaluate
permethrin-treated nets and sheets provided survivors
and dead mosquitoes (n = 156), which were stored on sil-
icagel at4°C.

Msitu wa Tembo

Female An. arabiensis (n = 642) from light trap collections
carried out in 2004 in the village of Msitu wa Tembo, Tan-
zania (3°33' S, 37°17' E) were processed for CSP ELISA
and stored in 96-well plates at -20°C.
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Table I: Sequence-specific oligonucleotide (SSOP) sequences used for detection of kdr single nucleotide polymorphisms (SNPs)

SSOP SSOP sequence kdr SNP Reference strain
*104L GGAAATTTAGTCGTAAGT wildtype R70/Dondotha
*104F GGAAATTTTGTCGTAAGT West African kdr VKPR

*104S GGAAATTCAGTCGTAAGT East African kdr RSP

*position 104 of the Anopheles gambiae voltage-gated sodium channel protein sequence, EMBL accession number Y 13592

Extraction of DNA from mosquitoes

Individual mosquitoes, dried on silica gel or processed for
CSP ELISA, were homogenized in 50 pl STE buffer (1 mM
EDTA, 10 mM Tris-HCI, 50 mM NaCl), incubated at 95°C
for 12 minutes then centrifuged at 13,000 rpm for four
minutes at room temperature. Aliquots of the supernatant
containing suspended DNA were transferred into fresh
tubes and stored at -20°C until use. DNA extraction was
carried out in individual tubes or in 96-well PCR plates
using a clean pipette tip for homogenization of each sam-
ple. DNA extracted from individual, dried mosquitoes
using the method described by Collins et al. [20] was used
for comparison. Ten microlitres of the DNA extract from
two individuals were pooled in each well, and this pooled
DNA was used in the polymerase chain reaction.

Polymerase chain reaction

Forward and reverse primers developed by Kolaczinski et
al. [21] were used to amplify a 216 bp fragment of the
voltage-gated sodium channel gene, with a biotin modifi-
cation of the reverse primer at the 5' end (MWG Biotech,
Riskov, Denmark). Each 20 pL PCR reaction consisted of
0.25 mM each dNTP, 0.1 uM each primer, one unit Hot-
StarTaq polymerase (Qiagen, Albertslund, Denmark) in
buffer containing 1.5 mM MgCl, (Qiagen) and 2 pL
extracted DNA. Reaction conditions were 94°C for 15
minutes followed by 35 cycles of 94°C for one minute,
55°C for one minute and 72°C for one minute, with a
final extension at 72 ° C for four minutes; the PCR product
was kept at 4°C until use. Amplifications were performed
in 96-well PCR plates and the reaction mixture was over-
laid with one drop of mineral oil. PCR products from con-
trols and several samples from each plate were confirmed
by electrophoresis on a 1.5% agarose gel. Species identifi-
ation of members of the An. gambiae complex was per-
formed on individual mosquitoes according to Scott et al.
[22].

SSOP-ELISA for kdr detection

The ELISA plates (Maxisorp; Nunc, Roskilde, Denmark)
were coated with streptavidin in phosphate buffered
saline (PBS) (1 g/mL), covered, and left overnight at 4°C.
Prior to use, the plates were washed three times in wash-
ing buffer (1 x PBS containing 0.05% Tween 20). The PCR
products were diluted 1:1 in water in a 96-well PCR plate,

denatured at 95°C for five minutes, and immediately
thereafter cooled to 4°C until use. The 3'-end digoxi-
genin-conjugated SSOPs (MWG Biotech, Riskov, Den-
mark) (shown in Table 1) were diluted to a 4 nM
concentration in tetramethyl ammonium chloride
(TMAC; Sigma Aldrich, Dorset, UK) solution (3 M TMAC,
50 mM Tris, pH 8.0, 0.1% sodium dodecyl sulfate, 2 mM
EDTA, pH 8.0), heated to 53°C, and 100 pL was then
added to each well of the ELISA plate. Two microlitres of
the diluted PCR products was subsequently added. Repli-
cate ELISA plates were made to enable simultaneous prob-
ing with SSOPs targeting all three kdr genotypes. The
plates were incubated in a hybridization oven (AH Diag-
nostics, Aarhus, Denmark) at 53°C on a shaking device
for one hour and washed three times in washing buffer.
This was followed by two rounds of washing and incuba-
tion (14 minutes per round for 104L and 104S probes, 15
minutes per round for the 104F probe) in TMAC solution
at 68°C. To remove TMAC, the plates were then washed
three times in washing buffer, and peroxidase-conjugated
anti-digoxigenin antibody in dilution buffer (1:1,000)
(Roche Diagnostics, Mannheim, Germany) was added to
each well. After incubation for one hour at room temper-
ature, the plates were washed three times in washing
buffer and 100 pL of room temperature TMB substrate
(Sigma Aldrich, Dorset, UK) was added to the plates. The
reaction was stopped after five minutes by adding 0.5 M
H,SO, and the optical density (OD) at 450 nm was meas-
ured in an ELISA reader. A flow diagram of the methodol-
ogy is presented in Figure 1.

Scoring of ELISA data

For each probe, the non-complementary control strains
served as negative controls (e.g. for the 104L probe, wells
that contained R70 served as positive controls while wells
on the same plate that contained VKPR or RSP served as
negative controls). Some between-experiment variation in
the OD values of positive and negative controls was
apparent, possibly due to marginal differences in the
probe binding strength and the washing force during high
stringency washes. While this rarely compromised specif-
icity, no fixed threshold could be specified for SNP tests
and for each experiment a threshold of positivity was set
for each SSOP corresponding to twice the maximum neg-
ative control OD value. Samples with OD values exceed-
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Flow diagram of the SSOP-ELISA procedure for detection of
knockdown resistance (kdr) in pooled samples using probes
corresponding to susceptible (L) and resistant (F, S) geno-

types.

ing this threshold for each SSOP were considered positive
for the corresponding SNP, or combination of SNPs in the
case of heterozygotes.

Evaluation of SSOP-ELISA compared to multiplex PCR

A set of 12 samples, consisting of six individual controls,
five mixtures of controls and one field-collected sample
were used in a double blind trial to test the consistency of
the SSOP-ELISA method in relation to the multiplex PCR
methods described by Martinez-Torres et al. [4] and Ran-
son et al. [6]. The susceptible Dondotha strain of An. ara-
biensis was used in addition to R70 as a wildtype control.

Sequencing

Kdr primers with additional 5' EcoR1 and 3' Notl site
were used to generate PCR products, which were cloned
into pAcGP67 (BD biosciences). Plasmids were prepared
using MiniPrep spin columns (Omega Biotech). Sequenc-
ing was done on an ABI Prism 377 (Perkin-Elmer) using
the Big Dye terminator reaction mix (Perkin-Elmer) and
ABI Prism proof-reading and translation software.
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Results

Specificity and sensitivity of SSOP-ELISA

To evaluate the specificity and sensitivity of the ELISA, the
three reference strains of An. gambiae s.s., R70, VKPR and
RSP known to carry the different kdr genotypes, as well as
the artificial heterozygote mixtures of these reference
strains, were tested. DNA extracted from samples by STE
or the Collins method worked equally well, and further
evaluation was carried out using DNA extracted by the STE
method. Figure 2 shows that the assay correctly identifies
the SNPs of the different strains using SSOP for 104L,
104F and 104S for single individuals. The difference in
OD value between the threshold of positivity and the pos-
itive reactions, AOD, was always greater than 1.3. For mix-
tures of two individuals representing artificial
heterozygotes (Figure 3), the OD obtained with kdr-spe-
cific probes (104F or 104S) was slightly lower than the
OD obtained with corresponding probes for single indi-
viduals; however, the AODs for the different SNPs were at
least 0.9. The OD using the wildtype probe (104L) was
lower in both mixtures compared to single individuals,
with a AOD of 0.9 for the L(R70)/F(VKPR) mixture and
0.8 for the L(R70)/S(RSP) mixture; however, the signal
strength was sufficient for visual detection. Figure 4 shows
the visual results of the SSOP-ELISA test for control
strains, individually, in combination as artificial heterozy-
gotes, and with an additional dilution, in three columns
of an ELISA plate representing the different SSOP.

In two dilution series with pools containing four or five
mosquitoes possessing the resistant and susceptible geno-
types, the SSOP-ELISA could reliably detect one resistant
individual in a pool containing three other susceptible
individuals (1F:3L or 1S:3L), with the AOD in relation to
the negative control of 0.9 for 104F and 0.7 for 104S.
However, when the pool size was increased to five indi-
viduals, sensitivity to detect one resistant mosquito in a
pool containing four other susceptible individuals (1F:4L
or 1S:4L) was reduced, and the AOD for the minority gen-
otype was <0.5.

Evaluation of SSOP-ELISA versus multiplex PCR

Results of the double blind trial are presented in Table 2.
All six individual controls were successfully genotyped by
multiplex PCR and correctly identified by SSOP-ELISA.
For five artificial heterozygotes, multiplex PCR failed to
amplify the 137 bp susceptible band in both L/S mixtures,
and failed to amplify the 195 bp resistant band in one of
two L/F mixtures, while the F/S mixture was successfully
genotyped. This was in contrast to the SSOP-ELISA which
detected both SNPs in all mixtures with success. The field
sample of unknown genotype was identified as 104L by
multiplex PCR and SSOP-ELISA.

Page 4 of 7

(page number not for citation purposes)



Malaria Journal 2006, 5:56

3.0 §

25 TL

2.0

0 104L
& 104F
01048

1.5

1.0 4

Raw OD values

0.5 4

0.0

L(R70) F(VKPR)

Strains

S(RSP)

Figure 2

Specificity of SSOP-ELISA to detect control strains of known
kdr genotype (L, R70; F, VKPR; S, RSP). Mean optical density
(OD) and 95% confidence intervals from 10 separate experi-
ments.

Analysis of field-collected samples

To ensure detection of heterozygous individuals in field-
collected specimens, pools of two individuals only were
used representing a total of four alleles. The individuals
from positive pools were tested separately for confirma-
tion. All 978 individuals from susceptibility tests and
experimental huts in Mabogini tested homozygous for the
wildtype susceptible (104L) genotype. However, the
SSOP-ELISA detected two out of 642 individuals from
Msitu wa Tembo village that were heterozygous for the
L104F kdr genotype (allele frequency = 0.16%). These
L104F kdr genotypes were confirmed by DNA sequencing.
It was not possible to correlate the kdr genotype with
insecticide susceptibility status since these mosquitoes
had been collected by light trap catch for the purpose of
Sporozoite rate measurement.

Discussion

A SSOP-ELISA method is described that allows simple,
high-throughput detection of kdr SNPs in An. gambiae s.1.
This method can be established and operated in malaria
endemic countries to assist local or national insecticide
resistance monitoring programmes. Multiplex PCR meth-
ods are often unreliable for detection of heterozygotes
[7,16] and other methods have apparent limitations in
terms of time and cost. The SSOP-ELISA method has an
advantage of using equipment that is readily available in
research laboratories in malaria endemic countries. In
addition its increased sensitivity can facilitate detection of
the kdr alleles when still present at low frequency, as dem-
onstrated by detection of two heterozygotes in Tanzania
where the kdr mutation has not previously been recorded.

While the leucine-phenylalanine kdr mutation is wide-
spread in West Africa, it has not, until recently, been
found further east of the Central African Republic [12,23].
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Figure 3

Specificity of SSOP-ELISA to detect kdr heterozygotes. Mean
optical density (OD) and 95% confidence intervals from 9
separate experiments. Artificial heterozygotes created by
combination of DNA from two control strains (L, R70; F,
VKPR; S, RSP).

In Uganda, this mutation was found in combination with
the leucine-serine kdr mutation in An. gambiae s.s. [7].
Interestingly, the presence of the leucine-phenylalanine
kdr allele in two An. arabiensis from northern Tanzania
represents the first account of this mutation in East Afri-
can populations of this sibling species. More widespread
monitoring of the distribution of both kdr mutations in
the An. gambiae complex across Africa may therefore
reveal less definite geographic restrictions than previously
thought. The kdr genotype of An. arabiensis from Msitu wa
Tembo village could not be linked to the resistance phe-
notype, yet this finding raises potential implications for
malaria control. While high frequencies of the same kdr
mutation in An. gambiae s.s. in Cote d'Ivoire have not
impacted on the control achieved with insecticide-treated
nets [24,25], kdr may interact with other genes to eventu-
ally have a serious impact on malaria control. The small-
scale farming village where kdr was detected in the present
study is situated nearby the irrigated rice-growing
Mabogini area of Tanzania, where survivors of bioassays
did not posess the kdr genotype [26] suggesting that an
additional resistance mechanism, possibly metabolic,
may be present in the local vector population.

Present insecticide use in the area where the two kdr het-
erozygotes were collected is negligible, with only small-
scale, subsistence agricultural production. However, the
river that serves as a focus for vector breeding in this vil-
lage [27] flows downstream from large-scale agricultural
areas where pyrethroids and organochlorines have previ-
ously been used (Kulkarni et al. in preparation). Early
insecticide use may have selected for resistance in local
vector populations, and the mutation may have since
existed at low undetectable frequencies. Resistance moni-
toring using bioassays has not detected significant reduc-
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Table 2: Double blind trial to compare results SSOP-ELISA for
kdr genotyping to results of standard multiplex PCR methods
using control strains of known genotype (L, Dondotha/R70; F,
VKPR; S, RSP) as individuals or in mixtures.

Test Sample Genotype results by method
Genotype(Strain) ~ SSOP-ELISA Multiplex PCR
East African West African
kdr! kdr?
L(Dond)+F(VKPR) L/F L L/X
L(Dond)+S(RSP) L/s XIS L
F(VKPR) F -- F
field sample L L L
S(RSP) S S -
L(Dond) L L L
F(VKPR)+S(RSP) F/S S F
L(R70)+F(VKPR) L/F L L/F
L(R70)+S(RSP) L/s X/S L
L(R70) L L
F(VKPR) F - F
S(RSP) S S -

method of Ranson et al. (2000); L = susceptible band present, S = kdr
band present

2method of Martinez-Torres et al. (1998); L = susceptible band
present, F = kdr band present

-- = band absent (genotype does not correspond to kdr-specific
detection method)

X = band absent (genotype not detected by corresponding method)

tions in insecticide susceptibility in this area (Kulkarni et
al. in preparation). However, there is clearly the potential
for resistance development in populations where the kdr
mutation exists at low levels [14] as was demonstrated in
western Kenya, where the kdr L104S allele pre-dated ITN
use and increased significantly in frequency after intro-
duction of ITN [12]. Investigation of local heterogeneity
in the frequency of kdr in Tanzania and neighbouring

Row Probe
L F s

Genotype Species (Strain)

L control: An. gambiae s.s. (R70); susceptible

F control: An. gambiae s.s. (VKPR); W. African kdr
S control: An. gambiee s.s. (RSP); E. African kdr
L/F pool

/S poal

L + L/F pool

L + /S pool

negative control

@ ~N kR W N =

Figure 4

Three columns of an ELISA plate showing visual results
obtained for SSOP-ELISA analysis of control strains of An.
gambiae s.s., individually and in combination.
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countries in relation to history of insecticide use may
reveal areas that contributed to early selection of resist-
ance and environmental conditions that might be favour-
ing growth of resistance.

Continued monitoring of vector populations is essential
and will benefit from screening for genetic markers of
resistance. The occurrence of the typically West African
leucine-phenylalanine kdr mutation in Tanzania empha-
sizes the need to test for both kdr mutations regardless of
geographic location. Use of the cost-effective, high-
throughput SSOP-ELISA method to detect kdr alleles may
contribute to resistance monitoring efforts in many
regions of Africa, where little is known on the insecticide
resistance status of malaria vector populations.
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