
Downloaded from: http://researchonline.lshtm.ac.uk/11561/

DOI: 10.1079/bjn20061835

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: Copyright the publishers
The disease risk indicator plasma total homocysteine (tHcy) is influenced by genetic and environmental factors, including folate and vitamin B₁₂ status. Little is known about the determinants of tHcy in rural West Africa. We explored the hypothesis that tHcy in rural Gambian adults might vary between the sexes and physiological groups, and/or with folate and vitamin B₁₂ status. Comparisons were made with a British national survey. Non-pregnant Gambian women (n 158) had tHcy concentrations (geometric mean 9·0 μmol/l) similar to those of non-pregnant UK women (n 449; 9·4 μmol/l), whereas pregnant Gambian women (n 12) had significantly lower values (6·2 μmol/l). Gambian men (n 22) had significantly higher values (14·7 μmol/l) than British men (n 354; 10·8 μmol/l). Gambian lactating women and British men and women exhibited significant inverse relationships between logₑ(tHcy) and folate status; however, only the British subjects exhibited significant inverse relationships between logₑ(tHcy) and vitamin B₁₂ status. In the British sample, and in Gambian lactating women, folate and vitamin B₁₂ status variations together accounted for 20–25 % of the variation in logₑ(tHcy). Within the UK, black-skinned adults had folate and tHcy levels similar to those of their white-skinned counterparts, but significantly higher vitamin B₁₂ values. We conclude that, whereas folate and vitamin B₁₂ status are similar between British and rural Gambian populations, tHcy is higher in Gambian men and lower in pregnant Gambian women, and that serum vitamin B₁₂ values appear to be higher in black-skinned than white-skinned British subjects. Possible reasons are discussed.

Homocysteine: Folate: Vitamin B₁₂: Gambia: West Africa: United Kingdom

Homocysteine is a S-containing amino acid that is an intermediary product in methionine metabolism. Its plasma concentrations are directly correlated with vascular disease risk in Western populations (Ueland et al. 1992; Welch & Llosalzo, 1998); however, its relationship with risk in developing countries is less clear. In The Gambia, whereas obesity and associated cardiovascular risk factors are increasingly common in urban populations, such vascular risk factors occur relatively rarely in the rural environment (van der Sande et al. 2001).

The transfer of the methyl group from methionine is an important step in the metabolism of nucleic acids and in other key biochemical processes (Pancharuniti et al. 1994). In the course of these transmethylation reactions, homocysteine is normally remethylated to methionine by the enzyme methionine synthase. Folate (as N⁵,N¹⁰-methylenetetrahydrofolate) and vitamin B₁₂ are both coenzymes for methionine synthase, and they are therefore necessary for the removal of homocysteine in the body, by transmethylation. Reduced concentrations of these two cofactors, resulting from nutritional deficiencies or genetic defects, results in homocysteine not being removed; an elevation in plasma total homocysteine (tHcy) level is then observed (hyperhomocysteinaemia). tHcy concentrations in plasma are therefore a sensitive indicator of vitamin B₁₂ and folate deficiencies, and an inverse relationship between plasma tHcy and both plasma folate and vitamin B₁₂ concentrations is observed, even in populations with generally adequate nutrition (Blom, 1998). The situation in developing countries, including those of Africa, where populations may have poor folate and vitamin B₁₂ nutrition (Topley, 1968; Abdalla et al. 1986; Bates et al. 1986; Stabler & Allen, 2004; Siekmann et al. 2003) is less clearly established.

The present study was designed to compare and contrast plasma tHcy, folate and vitamin B₁₂ concentrations in a sample of rural, subsistence farmers (i.e. women, including those at an early stage of pregnancy and during lactation, and men) in The Gambia, West Africa, and to compare them with a representative sample of adults living in Great Britain, who took part in the National Diet and Nutrition Survey (NDNS) of adults aged 19–64 years in 2000–1. It thus addressed two contrasting lifestyles and dietary patterns, to reveal characteristic metabolic and status differences between a developing, West African country and a Western country.

Abbreviations: NDNS, National Diet and Nutrition Survey; tHcy, plasma total homocysteine.

* Corresponding author: Dr Christopher J. Bates, fax + 44 (0) 1223 437515, email Chris.Bates@mrc-hnr.cam.ac.uk

† Current address: Faculty of Mathematics and Natural Sciences, Agder University College, Kristiansand, Norway.
Methods

Gambian study population

Adults from the villages of Keneba, Kanton Kunda and Manduwar in the West Kiang region of The Gambia (which is representative of many of the rural farming communities of the Sahelian region of West Africa) were recruited into the study. Detailed descriptions of nutritional and environmental conditions in this region have been provided elsewhere (Prentice et al. 1981, 1987). Briefly, the subsistence farming existence is heavily influenced by a single rainy season lasting from July to October, and, as a consequence, many markers of nutritional status exhibit major seasonal variations (Bates et al. 1982; Cole, 1993).

The adults recruited for the present study were part of a larger study examining the early-life programming of CVD, whose protocol has been described in detail elsewhere (Moore et al. 2001). All adults with a known month of birth, born between 1949 and 1977 and still residing in the three villages, were invited to participate. To meet the requirements of the main study (Moore et al. 2001) women with an already-diagnosed and well-established pregnancy were excluded; however, twelve subjects with undiagnosed pregnancies, eleven of whom were over 23 weeks before parturition and two of whom were still breast-feeding a previous child, were included. Their pregnant status was identified only at a later time-point, at which time they were allocated to a separate (pregnant) group.

The study took place during the months of April, May and June 1997, during the latter half of the dry season.

Experimental protocol: fieldwork

Gambian study. The subjects were brought to Keneba’s Medical Research Council clinic following an overnight fast. A fasting heparinised venous blood sample was taken for the analysis of plasma homocysteine, folate and vitamin B12. The blood samples were immediately centrifuged, and the plasma/serum samples were aliquotted and frozen at −80°C until the end of the fieldwork, when subsamples were transported to the UK and Norway on dry ice for analysis. Ethical permission for the study was granted by the joint Gambian Government and Medical Research Council Ethical Committee.

British survey. The Gambian plasma homocysteine concentrations were measured at the Division of Clinical Chemistry, Central Hospital in Rogaland, Stavanger, Norway, by the method of Fiskestrand et al. (1993), which is a reverse-phase HPLC assay. British tHcy concentrations were measured in Cambridge by the Abbott IMx fluorescence polarisation immunoassay kit assay (Shipchandler & Moore 1995). Homocysteine determinations by the Fiskestrand et al. (1993) HPLC assay have been independently shown to give results that are essentially identical to those obtained by the Abbott IMxs (fluorescence polarisation immunoassay) assay (Nexo et al. 2000). A comparison, in our laboratory, between IMx homocysteine round-robin assay results and those of all participants in the Moller et al. (1999) external quality assessment scheme indicated very close agreement, with a mean deviation of less than 1% for twenty-eight distributed samples.

Statistical procedures

Plasma tHcy and serum or plasma folate and vitamin B12 concentrations all showed some evidence of a skewed distribution and were therefore logarithmically transformed to achieve a normal distribution. Statistical tests were performed on the untransformed or transformed variables, with the results being reported as antilogs, i.e. geometric means, wherever transformation was required. Comparisons between group means were made using the Scheffe test following a demonstration of group differences by ANOVA. Associations between continuous variables were examined by Pearson’s correlation. Adjustments for age, anthropometric variables and B vitamin status indices were made by multivariate linear regression. P values of less than 0.05 were considered statistically significant. All statistical analyses were performed using DataDesk statistical analysis, in Li-heparin, it was placed in a cold-box containing a freezer pack that cooled the sample to nearly 0°C. It was transported to a local hospital laboratory, usually within 2 h and in all cases in less than 4 h, and was immediately centrifuged at 4°C to separate the plasma, which was then stored at −40°C or lower.

For the present study, the subset with an age range confined to 22–50 years was selected, so as to match the age range of the Gambian population studied. Permission was given for the NDNS survey procedures by a Multi-centre Research Ethics Committee and by individual National Health Service Local Research Ethics Committees representing each of the participating postcode sectors.

Laboratory analyses

The Gambian plasma folate and B12 concentrations were measured at the Medical Research Council Human Nutrition Research, Cambridge using Abbott IMx kit assays (IMx Systems, Abbott Laboratories, IL, USA). The British subjects’ serum folate and vitamin B12 concentrations were measured at Great Ormond Street Haematology Laboratory, London, also using the Abbott IMx kit assays. For the folate and vitamin B12 assays, agreement with UK National External Quality Assurance Scheme or commercial serum samples with assigned values was essentially identical at both centres; compared with the assigned or all-laboratory-mean results, the observed means were, on average, 5–7% lower for both analytes.

The Gambian plasma homocysteine concentrations were measured at the Division of Clinical Chemistry, Central Hospital in Rogaland, Stavanger, Norway, by the method of Fiskestrand et al. (1993), which is a reverse-phase HPLC assay. British tHcy concentrations were measured in Cambridge by the Abbott IMx fluorescence polarisation immunoassay kit assay (Shipchandler & Moore 1995). Homocysteine determinations by the Fiskestrand et al. (1993) HPLC assay have been independently shown to give results that are essentially identical to those obtained by the Abbott IMxs (fluorescence polarisation immunoassay) assay (Nexo et al. 2000). A comparison, in our laboratory, between IMx homocysteine round-robin assay results and those of all participants in the Moller et al. (1999) external quality assessment scheme indicated very close agreement, with a mean deviation of less than 1% for twenty-eight distributed samples.
program for computers (Data Description Inc., Ithaca, NY, USA).

Results

Homocysteine, folate and vitamin B12 status in Gambian adults

Of 301 Gambian subjects who were invited to participate, twenty-six (9%) were excluded because of an already diagnosed pregnancy, forty-one (14%) refused and fifteen (5%) were excluded on the grounds of ill-health. From the three villages, 219 adults (73% of the total population available under the selection criteria) agreed to participate and gave their informed and signed consent. Men (11% of the sample) were underrepresented, partly because of urban migration for paid employment in the period before the harvest season.

The age profiles of the study participants are shown in Table 1. As there were some significant intergroup age differences, all subsequent analyte comparisons between the groups were performed after age adjustment, by multivariate linear regression.

The distribution of tHcy in both the Gambian and British samples was positively skewed. The overall Gambian geometric mean plasma tHcy concentration was 9.23 μmol/l, with a range of 2.4–33.4 μmol/l and an interquartile range of 4.4–20.7 μmol/l. tHcy concentrations were positively correlated with age (20–29 years 7.79 μmol/l; 30–39 years 9.16 μmol/l; 40–49 years 10.45 μmol/l; 50–59 years 12.62 μmol/l; P for trend = 0.0004). The overall geometric mean British plasma tHcy concentration was 10.0 μmol/l, with an interquartile range of 5.8–19.5 μmol/l. Table 1 shows the geometric mean values of tHcy in the four subgroups of Gambian participants (pregnant, lactating, non-pregnant, non-lactating women, and men), and in the two subgroups of UK participants (non-pregnant, non-lactating women, and men). There are significant intergroup differences, the highest tHcy concentrations being observed in the Gambian men and the lowest in the pregnant Gambian women.

Table 2 shows the folate concentrations by subgroup in the two populations. The lowest folate concentrations were found in the Gambian men, and the highest in the pregnant Gambian women; but there were fewer significant intergroup differences than for tHcy. The lower limit of normal plasma folate concentration in an otherwise well-nourished population has been defined as 6.8 nmol/l (3 ng/ml; Department of Health, 1991). Only one Gambian and five British subjects had plasma levels below this lower limit of normality.

Table 2 also shows vitamin B12 concentrations by subgroup in the two populations. The highest vitamin B12 concentrations were found in British men, and the lowest in the pregnant Gambian women; but there were fewer significant intergroup differences than for tHcy. The lower limit of normal plasma folate concentration in an otherwise well-nourished population has been defined as 6.8 nmol/l (3 ng/ml; Department of Health, 1991). Only one Gambian and five British subjects had plasma folate levels below this lower limit of normality.

Table 2 also shows vitamin B12 concentrations by subgroup in the two populations. The highest vitamin B12 concentrations were found in British men, and the lowest in the pregnant Gambian women; but there were fewer significant intergroup differences than for tHcy. The lower limit of normal plasma folate concentration in an otherwise well-nourished population has been defined as 6.8 nmol/l (3 ng/ml; Department of Health, 1991). Only one Gambian and five British subjects had plasma folate levels below this lower limit of normality.

Significant linear inverse associations were found between the British log-transformed tHcy and folate concentrations and between the Gambian log-transformed tHcy and folate concentrations (Table 3 and Fig. 1). There was also

Table 1. Mean age and plasma total homocysteine (tHcy) concentrations in Gambian and British (National Diet and Nutrition Survey) population samples (Mean values and standard deviations)

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Mean age (years)</th>
<th>tHcy geometric mean (μmol/l)</th>
<th>tHcy interquartile range (μmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gambian pregnant women</td>
<td>12</td>
<td>31.2 ± 4.7</td>
<td>6.22 ± 4.6</td>
<td>4.6–8.3</td>
</tr>
<tr>
<td>Gambian lactating women</td>
<td>68</td>
<td>31.9 ± 6.8</td>
<td>9.07 ± 6.9</td>
<td>8.6–10.8</td>
</tr>
<tr>
<td>Gambian non-pregnant, non-lactating women</td>
<td>90</td>
<td>39.3 ± 8.1</td>
<td>8.92 ± 6.9</td>
<td>8.6–11.5</td>
</tr>
<tr>
<td>British women</td>
<td>449</td>
<td>37.2 ± 7.6</td>
<td>9.43 ± 6.9</td>
<td>9.0–11.3</td>
</tr>
<tr>
<td>British men</td>
<td>354</td>
<td>37.2 ± 7.6</td>
<td>10.84 ± 6.9</td>
<td>10.4–12.9</td>
</tr>
</tbody>
</table>

Subsequent age selection of the British men and women was confined to 22–50 years to match the age range of the Gambian study population. Values of tHcy in the first numerical column refer to the unadjusted tHcy values in the fifth and sixth numerical columns, whereas for the adjusted values in the seventh and eighth numerical columns, values of n are somewhat smaller because of missing values of the adjusters. All tHcy values were age-adjusted by linear regression.

* Geometric mean values for tHcy were adjusted for both age and folate status (serum or plasma folate) by linear regression.
† Geometric mean values for tHcy were adjusted for age, folate and vitamin B12 status and for body weight and height, by linear regression.

† Mean values within a column were adjusted for age, folate and vitamin B12 status and for body height and weight (P < 0.001). For all models, Gambian pregnant v. non-pregnant Gambian women, P < 0.01 or less. Gambian men v. British men, P < 0.001 or less.
a significant inverse relationship between log-transformed values of tHcy and serum vitamin B\textsubscript{12} in the British sample (Table 3). No significant linear association was, however, found between Gambian plasma tHcy and vitamin B\textsubscript{12} concentrations (Table 3). Correlations between tHcy and anthropometric indices (body weight, height, BMI) were generally weak and inconsistent. However, the inclusion of weight and height as well as the folate and vitamin B\textsubscript{12} indices as adjusters in the tHcy intergroup comparisons (Table 1) did have some influence on the significance values: for example, the combined effect of these adjusters reduced the significance of the tHcy differences between Gambian men, British men and British women.

Comparisons within the British sample

Within the entire British adults’ NDNS survey sample, age range 19–64 years, there were sixteen black-skinned respondents (ten women, six men) whose status indices could be compared with those of the 629–649 white Caucasian females and 521–537 white Caucasian males with values for the three relevant status indices (i.e. slightly different numbers for each index). The age range of the female respondents was similar between the black and white subjects, but the mean age of the white Caucasian respondents was 7.6 years greater than that of the black male respondents. Age adjustment was therefore applied, by linear regression, to the intergroup comparisons (by Scheffe test) that are described later.

Discussion

Homocysteine, folate and vitamin B\textsubscript{12} status in Gambian and British adults

The present study, conducted in a sample of rural Gambian adults, is the first study to provide data on three interrelated status indices – plasma tHcy, plasma folate and plasma vitamin B\textsubscript{12} concentrations – from this region of sub-Saharan Africa. The mean plasma tHcy concentration of 9.2 nmol/l observed in the Gambian adults is similar to that reported from a group of South African black adults (Ubbink et al. 1996). Twenty-three (12 %) of the Gambian adults had a tHcy concentration in excess of 15 nmol/l, and like the tHcy

<p>| Table 2. Plasma or serum folate and vitamin B\textsubscript{12} concentrations in Gambian and British (National Diet and Nutrition Survey) population samples |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th></th>
<th>Folate geometric mean (nmol/l)</th>
<th>Folate geometric interquartile range</th>
<th>Vitamin B\textsubscript{12} geometric mean (pmol/l)</th>
<th>Vitamin B\textsubscript{12} geometric interquartile range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gambian pregnant women</td>
<td>22.0⁰ab</td>
<td>12</td>
<td>16.1–26.2</td>
<td>206⁰</td>
</tr>
<tr>
<td>Gambian lactating women</td>
<td>17.7⁰ab</td>
<td>66</td>
<td>9.1–33.4</td>
<td>269⁰</td>
</tr>
<tr>
<td>Gambian non-pregnant, non-lactating women</td>
<td>17.5⁰ab</td>
<td>89</td>
<td>12.4–24.7</td>
<td>262⁰</td>
</tr>
<tr>
<td>Gambian lactating women</td>
<td>14.6</td>
<td>22</td>
<td>7.3–26.1</td>
<td>231⁰</td>
</tr>
<tr>
<td>British women</td>
<td>20.1b</td>
<td>441</td>
<td>10.0–39.8</td>
<td>255⁰</td>
</tr>
<tr>
<td>British men</td>
<td>19.2ab</td>
<td>347</td>
<td>10.8–34.4</td>
<td>281⁰</td>
</tr>
</tbody>
</table>

Gambian samples were plasma; UK samples were serum. For both the folate and vitamin B\textsubscript{12} indices, some of the distributions were skewed; therefore geometric means are shown throughout. All geometric mean values were age-adjusted by linear regression.

For tHcy and serum folate, there were no significant differences between the black-skinned and white-skinned respondents (P for intergroup comparisons ranging between 0.4 and 0.94). The geometric mean concentrations were as follows: tHcy (µmol/l): black women 8.83, white women 9.71, black men 11.58, white men 11.11; serum folate (nmol/l): black women 20.2, white women 20.4, black men 17.1, white men 19.7. For serum vitamin B\textsubscript{12}, however, there was a marked and significant difference between the groups for both sexes. The geometric mean concentrations of vitamin B\textsubscript{12} (pmol/l) were: black women 353, white women 262, P for difference 0.04; black men 390, white men 281, P for difference 0.04.

For tHcy and serum folate, there were no significant differences between the black-skinned and white-skinned respondents (P for intergroup comparisons ranging between 0.4 and 0.94). The geometric mean concentrations were as follows: tHcy (µmol/l): black women 8.83, white women 9.71, black men 11.58, white men 11.11; serum folate (nmol/l): black women 20.2, white women 20.4, black men 17.1, white men 19.7. For serum vitamin B\textsubscript{12}, however, there was a marked and significant difference between the groups for both sexes. The geometric mean concentrations of vitamin B\textsubscript{12} (pmol/l) were: black women 353, white women 262, P for difference 0.04; black men 390, white men 281, P for difference 0.04.

Table 3. Pearson correlations between log_{10}(plasma total homocysteine) and log_{10}(folate or vitamin B\textsubscript{12} concentrations) in Gambian and British (National Diet and Nutrition Survey) population samples

<table>
<thead>
<tr>
<th></th>
<th>Degrees of freedom (folate)</th>
<th>Correlation coefficient (folate)</th>
<th>P (folate)</th>
<th>Degrees of freedom (vitamin B\textsubscript{12})</th>
<th>Correlation coefficient (vitamin B12)</th>
<th>P (vitamin B\textsubscript{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gambian pregnant women</td>
<td>10</td>
<td>-0.14</td>
<td>0.7</td>
<td>9</td>
<td>+0.25</td>
<td>0.4</td>
</tr>
<tr>
<td>Gambian lactating women</td>
<td>64</td>
<td>-0.44</td>
<td>0.0002</td>
<td>58</td>
<td>-0.19</td>
<td>0.15</td>
</tr>
<tr>
<td>Gambian non-pregnant, non-lactating women</td>
<td>87</td>
<td>-0.17</td>
<td>0.12</td>
<td>79</td>
<td>-0.17</td>
<td>0.14</td>
</tr>
<tr>
<td>British women</td>
<td>20</td>
<td>-0.31</td>
<td>0.16</td>
<td>11</td>
<td>-0.36</td>
<td>0.2</td>
</tr>
<tr>
<td>British men</td>
<td>439</td>
<td>-0.39</td>
<td><0.0001</td>
<td>435</td>
<td>-0.28</td>
<td><0.0001</td>
</tr>
<tr>
<td>British men</td>
<td>345</td>
<td>-0.38</td>
<td><0.0001</td>
<td>343</td>
<td>-0.39</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

The first three columns of data show the degrees of freedom, Pearson’s correlation coefficients and significance P values for the linear regression of log_{10}(total homocysteine) v. serum or plasma folate, for each population group, and the second three columns of data show the same information for the linear regression of log_{10}(total homocysteine) v. log_{10}(serum of plasma vitamin B\textsubscript{12}). Inclusion of age adjustment made little or no difference to these relationships. For the Gambian lactating women, the variation in plasma folate and vitamin B\textsubscript{12} indices combined explained 25.5 % of the variance in the homocysteine index, and for the British women and men, the variation in the vitamin indices explained 20.1 and 25.2 %, respectively, of the variance in the homocysteine index.

For details of subjects and procedures, see p. 509.
profile in Western populations (Ueland et al. 1993), their plasma tHcy had a frequency distribution that was positively skewed. Plasma tHcy levels were significantly higher in Gambian men than in Gambian women, and a significant increase was observed in both sexes with increasing age. The Gambian men had significantly higher plasma tHcy levels than the UK men, although the significance of the difference was considerably reduced after adjusting for folate and vitamin B\textsubscript{12} status and body weight and height (Table 1). The non-pregnant Gambian women had tHcy levels similar to those of the UK women. Consistent with numerous previous reports from Western populations (Boushey et al. 1995), the plasma tHcy concentrations in the Gambian and British adults were inversely related to their plasma folate concentrations, although this relationship was significant only for lactating women among the Gambian groups (Table 3). However, the plasma tHcy concentrations in Gambian subjects were not significantly related to their plasma B\textsubscript{12} concentrations, whereas the tHcy concentrations of the British subjects were inversely related to vitamin B\textsubscript{12} status (Table 3). The comparatively low plasma tHcy concentrations observed in the pregnant Gambian women, which were only minimally affected by adjustment for B vitamin status and anthropometric indices (Table 1), are consistent with previous studies that have reported a substantial reduction in tHcy during pregnancy in women living in Western countries (Andersson et al. 1992; Walker et al. 1999; Ueland et al. 2000).

Plasma tHcy concentrations are influenced by a number of environmental and genetic factors, and although much is now known about the determinants of plasma tHcy in Western populations (Jacques et al. 2001; Vollset et al. 2001), far less is known about its determinants in populations in developing countries. Homocysteine metabolism is intimately connected with S metabolism and the dietary availability of S amino acids (Ingenbleek & Young, 2004), and with creatine synthesis (Gamble et al. 2005). In addition to the intakes and blood concentrations of the vitamins that are involved in homocysteine metabolism, smoking, exercise, alcohol intake and the consumption of caffeine-containing drinks have all been shown to influence blood homocysteine concentrations in Western populations (Nygard et al. 1998; Jacques et al. 2001). Despite their comparatively low folate intake and status, the physically active lifestyle of rural Gambians, their abstinence from alcohol and the low frequencies of smoking and of consumption of caffeine-containing drinks may all help to protect some members of this population from raised plasma tHcy levels. Gambian men, however, frequently consume cola nuts, which appear to be implicated in the markedly raised tHcy concentrations that have been reported in Bangladeshi men (Gamble et al. 2005). As a stimulant, cola nuts may have an effect on tHcy that is analogous to that of caffeine-containing drinks.

Previous studies in the West Kiang region of The Gambia, conducted mainly in groups of pregnant and lactating women, have suggested that folate status is generally precarious (Topley, 1968; Bates et al. 1986). A prenatal folate supplement is recommended for pregnant Gambian women to prevent the further decline in folate concentration that is usually observed during pregnancy, but in practice this is not received by all the pregnant women, and it is usually not received in early pregnancy, before the pregnancy has been confirmed. Furthermore, as this supplementation usually ceases at or soon after parturition, plasma folate concentrations have been found to decline considerably by the third month of lactation (Bates et al. 1986).

The present study was conducted at a time of year when the mean adult Gambian dietary folate intake was estimated as 110–140 g/d (Bates et al. 1994), considerably less than the estimated folate intake of the British adults, which was 250–280 g/d in women and 350–380 g/d in men (Henderson et al. 2003). It needs to be remembered, however, that the dietary estimation techniques and food table nutrient values differed between these two studies. In the British
et al. (2000) and lower dietary folate intakes during the rainy season. Shankar, et al. (1994) indicates that tHcy remains constant in chilled blood samples for more than 4 h in a cold-box before separation. Available evidence (Ueland et al. 1987) that tHcy remains constant in chilled blood samples for more than 4 h. A small upward bias in the British samples caused by the delay in separation may be offset by the small downward bias caused by non-fasting collection. Two different assay methods were used for the homocysteine assays, but the quality control checks indicated that their performances were essentially identical. Nevertheless, some of the smaller differences observed between the Gambian and UK data sets may need to be verified in order to eliminate the possibility of minor protocol, storage or analytical factors.

Recent studies in other West African countries, such as Nigeria, Togo, Benin and Burkina Faso (Vandervegt et al. 2000; Glew et al. 2002; 2004; Simpore et al. 2002; Adjalla et al. 2003; Amazou et al. 2004), have revealed a picture of relatively high tHcy concentrations, especially in men, associated with relatively poor folate and/or vitamin B₁₂ intakes and status, but some apparent genetic advantage over white Caucasians with regard to 5,10-methylenetetrahydrofolate reductase polymorphism patterns and rates of homocysteine metabolism (Simpore et al. 2002). A recent comparison of West African, European and Mexican populations has reported considerably higher plasma concentrations of tHcy and vitamin B₁₂, and lower folate levels, in West Africa (Togo, Benin) than in the other countries studied (Gueant-Rodriguez et al. 2006). In addition, a lower prevalence of the methylene tetrahydrofolate reductase 677T and 1298C alleles was observed in the West African populations, leading to the suggestion that certain polymorphisms may confer a survival advantage in populations where dietary folate is inadequate (Gueant-Rodriguez et al. 2006). Nevertheless, the picture obtained from the NDNS-based comparison is similar to that obtained by Cappuccio et al. (2002) in England, and by Ganji & Kafai (2003) in the USA, with regard to homocysteine, namely that black-skinned participants living in Western countries have similar (or slightly lower) tHcy concentrations when compared with white Caucasians. One US study (Gerhard et al. 1999) reported higher homocysteine concentrations, together with lower folate concentrations, in black than in white premenopausal women, the tHcy and folate differences here being attributed to a greater use of multivitamin preparations by the Caucasian participants.

The most striking difference between black-skinned and white-skinned Caucasian survey participants in the present study was the significantly higher vitamin B₁₂ concentration observed in the black-skinned participants, a difference that has been recorded in several previous studies in Africa, England and the USA (reviewed by Carmel, 1999). The explanation for this is not known, but we concur with Carmel’s suggestion that it is more likely to have a genetic than a dietary origin, and we suggest that it is consistent with the absence of low plasma vitamin B₁₂ concentrations in the rural Gambian subjects of the present study.

Conclusion

Within a sample of rural Gambian adults, tHcy concentrations were highest in men and lowest in pregnant women. Lactating and non-lactating, non-pregnant Gambian women had tHcy concentrations similar to those of British women participating in a national survey. Gambian men had higher tHcy concentrations than men in the British survey, but the significance of this difference was reduced by adjustment for folate and vitamin B₁₂ status and body weight and height. In the British sample, tHcy was inversely correlated with both folate and vitamin B₁₂ status in both sexes, but in the Gambian sample a significant inverse relationship was confined to lactating women and to the folate status index. Further studies are needed to explain the intergroup differences in tHcy in Gambian subjects and an apparent difference in vitamin B₁₂ index values between black-skinned and white-skinned British subjects.

Acknowledgements

We are grateful to the field staff at Medical Research Council Keneba, The Gambia, for their help with the project fieldwork. Laboratory analyses by Mr Richard Carter and Miss Karen Flook, Medical Research Council Human Nutrition Research, Cambridge, and Ms Diana Muggleston, Great Ormond Street Children’s Hospital Haematology Laboratory, London, are gratefully acknowledged.

References

Siekmann JH, Allen LH, Bwibo NO, Demment MW, Murphy SP & Neumann CG (2003) Kenyan school children have multiple micronutrient deficiencies, but increased plasma vitamin B-12 is the only detectable micronutrient response to meat or milk supplementation. J Nutr 133, 3972S–3980S.

