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Abstract

Epidemics are often modelled using non-linear dynamical systems
observed through partial and noisy data. In this paper, we consider
stochastic extensions in order to capture unknown influences (chang-
ing behaviors, public interventions, seasonal effects etc). These models
assign diffusion processes to the time-varying parameters, and our in-
ferential procedure is based on a suitably adjusted adaptive particle
MCMC algorithm. The performance of the proposed computational
methods is validated on simulated data and the adopted model is ap-
plied to the 2009 H1N1 pandemic in England. In addition to estimat-
ing the effective contact rate trajectories, the methodology is applied
in real time to provide evidence in related public health decisions. Dif-
fusion driven SEIR-type models with age structure are also introduced.
population epidemic model; time-varying parameters; Bayesian infer-
ence; Particle MCMC

1 Introduction

Epidemic models are often used to simulate disease transmission dynam-
ics, detect emerging outbreaks (Unkel and others , 2012), and assess public
health interventions (Boily and others , 2007). In order to capture the dy-
namics of epidemics, the main focus is generally made on their intrinsically

0To whom correspondence should be addressed.

1

http://arxiv.org/abs/1203.5950v2


dynamic elements such as the depletion of susceptibles or the population
immunity evolution. Nevertheless, there are time-varying extrinsic factors
that are crucial to the epidemic course. These may include social cycles
(holidays), public interventions and climatic variations. This has been il-
lustrated for diseases such as cholera, malaria (Cazelles and others , 2005;
Ionides and others , 2006) or influenza (Shaman and Kohn, 2009). These
studies were conducted either by relating climatic and incidence time-series
(Cazelles and others , 2005), which does not disentangle the effect of intrinsic
and extrinsic factors, or by experimentally assessing the virus resistance in
different climatic conditions (Shaman and Kohn, 2009) requiring an extrapo-
lation to the population scale. Overall, the time-varying nature of epidemics
poses a challenging statistical problem stressing the need for suitable com-
putational tools (Ferguson, 2007).

This paper considers a flexible modelling framework that encompasses
time-varying aspects of the epidemic via stochastic differential equations.
We aim at providing robust inferential procedures, incorporating the uncer-
tainty associated with key parameters and accounting for data and model
limitations. In order to provide an accurate and feasible computational
toolbox, we provide Markov Chain Monte Carlo (MCMC) algorithms util-
ising recent developments such as particle MCMC (PMCMC) algorithms
(Andrieu and others , 2010) and adaptive techniques (Roberts and Rosenthal,
2009). Modelling aspects are presented in Section 2, while the computational
framework is presented in Section 3. In Section 4 we evaluate the perfor-
mance of the proposed adaptive PMCMC schemes on simulated data. In
Section 5 we present various applications of the methodology to the 2009
A/H1N1 pandemic, and conclude, in Section 6, with some relevant discus-
sion. Further simulations can be found in the Supplementary Materials.

2 Modelling framework

2.1 Epidemic models with time-varying coefficients

We adopt a SEIR model as a guide in this paper, although the methodology
can be applied to other dynamical systems. The model is set in (1); S
accounts for susceptible, E for infected but not infective, I for infective, and R
for removed individuals. New infections occur at a rate βSt

It
N

, implying that
the susceptible individuals make effective contacts at rate β (the effective
contact rate), and only a fraction It

N
of these contacts are made with infective

individuals. The average period spent in compartments E and I is given by
k−1 and γ−1 respectively.

dSt

dt
= −βSt

It

N
,

dEt

dt
= βSt

It

N
−kEt,

dIt

dt
= kEt−γIt,

dRt

dt
= γIt (1)

2



The basic reproduction number, R0, represents the number of secondary in-
fections from a primary infected individual in a fully susceptible population.
A related quantity is the effective reproduction number, Rt, refers to the
number of secondary cases from an infected individual at time t. Rt is a
context-dependent quantity of high interest to policy makers as it indicates
the possibility for the epidemic to grow (Rt > 1) or to decrease (Rt < 1)
(Anderson and May, 1992).

Epidemic models can be quite detailed (including individual character-
istics, geographic information etc.) or basic, such as the SEIR model, that
geographically aggregates the cases and assumes deterministic transmission
processes, occurring at a given frequency each time infected and suscepti-
ble meet. The latter are easier to estimate and interpret, but are based
on strong assumptions that could lead to poor inference. In this paper we
adopt stochastic extensions of the deterministic SEIR models. The addi-
tional dynamic error is likely to contain structural mis-specifications and can
subsequently be explored and potentially revised. We focus on large-scale
epidemics, for which random effects in transmission processes can be consid-
ered to be well-approximated deterministically (Kurtz, 1981). We adopt the
paradigm that attributes the model limitations mainly to the time varying
nature of the effective contact rate, henceforth denoted as βt, rather than to
the variability in individual characteristics or in transmission processes.

An early approach to estimate Rt can be found in Fine and Clarkson
(1982). It can be implemented through discrete generation models or by re-
constructing the chain of transmission (Cauchemez and others , 2006; Griffin and others ,
2011). However, as Rt estimates contain both the effects of evolving trans-
missibility and immunity, quantitative conclusions can hardly be generalised
to situations where the immunological situation is different. We therefore
concentrate on estimating βt rather than Rt. A number of approaches use
a finite-dimension function space for the trajectory of βt. Low-dimensional
examples can be found in Cauchemez and others (2008), in which βt is mod-
eled as a piece-wise linear function. In some higher-complexity models, as
in Cauchemez and Ferguson (2008) and Ionides and others (2006), βt is esti-
mated freely with a few-weeks resolutions. Loosely speaking, as the number
of parameters for the trajectory of βt increases, model-induced biases fade
out at the expense of the variance. A compromise is required to improve
robustness and is often controlled through a regularising parameter. For
example, in He and others (2011), βt is estimated using cubic splines, cali-
brated via AIC.

2.2 Diffusion driven epidemic models

We consider models where diffusion processes are used for some of the coef-
ficients in (1). Although alternative formulations are possible, as discussed
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in Section 2.1, we focus on βt to get

{

dSt

dt
= −βtSt

It
N
, dEt

dt
= βtSt

It
N

− kEt,
dIt
dt

= kEt − γIt,
dRt

dt
= γIt,

dxt = µx(xt, θx)dt+ σx(xt, θx)dBt, xt = h(βt),

(2)
where µx(·) denotes the drift, σx(·) the volatility and h(·) is a positive-valued
function. The assigned diffusion may capture features such as behaviour
changes, preventive measures, seasonal effects, holidays etc. When prior
knowledge on βt is available, it can be reflected in µx(·) and σx(·); e.g. if the
contact rate is expected to converge, an Ornstein Uhlenbeck process can be
chosen. Other options may include a sigmoid or a sinusoidal form; see for
example (Rasmussen and others , 2011). In absence of prior information or
when the researcher wants to impose little restrictions, a Brownian motion
can be used, with µx(·) ≡ 0 and σx(·) ≡ σ (i.e. θx = σ). This model, with
h(·) ≡ log(·), is henceforth denoted as BM. The obtained output can be ei-
ther reported or used as an exploratory tool to construct a more structured
model; see Section 5.3 for an application. The choice of BM implies a contin-
uous, yet non-differentiable, path satisfying the Markov property. In cases
where βt is believed to evolve as a smooth function in time, higher order
Brownian motions could be used. Loosely speaking, these may be regarded
as equivalent to non-parametric approaches such as cubic splines (Wahba,
1990), with the model in (2) imposing a prior on βt and σ being a regu-
larising factor. The rate βt can be perceived as a product of a smooth and
a rough component; the former being a population average of the intrinsic
transmission procedure and latter containing extrinsic factors such as the
amount of contact among individuals. It is therefore important to build a
framework that contains both smooth and rough models.

The above model can be estimated with an Extended Kalman Filter
(EKF), as in Cazelles and Chau (1997). EKF allows for fast computations,
but is based on Taylor and Gaussian approximations whose error could be
non-negligible; see Supplementary Materials for a relevant simulation ex-
periment. Nevertheless, the EKF can still be used as a tool to construct
efficient proposal distributions for MCMC schemes. It can also be used to
optimize sequential Monte Carlo (SMC) algorithms, but either at a strong
computational cost (Särkkä and Sottinen, 2008) or crude time discretisations
(Dukic and others , 2009). Next, we develop a general framework for efficient
MCMC schemes that allow for good approximations.

3 Data augmentation via MCMC for diffusion driven
epidemic models

This section presents a general inferential framework for diffusion-driven epi-
demic models. We adopt the Bayesian paradigm to incorporate parameter
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uncertainty and prior information in the estimates of βt trajectories. The
problem can also be cast as estimating partially observed hypoelliptic dif-
fusions, thus presenting various difficulties (Pokern and others , 2009). We
begin by setting the model and justifying the need for data augmentation.
Existing MCMC algorithms are considered but they can lead to extremely
inefficient MCMC chains. We address the issue by taking advantage of the
specific model structure to construct adaptive PMCMC schemes.

3.1 Model and data augmentation setup

For ease of exposition we focus on models satisfying (2), but the framework
covers models with different ODE systems or more time-varying coefficients,
as in Section 5.3. Being in continuous time, t can take any value between t0
and tn. We denote the path of the ODE states vector Vt = {St, Et, It, Rt}
between observation times ti and tj by Vi:j. The data, y1:n = {yt1 , .., ytn},
usually provide information for It at specific times (prevalence data) or for
integrals of Vt (incidence data). In either case, we assume that they are
obtained with error as the collection procedure is typically associated with
additional uncertainty. The noise distribution is denoted with Py with den-
sity f(y1:n|V0:n, θy). Note that, in the model of (2), Vt can be written as a
deterministic function, g(·), of xt and the parameters θv = (k, γ, V0). This
function is the solution of the ODE and can be written as an intractable
time integral involving xt. Hence, the model becomes

{

dxt = µx(xt, θx)dt+ σx(xt, θx)dBt

y1:n|V0:n, θy ∼ Py(y1:n|V0:n, θy), V0:n = g(x0:n, θv)
(3)

Denote with Px the distribution of the diffusion xt defined from the SDE
above. We require the existence of a unique weak solution which translates
into some mild assumptions on µx(.) and σx(.); e.g. locally Lipschitz with a
linear growth bound, see for example Øksendal (2003). The distribution of
Px may also be viewed as a prior on xt, or else βt. The model can now be
defined from Py, Px, and the assigned priors on θ = {θy, θv, θx}, denoted by
π(θ)

π(x0:n, θ|y1:n) ∝ f(y1:n|V0:n, θy)× dPx × π(θ) (4)

Given direct observations on xt, it would have been possible to draw approximation-
free inference on dPx using the approach of Beskos and others (2006). How-
ever, this is not possible in our case given the non-linear functionals in g(·)
that render (3.4) intractable.We proceed by discretizing the path of xt, and
therefore of βt and Vt. More specifically, we introduce m points between
each pair of successive observation times ti and ti+1 (i = 0, 1, . . . , n − 1).
When referring to the discrete representation of a path, the superscript dis

will be used; for example for a step δ = 1
m+1 , the discrete skeleton of xt will
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be denoted by xdis0:n = {x0, xδ, x2δ, . . . , xtn}. The presence of xdis0:n allows for
approximations of (4) through the Euler-Maruyama scheme to evaluate dPx

{

p(xdisδ:n|x0, θx) =
∏

i: t0<iδ≤tn
p(xiδ|x(i−1)δ , θx),

xiδ|x(i−1)δ ∼ N
{

x(i−1)δ + δµx(x(i−1)δ , θx), δσx(x(i−1)δ , θx)
2
}

.
(5)

Moreover, given xdis0:n,the ODE can be solved numerically to obtain V dis
0:n and

evaluate f(·). The approximation error can be made arbitrarily small by
increasing the user-specified parameter m.

3.2 Data augmentation via Gibbs schemes

Model (3) can be put in the context of Chib and others (2006), Golightly and Wilkinson
(2008) or Kalogeropoulos (2007). In these approaches, a Gibbs scheme can
be used to sample from the joint posterior in (4) of xdis0:n and θ. The data
augmentation algorithm alternates between drawing xdis0:n given θ, and updat-
ing θ conditional on the augmented path xdis0:n. The MCMC protocol ensures
that the chain provides samples from the marginal posteriors of xdis0:n and
θ. Nevertheless, the properties of the algorithm may become unacceptably
poor. There are two essential issues associated with such schemes. The first
concerns the non-trivial step of sampling on the diffusion pathspace of xt.
The second problem is caused by the high posterior correlations between
xdis0:n and θ, leading to reducible chains as m increases (Roberts and Stramer,
2001).

The majority of the literature on data augmentation schemes for diffu-
sions handles the conditional updates of xdis0:n with an independence sampler.
As it is difficult to find good proposal distributions for the entire xdis0:n, the
path is usually split into blocks. Overlapping blocking strategies are essential
to ensure that all points are updated and continuity of the path is retained.
An alternative way to update xdis0:n is to use the particle filter via the Particle
Gibbs algorithm of Andrieu and others (2010). But unless the issue of high
posterior correlation between xdis0:n and θ is resolved, none of these schemes
will improve the overall MCMC performance. The problem is caused by the
quadratic variation process of xt that identifies θx. For σx(xs, θx) ≡ σ we
get

lim
δ→0

∑

i: t0<iδ≤tn

(xiδ − x(i−1)δ)
2 =

∫ tn

t0

σ2ds = σ2(tn − t0) (6)

Thus, the conditional posterior of σ converges to a point mass as δ tends to 0.
In practice this translates into an increasingly slow MCMC algorithm with
a convergence rate of O(m) (Roberts and Stramer, 2001). Schemes with a
fixed m (Cori and others , 2009) could work in some occasions but the approx-
imation error could be substantial. In some cases, the problem can be tack-
led with suitable reparametrisation. The approach of Roberts and Stramer
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(2001) involves transforming to a diffusion ẋt with unit volatility. An alterna-
tive scheme is offered by Chib and others (2006) where the driving Brownian
motion of xt is being used. In these algorithms the ODE states vector V dis

0:n

becomes a function of σ, ẋ0:n and θv. Hence, in a Metropolis step, every
proposed value of σ∗ is associated with the corresponding values of V dis

0:n
∗
.

This succeeds into breaking the perfect dependence between V dis
0:n and σ,

even for m → ∞. But since components of V dis
0:n (or functionals thereof) are

observed with error, the associated proposed values V dis
0:n

∗
should be close

to the data for the move to be accepted. As the observation error becomes
small and the data increase, this becomes increasingly difficult and leads to
very small moves for σ and poor MCMC mixing. More details and simula-
tions supporting this argument are provided in the Supplementary Materials
(Appendix E). Consequently, we overcome this issue by updating xdis0:n and
θ jointly via the PMCMC algorithm, which is essential as it is not straight-
forward to implement joint updates with the other approaches mentioned in
this section.

3.3 Adaptive Particle Markov Chain Monte Carlo algorithms

Particle filters are SMC algorithms used to recursively explore conditional
densities in state space models (Doucet and Johansen, 2011). For given val-
ues of θ, N particles (x̃ji ) are sequentially propagated from t0 to tn. In var-
ious time steps ti, the trajectories that best fit the data y1:i are given more
weight through resampling. Algorithm 1 shows how they can be applied in
our context. The quantity Li+1(θ) provides unbiased estimates of p(y1:i|θ)

Algorithm 1 Particle Filter algorithm

Initialise: Set L0(θ) = 1, W j
0 = 1

N
, sample (x̃j0)j=1,...,N from p(x0|θ) and

calculate (Ṽ j
0 )j=1,...,N by solving the ODE (for example with the Euler

scheme)
for i = 0 to n− 1 do

for j = 1 to N do

Sample (x̃ji:i+1) from (5) and calculate (Ṽ j
i:i+1) by solving the ODE

Set αj = f(yi+1|Ṽ
j
0:i+1)

end for

Set W
j
i+1 =

αj

∑N
k=1

αk
, and Li+1(θ) = Li(θ)× 1

N

∑

αj

Resample (Ṽ j
0:i+1, x̃

j
0:i+1)j=1,...,N according to (W j

i+1),
end for

and the resampling step is essential to control the variance of that estimate
over time. Algorithm 1 also provides a random sample from p(x1:i|y1:n, θ).
In order to sample from π(x1:n, θ|y1:n), the PMCMC algorithm can be used.
PMCMC was introduced in Andrieu and others (2010) and successfully inte-
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grates particle filters in MCMC algorithms. Its implementation is presented
in Algorithm 2. The issues of Section 3.2 are now addressed as xdis0:n and θ

Algorithm 2 Particle MCMC algorithm (particle Marginal Metropolis Hast-
ings version)

Initialise: Set current θ value, θ̃, to an initial value. Use Particle
Smoother (PS) according to Algorithm 1 to compute p̂(y1:n|θ̃) = L(θ̃) and

sample x̃θ̃1:n from p(x1:n|y1:n, θ̃)
for It = 1 to NIterations do

Sample θ̃∗ from Q(θ̃, .)

Use PS to compute L(θ̃∗) and sample x̃θ̃
∗

1:n from p̂(x1:n|y1:n, θ̃
∗)

Do θ̃ = θ̃∗ (and x̃θ̃1:n = x̃θ̃
∗

1:n) with probability 1 ∧ L(θ̃∗)Q(θ̃∗,θ̃)

L(θ̃)Q(θ̃,θ̃∗)

Record θ̃ and x̃θ1:n
end for

are sampled jointly. In other words xdis0:n is being numerically integrated out,
while a sample from its posterior is obtained at each MCMC iteration.

While the PMCMC algorithm is theoretically valid even for a single par-
ticle, large values of N are usually required for reasonably stable accep-
tance rates and large moves in the θ space; see the Supplementary Mate-
rials for a relevant simulation exercise. It is therefore essential to update
the d-dimensional θ at once, marking the proposal Q(θ, .) crucial to the
overall MCMC performance. In this paper we propose to use the adap-
tive Metropolis algorithm of Roberts and Rosenthal (2009). After trans-
forming the parameters to take values in the real line we use a Normal
distribution centered at the current value of θ and with covariance given
by ǫΣ. Static random walk metropolis proposals set Σ = Id or Σ = Σ̂
and tune ǫ to obtain acceptance rate of 0.234. Adaptive schemes change
the value ǫ for each iteration i through diminishing adaptation; e.g. by
ǫi+1 = exp {log(ǫi) + αn

1 (AccRate − 0.234)} where α1 = 0.999 and ‘AccRate’
denotes the acceptance rate up to iteration i. The covariance matrix Σi+1

can also be updated as

α2N

(

θ, ǫ
2.382

d
Σ0

)

+ (1− α2)N

(

θ, ǫ
2.382

d
Σi

)

where α2 is usually set to 0.05, Σi is the posterior covariance matrix es-
timated by the draws up to i and Σ0 should be specified in advance. In
this paper we enhance the above adaptive algorithms utilising information
from the EKF to estimate the covariance Σ̂ or Σ0. One choice, EK-Mode,
is the observed information matrix at the mode identified by EKF, evalu-
ated through numerical differentiation. Another choice, EK-MCMC, is to
run an approximate MCMC scheme based on the EKF approximation of
the likelihood and compute the posterior covariance from the draws. Note
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that the computational burden of these methods is marginal with regards to
the PMCMC. As demonstrated in Section 4, the use of EKF can result in
substantial improvement.

4 Simulation Experiments

The proposed algorithms are illustrated and tested on simulated data in
this section. We focus on the BM model, where log(βt) follows a Brownian
motion with volatility σ, corresponding to the case of little information on
the shape of βt. The trajectories of βt were drawn either from the BM model
itself (experiment 1) or from a deterministic sigmoid curve (experiment 2).
The data yi, i = 1, . . . , 50 represent noisy observations of weekly new cases
of the epidemic

∫

week i
kEtdt. We complete the model by assigning a Normal

distribution to each log(yi) with mean log(
∫

week i
kEtdt) and variance τ2.

The parameters were tuned to obtain realistic epidemic incidence curves,
and observations were generated setting τ = 0.1. The assigned priors were
informative for k, γ and R(t0) and vague for E(t0), I(t0), σ and τ , as in
Section 5.1. We used 3,000 particles and 100,000 MCMC iterations after
a long burn-in period. Fig. 1 shows estimates and 95% pointwise credible
intervals of the path, provided by the adaptive PMCMC initialized with
EK-MCMC. The posterior output is in good agreement with the simulation
trajectories suggesting that the underlying trajectory of βt can be estimated
reasonably well from the partial and noisy observations considered. More
can be found in the Supplementary Materials (appendix C), where we also
considered a value of τ = 0.05 and obtained similar results.

Next, we use the data of experiment 1 to compare the proposed adap-
tive PMCMC schemes. Comparison is made in terms of the effective sample
size ESS = (1 + 2

∑

i≥1 η(i))
−1, with

∑

i η(i) being the sum of the lagged
sample auto-correlations, as in Geyer (1992). We record the minimum ESS
among the MCMC components and multiply by 100 to monitor the per-
centage of the total iterations that can be considered as independent. We
consider three covariance matrices for each of the two adaptive algorithms
defined in Section 3.3: Id and the ones from EK-Mode and EK-MCMC. For
the schemes that adapt ǫ the minimum ESS was 0.008% (Id), 0.19% (EK-
Mode) and 0.54%(EK-MCMC), whereas for the schemes that adapt Σ we got
0.57%, 1.24% and 1.38% respectively. Clearly, adapting Σ is crucial to obtain
a reasonable performance, unless the matrices obtained from EK-Mode or
EK-MCMC are used. The proposed adaptive algorithms induce substantial
improvement that is expected to intensify as the dimension of θ increases.
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5 The 2009 A/H1N1 pandemic

5.1 Data, model and estimates

The proposed methodology is illustrated on data from the A/H1N1(2009)
pandemic in England between June and December 2009. The data consists
of estimates of weekly ILI cases y1:n given by the Health Protection Agency
(Baguelin and others , 2010). The estimates were obtained from the recorded
ILI cases among a selected sample of GPs. They accounted for over-reporting
due to similarities in symptoms with other respiratory diseases, based on sub-
sequent virological positivity tests. Corrections for asymptomatic infections
and the patients’ propensity to consult were also made. Overall the two
datasets are different by a multiplicative coefficient c = 10, whose value is
also supported by a further serological survey (Miller and others , 2010). In
our analysis c is initially held fixed to 10, but this choice is explored fur-
ther in Section 5.2. We adopt a model that admits noisy data to reflect the
associated uncertainty. The noise model of Section 4 was used, combined
with a BM formulation of Px. Vague priors, N>0(0, 10

6), were put on τ , σ
and β0. The priors for k and γ were obtained from additional data sources
(Baguelin and others , 2010), the results of which are summarised through
Normal distributions that place 95% probability in a symmetric manner be-
tween 1.55 and 1.63 days for the latent period k−1, and between 0.93 and
1.23 days for the infectious period γ−1. A Dirichlet distribution was used for
the initial proportions in compartments S,E, I,R, constraining the mean of
the one in R to be 0.15, its variance 0.152, and the means of the other initial
proportions to be equal.

The adaptive EK-MCMC algorithm was applied to the data and Fig. 2
depicts the incidence curve together with the posterior mean and pointwise
95% credible intervals. Estimates of βt are also displayed indicating various
changes over time. The changes in βt are consistent with the argument that
schools closure for holidays have been driving the epidemic: different values
are observed during school and holidays periods, appearing to be synchro-
nised with schools opening and closing. Posterior summaries for the static
parameters, as well as a sensitivity analysis on the priors can be found in
the Supplementary Materials. These suggest that inference is quite sensitive
to the choice of prior for k and γ, but not for the remaining parameters.
It would be interesting to repeat the procedure under an evidence synthesis
framework and vague priors.

5.2 Application in real time. Was the first wave waning due

to depletion of susceptibles?

In this section the methodology of the paper is applied in real time, i.e.
considering partial datasets from June 2009 up to the 20th of July, the 7th
of September and the 26th of October. Each time the algorithm is run from
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scratch to provide samples from the joint posterior π(x1:i, θ|y1:i). From a
computational cost point of view this procedure can be improved further
by utilising previous MCMC runs, for example under the SMC2 framework
(Chopin and others , 2011). We did not pursue this direction further, as the
PMCMC algorithm runs quite fast (less than 2 hours on a standard PC).
In order to reduce uncertainty, especially at early stages, the value of τ was
set to 0.1 rather than being estimated as in Section 5.1. We otherwise use
the same model as before. A model with integrated Brownian motion was
also fit but BM was chosen in terms of DIC; see Supplementary Materials
(Appendix C). The main results are shown in Fig. 3.

On August 1st, the first wave of the epidemic had waned, incidence rates
were decreasing and schools had closed. There were two competing scenarios
to explain the epidemic decline: (i) holidays had caused the waning of the
epidemic by lowering the effective contact rate. Hence, a similar or stronger
wave could occur when schools would reopen in September in colder climatic
conditions. (ii) The epidemic had stopped independently of holidays because
a critical proportion of the population had been infected, conferring a suf-
ficient level of herd immunity to stop the epidemic. In this case, no second
wave was to be expected in September. On August 1st there was great un-
certainty around the value of c (Baguelin and others , 2010), which is crucial
in distinguishing between the two scenarios. We therefore conducted the
following exercise.

The PMCMC algorithm, run up to August 1st, provides samples from
the posterior of the difference in βt between July 13th (before the decrease
in incidence) and August 1st. For c = 10, the 97.5% point of this posterior
is −0.32, indicating a decrease in βt. The latter supports scenario (i), as the
competing scenario is associated with a zero-decrease in βt. Nevertheless,
as this value depends on c, the algorithm was run for different values of it
ranging from 20 to 150. The results appear on Fig. 4. Note that the 97.5%
point of interest increases as a function of c and reaches 0 for a correction
factor close to 70. As this level seemed unrealistic (Baguelin and others ,
2010), the experiment provides evidence in favour of scenario (i) highlighting
the danger of a second wave in September, that actually occurred. Such
evidence can be important for decision-makers, especially when considering
implementations of preventive measures as vaccines.

5.3 A multiple age group diffusion driven SEIR model

The analysis of Section 5.1 can be used to construct more structured models.
For example, the effect of holidays is evident and may differ from children to
adults, thus casting doubts on the assumption of a homogeneous population.
It seems more natural to consider a model with two age groups (c:children
and a:adults) and target all possible effective contact rates among them. In
our notation βca refers to the effective contact rate from children to adults
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and Sc denotes the number of susceptible children. For reasons of parsimony
we assign Brownian motions to log(βcc

t ), log(βaa
t ) and treat βca, βac as con-

stant. We also set we set βca = βac = b, in line various multiple age groups
epidemic models in different settings (e.g. Whitaker and Farrington (2004)).
The dynamic part of the model is now given by















dSc
t

dt
= −Sc
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(7)

The data from the A/H1N1(2009) pandemic provide incidence estimates for
children and adults separately so they can be used to estimate the model
of (7). If only final outcome data were available, not all effective contact
rate parameters would be estimable. However, the temporal dataset pro-
vides extra information by the relative variation of susceptible and infective
population in adults versus children. We applied the EK-MCMC scheme,
which was essential in order to obtain reasonable MCMC performance. Fig.
5 depicts the results. Unlike earlier attempts with versions of a multi-group
model with a single diffusion driving all contact rates, the fit appears to be
good. The trajectory of children seems to be similar with that of Fig. 2 thus
stressing their role to the evolution of the epidemic. More details, including
posterior summaries for the parameters and information about the priors
can be found in the Supplementary Materials (Appendix C).

6 Discussion

In this paper we examined epidemic models where some of the parameters are
represented by diffusions or integrals thereof. The main motivation was to
account for various time varying drivers (virus evolution, seasonality, schools
closure, etc), while maintaining a simple interpretation. We present a unified
framework that supports data augmentation MCMC schemes based on fine
partitions on the diffusion path. The associated approximation error can be
controlled by the user without affecting the MCMC performance and can be
viewed as an extension of the approaches by Roberts and Stramer (2001);
Chib and others (2006) to the more challenging observation regime of this
paper. The consideration of the algorithms in a continuous time setting re-
vealed major issues associated with Gibbs data-augmentation schemes. This
justifies the use of particle MCMC, which updates paths and parameters
jointly, while pointing directions for future research on Gibbs schemes. We
also presented a computational machinery based on the PMCMC algorithm
(Andrieu and others , 2010), that was integrated in an adaptive MCMC con-
text. We consider EKF based adaptive algorithms that can offer substantial
improvement, especially in cases with many static parameters. This paper
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is one of the first applications of PMCMC in epidemic models and data;
standard PMCMC schemes were also used in Rasmussen and others (2011).

Initially we relied on a simple SEIR model but such an analysis can be
viewed as an exploratory tool towards more structured models; e.g. the
age-structured model of Section 5.3 that appears to be an improved rep-
resentation of reality. This approach can help in developing richer mod-
els and testing alternative scenarios for public health interventions, or to
bring further insights on extrinsic factors such as climate on the dynam-
ics of epidemics. Moreover, this framework can support multiple sources
of data, of potentially different nature: Rasmussen and others (2011) has
shown how time series and genealogies can be combined in a PMCMC in-
ference framework for more informative estimates. While we worked mainly
with influenza time series, the developed methodology can be applied to other
cases; current work considers its application as part of the CHARME project
(Boily and others , 2007). The presented approach may also be thought as
an alternative to the white noise modeling of environmental stochasticity
introduced in Bretó and others (2009), as it offers to the possibility to cap-
ture the dynamics of environmental drivers. A potential next step will be to
combine environmental with demographic stochasticity, modelling infections
as Poisson processes which rates depend on a time-varying β.

The inferential framework presented in this article shares the "plug and
play" feature of the Iterated Filtering methodology. While extra care and fur-
ther study is required for specific models or datasets, its algorithmic aspects
can be decoupled from the modeling aspects. This provides the possibil-
ity to develop generic inference packages: we are currently working towards
its integration in a generic inference platform inspired from the R package
POMP.

7 Supplementary Materials

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
It contains implementation details for the PMCMC algorithm (Appendix A),
a comparison with the EKF (Appendix B), additional information on Sec-
tions 4 and 5 (Appendix C). Also the sensitivity analysis (Appendix D) and
a detailed exposition of the issues of Section 3.2 (Appendix E).
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Figure 1: Illustration of how the underlying dynamic of the effective contact
rate can be estimated from weekly recorded cases.
Green dots indicate simulated observed incidence (top panels). Green lines
indicate simulated effective contact rate trajectories (bottom panels). Black
dotted lines indicate the mean of the pointwise posterior density. Dark and
light blue areas show credible intervals, respectively at 50% and 95% levels.
Top panels: simulated weekly numbers of cases observed with noise, and
corresponding model-based offline reconstructions (left: experiment 1, right:
experiment 2)
Bottom panels: simulated and estimated trajectory of the effective contact
rate (left: experiment 1, right: experiment 2)
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Figure 2: Weekly incidence data from the A/H1N1 2009 influenza pandemic
and corresponding offline estimates of the effective contact rate.
Green dots indicate incidence estimates provided by the Health Protection
Agency. Black dotted lines indicate the mean of the pointwise posterior
density. Dark and light blue areas show credible intervals, respectively at
50% and 95% levels. Holidays are indicated by a light grey area.
Top: observations of the weekly total number of A/H1N1 influenza cases in
London (per 100 000 inhabs.) and model-based offline reconstruction
Bottom: offline estimates of the effective contact rate.
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Figure 3: What could have been inferred by carefully following the epidemic
in real time?
Green dots indicate observed incidence estimates provided by the Health
Protection Agency (left panels). Black dotted lines indicate the mean of
the pointwise posterior density. Dark and light blue areas respectively
indicate 50% and 95% credible intervals of the posterior density. Holidays
are indicated by a light grey area.
Left panels: HPA estimates of the weekly total number of A/H1N1 influenza
cases in London (per 100 000 inhabs.)
Right panels: “real-time” estimates of the effective contact rate.
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reporting on the decrease of the effective contact rate between July 13th and
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For each value of c, the mean of the posterior density for β(August 1st) −
β(July 13th) is plotted in black. Dark and light blue areas respectively in-
dicate 50% and 95% credible intervals of the posterior density. The dotted
line locates the scenario whith no change in the effective contact rate.
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Figure 5: Offline estimates of the effective contact rate among children
and adults during the A/H1N1 2009 influenza pandemic using a 2-classes
age-structured model and age-specific incidence data.
Green dots indicate observed incidence estimates among each age group
provided by the Health Protection Agency (first and second panels). Black
dotted lines indicate the mean of the pointwise posterior density. Dark and
light blue areas respectively indicate 50% and 95% credible intervals of the
posterior density. Holidays are indicated by a light grey area.
First panel: HPA estimates of the weekly total number of A/H1N1 influenza
cases among children in London (per 100 000 inhabs.)
Second panel: HPA estimates of the weekly total number of A/H1N1
influenza cases among adults in London (per 100 000 inhabs.)
Third panel: offline estimates of the effective contact rate from children to
children.
Fourth panel: offline estimates of the effective contact rate from adults to
adults.
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Here we provide supplementary information for various parts of the main
paper. Appendix A illustrates the effect of various algorithmic parameters
and suggestions on how they can be set in practice. Appendix B presents a
simulation based comparison of the particle filter with the Extended Kalman
Filter (EKF), whereas in Appendix C we provide more details on the analyses
of Sections 4 and 5 of the main paper. Appendix D contains a sensitivity
analysis for the priors assigned to the parameters of the model in Section
5.1. Finally, in appendix E, more details are given regarding the formulation
of the models in continuous time and their potential implications on the
associated data augmentation schemes.

Appendix A: details of the PMCMC implementation

In this Appendix, we provide more details for the practical implementation
of the PMCMC algorithm presented in this article. We specify how to deter-
mine key parameters of the algorithm, i.e. the Euler discretisation time-step
δ, the number of particles Nparts used in the Particle Smoother (PS), and
how to set the Metropolis updates of the parameter vector θ.
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Capturing the time-varying drivers of an epidemic 2

Determining the Euler discretization time-step

In general, solutions of the nonlinear ODEs encountered in epidemic models
are not available in closed form. In order to evaluate π(x0:n, θ|y1:n), the tra-
jectory of the system needs to be discretised according to a given time-step δ

to provide an approximate solution. The Euler approximation ensures that
as δ tends to 0, π̂δ(x0:n, θ|y1:n) converges to π(x0:n, θ|y1:n). In practice a se-
quence of decreasing δ values is chosen and quantities such as E[p̂δ(σ|y1:n)]
or E[p̂δ(τ |y1:n)], are monitored. For sufficiently small values of δ, a conver-
gence is generally observed, as shown in Fig. 1 for two different datasets of
weekly influenza data. In this case, a δ = 0.1 day would be a reasonable
choice. We note at this point that the computational cost is of O(δ−1)

Determining an optimal number of particles

The PMCMC algorithm is theoretically valid regardless of the number of par-
ticles Nparts used in the particle smoother, as shown in Andrieu and others
(2010). Nevertheless, the smaller the number of particles used in the particle
smoother, the more noisy the estimate of the likelihood p̂(y1:n|θ) becomes.
This noise has a negative impact on the acceptance rate of the MCMC al-
gorithm run in the θ space. Consequently, Nparts has to be big enough so
that it won’t affect the acceptance rate, keeping in mind that the cost is of
O(Nparts). Hence, a compromise needs to be achieved. Fig. 2 shows how
the acceptance rate increases as the number of particles gets higher. Note
that the acceptance rate has a plateau form, indicating that it is perhaps
not worthwhile to increase Nparts beyond some point. We repeat the exper-
iment for two different values of the measurement error parameter (τ). This
figure shows that when the observational noise decreases, more particles are
needed, which is explained by the fact that the particles need to be ‘closer’
to the observations.

Appendix B: Assessing the validity and limitations

of the Extended Kalman approximation

Here, we compare the particle filter with the EKF approach to assess the the
extent of the gain of avoiding the approximations of the latter. A set of 100,
7-month long, time-series of weekly influenza cases were drawn from the BM
model. In order to ensure realistic epidemic datasets, we ‘reverse-engineered’
randomly selected influenza time-series (yGoog,j

1:n )100j=1 from the freely avail-
able Google FluTrend data (Ginsberg and others , 2008). For each of the
datasets, we obtained estimates of (βSim,j

0:n )100j=1 and the corresponding pa-

rameters (θj)
100
j=1. These quantities were then used to generate influenza

time-series (ySim,j
1:n )100j=1. The static parameters of the model (initial condi-
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tions, k, γ, σ and τ) were assumed known, to isolate the problem of es-
timating βt from accounting for parameter uncertainty and perform more
relevant comparisons. We compare the following two estimators of βSim,j

i :

β̂
F ilt,j
i = Ê(βj

i |y
j
1:i, θ

∗

j ) obtained from the filtering distribution where Ê(.)
denotes Monte Carlo estimates of the relevant expectations, and the the
EKF estimator β̂

EKF,j
i = ẼEKF (βj

i |y
j
1:i, θ

∗

j ) where ẼEKF (.) denotes expec-
tation under EKF. The performance of the estimators is measured through
their bias and Mean Squared Error (MSE). The results indicate a better

performance for β̂
F ilt,j
i . The bias of the estimates provided by the EKF is

0.0285 while use of β̂
F ilt,j
i reduces the bias by about 78% (0.0063). The

corresponding relative reduction in MSE is smaller (10%, 0.0270 to 0.0242),
indicating a bias-variance tradeoff. Use of the smoothing distribution esti-
mator β̂

Sm,j
i = Ê(βj

i |y
Sim,j
1:n , θ∗j ) is associated with a further 87% (0.0032)

reduction in the MSE, while keeping the bias at the same low levels. The
estimators β̂

F ilt,j
i and β̂

Sm,j
i are associated with a tolerable computational

cost of 2 hours on a standard PC. In conclusion, the bias introduced by the
Extended Kalman approximation is non-negligible with regards to the level
of accuracy that can be obtained with exact particle methods on this type
of datasets. Nevertheless, this study has shown the approximation to be
robust and motivates the use of the approximated model as a proxy for the
exact one, for example to initialize the particle MCMC algorithm in the way
presented in this article.

Appendix C: details on the simulations and results

of sections 4 and 5

Assessing the validity of the particle MCMC through simula-
tions

This section deals with a series of experiments that were conducted in order
to assess the validity of the particle MCMC, and to illustrate on different
examples how the trajectory β1:n could be captured from noisy weekly cases
observations. Experiment 1 is based on a trajectory of β1:n simulated from a
random walk model with volatility σ2 = 0.072. Two different corresponding
epidemic datasets have been generated, for given and equal initial conditions
and biological parameters, respectively with observational noise τ = 0.1
(experiment 1.a) and τ = 0.05 (experiment 1.b). Similarly, two epidemic
datasets resulting from an effective contact rate following a significantly de-
creasing sigmoid were generated with respectively τ = 0.1 (experiment 2.a)
and τ = 0.05 (experiment 2.b).

For each of these datasets, our proposed methodology was run to estimate
σ, τ and β1:n. cFig. 1 of the main text contains estimates of the incidence
time series as well as β1:n for the experiments with τ = 0.1 (Exps 1.a and
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2.a). Corresponding figures for Experiments 1.b and 2.b are shown in Fig.
3 of this document. Moreover, Table 2 presents the mean, median and 95%
credible intervals for the estimates of σ and τ in each of the experiments.
In experiment 2 the estimates seem to be in good agreement with the true
values, as the latter are contained in the 95% credible intervals. The aim
was to assess the robustness of the proposed methodology to model mis-
specification, fitting a Brownian motion to a smooth sigmoid curve. The
algorithm performs reasonably well, succeeding in capturing the trajectories
of βt and all the parameters except for τ which is slightly underestimated. A
potential explanation for this is that part of the variability is absorbed from
the volatility parameter of the Brownian motion.

A/H1N1 pandemic

We provide here with the corresponding trace plots (Fig. 4) for the param-
eter estimates of Section 5.2. The trace plots indicate good mixing of the
PMCMC algorithm for every parameter. This was achieved by following the
procedure presented in Appendix A.

Age-structured model: children and adults

Additional information on the analysis of section 5.3. can be found in Table
3.

Illustration of alternative approaches on the real time example

In Fig. 5, we repeat the real-time analysis, conducted in the Section 5.2
of the main paper, under two alternative approaches. First, we consider a
model with an integrated Brownian motion (iBM) on xt, implying smoother
βt trajectories as opposed to the non-differentiable paths induced by the
Brownian motion (BM) formulation. The choice between those models is
not trivial and could depend on the context of the epidemic. We decided to
adopt the model with Brownian motion (BM) on the basis of the Deviance
Information Criterion (DIC) of Spiegelhalter and others (2002); as we can
see from Fig. 3 of the main document and Fig. 5 of the SM, the BM model
is consistently better in that respect. Nevertheless, there is uncertainty on
the performance of the DIC criterion in the setting of this. It would be quite
interesting to explore this further in the future and compare with alternative
model choice criteria.

The second approach adopts and applies the methodology of maximum
likelihood via iterated filtering (MIF), introduced in (Ionides and others ,
2006). Initially, estimates θ are obtained by maximising p(yi:n|θ) subject
to some constraints set by the priors. Second, a particle filter was run with θ

fixed to its estimated value. As expected, given that we are not accounting
for parameter uncertainty, the resulting pointwise 95% credible intervals are
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narrower; roughly 50% on the 6-month dataset and even more at early stages
with less information on θ.

Appendix D: Sensitivity analysis

We explore in this section the robustness of the obtained estimates. We con-
centrate on the example of Section 5.1 in the main paper, where the obser-
vational noise was estimated and informative priors were used for the initial
proportion of immune individuals in the population (R(0)), and the lengths
of the latent (k−1) and infectious periods (γ−1 ). For each of these quanti-
ties, the mean of the prior densities have been tilted by respectively -20%,
-10%, +10% and +20%. In all cases but for the tilted parameters them-
selves, the median of the corresponding posterior densities lie both in the
95% and 50% credible intervals of the untitled case. The resulting medians
estimates are shown in table 4, along with the originally obtained summary
statistics. Furthermore, for all the runs with tilted priors, the resulting β1:n
trajectories remain completely in the original 50% credible intervals.

Appendix E: details of Gibbs data augmentation scheme

In this section we provide more details on the Gibbs schemes discussed in
section 3.3 of the main text. Stochastic epidemic models presented in this
paper can be written as

{

dxt = µx(xt, θx)dt+ σx(xt, θx)dBt, 0 < t < tn

y1:n|V0:n, θy ∼ Py(y1:n|V0:n, θy), V0:n = g(x0:n, θv)
(1)

where Vt represents the ODE states vector observed trough partial and noisy
data y1:n. The rest of the model is defined in section 3.1. Since it contains
intractable densities we work with the time discretised versions xdis0:n and
V dis
0:n and proceed using the Euler approximating scheme. A Gibbs algorithm

alternates between updating the trajectories of xdis0:n (and consequently V dis
0:n )

given θ, and vice versa. Nevertheless, as the Euler time step δ goes to 0, the
quadratic variation process of xt uniquely determines the value of θx in σx(.)
and the algorithm degenerates (Roberts and Stramer, 2001). In practice this
translates into a mixing time of O(m).

In the context of diffusion driven epidemic models this problem was
dealt with suitable reparametrisations such as the ones in Chib and others
(2006) or Kalogeropoulos (2007). The latter uses the Lamperti transform, i.e.
xt → H(xt, θx) = η(xt, θx) − η(x0, θx) =: ut where η(·; θx) is an antideriva-
tive of σ−1

x (·; θx). Assuming that σx(·; θx) is continuously differentiable, an
application of Ito’s lemma provides the SDE of the transformed diffusion ut
as:

dut = ν(ut; θx)dt+ dBt , u0 = 0 , (2)
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where

ν(ut; θx) =
µx

(

H−1(ut, θx), θx
)

σx
(

H−1(ut, θx), θx
) −

1

2
σ′

x

(

H−1(ut, θx), θx
)

.

Let P
u denote the distribution of ut. Girsanov formula provide its density

with respect to that of a standard Brownian motion, denoted by W,

dPu

dW
= exp

{
∫ tn

0
ν(us; θx)dus −

1

2

∫ tn

0
ν(us; θx)

2ds

}

, (3)

and the state vector can be written as

V0:n = hu(u0:n, x0, θx, θv). (4)

The model can be defined from (3), (6) and (1). It contains intractable
quantities but can be accurately approximated given the time discretisation
of the diffusion path. An alternative reparametrisation, defined in discrete
time, was suggested in Chib and others (2006). It uses the transformation
below

wt =
xt −

(

xt−δ − δµx(xt, θx)
)

σx(xt−δ, θx)
,∀t. (5)

In our setting the driving Brownian motion of xdis0:n, denoted by wdis
0:n and

provided by (5), can be used to provide a discrete skeleton of the state
vector

V dis
0:n = hw(w

dis
0:n, x0, θx, θv). (6)

The model is now given by wdis
0:n, that can be transformed to xt for which the

Euler-Maruyama approximation can be used, and 1 which can be approxi-
mated using the discretised state vector V dis

0:n .
Data augmentations schemes can be used for the models above. Gibbs

versions of such schemes will alternate between updating udis0:n (or wdis
0:n)

and consequently V dis
0:n given θ, and θ conditional on either udis0:n (or wdis

0:n).
The first step can be done either by the overlapping block strategies in
Chib and others (2006) and Kalogeropoulos (2007) or with a particle filter
in the context of a particle Gibbs algorithm. The second step of updating θx
given udis0:n or wdis

0:n is usually implemented through a random walk Metropolis
algorithm:

• Let θcx and V disc
0:n be the current values of θx and V dis

0:n respectively.
Propose θ∗x from q(θ∗x|θ

c
x).

• Compute V dis∗
0:n = hu(u0:n, x0, θ

∗

x, θv)

• Accept with probability

1 ∧
π(θ∗x, V

dis∗
0:n |y1:n, u

dis∗
0:n θv, θy)q(θ

c
x|θ

∗

x)

π(θcx, V
disc
0:n |y1:n, u

disc
0:n θv, θy)q(θ∗x|θ

c
x)
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For the Chib and others (2006) formulation, udis0:n can simply be replaced
with wdis

0:n in the algorithm above.
Unfortunately both of the above algorithms may perform poorly. The

problem is that every proposed value of θx implies a proposed trajectory
of the ODE states vector Vt. As parts or functionals of this trajectory are
observed with error, the proposed value of θx will not be accepted unless its
associated Vt trajectory is close to these observations. Consequently, only
small steps can be made on the θx space and the algorithm mixes very slowly.
The problem intensifies as the noise variance becomes smaller and as the time
horizon of the epidemic increases. Implementations of such algorithms in the
simulated and real data of this paper are in line with this argument. Figure 6
displays the posterior draws for σ in the dataset of the simulation experiment
1 of Section 4 in the main paper. The posterior draws of σ were obtained
from a particle Gibbs algorithm combined with the algorithm above; note
that in this model udis0:n and wdis

0:n are equal. In order to isolate the problem,
the algorithm was run on σ and βt only, and all the other parameters were
held fixed at the values they where simulated from (a value of τ = 0.1 was
used). The ‘true value’ of σ was 0.07 and we used a δ = 0.1. As clearly
shown in the traceplot the mixing of the chain is quite poor, thus casting
doubts on the reliability of its output. The difference in mixing quality with
the corresponding traceplot of Fig. 4 (bottom middle plot), corresponding
to the PMCMC algorithm, is substantial.

To sum up, both formulations of Gibbs data augmentation schemes (with
or without reparametrisation) are very likely to lead to inaccurate and in-
efficient MCMC algorithms. The use of particle MMH algorithms, termed
as PMCMC in this paper, is therefore essential and the main paper focused
on its implementation on diffusion driven epidemic models. PMCMC seems
to provide a solution to the problem, but future research on Gibbs schemes
with alternative reparametrisations addressing this problem, would be very
helpful.
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MSE Bias

EKF 0.0269 0.0285

Particle filter 0.0242 0.0064

Improvement with regards to EKF -10% -77%

Particle smoother 0.0032 0.0027

Improvement with regards to P. filter -87% -64%

Table 1: Mean Squarred Error and Bias of βt estimates provided by the
EKF, particle filter and particle smoother

Exp 1.a Exp 1.b Exp 1.b Exp 2.b

τ Simulation value 0.1 0.05 0.1 0.05

Posterior mean 0.103 0.083 0.078 0.050

Posterior median 0.103 0.084 0.077 0.050

Posterior 95% c.i. [0.051; 0.152] [0.027; 0.137] [0.063; 0.96] [0.042; 0.060]

σ Simulation value 0.07 0.07 n.d. n.d.

Posterior mean 0.066 0.083 0.016 0.014

Posterior median 0.064 0.084 0.015 0.014

Posterior 95% c.i. [0.048; 0.090] [0.046; 0.089] [0.010; 0.027] [0.001; 0.021]

Table 2: Mean, median and 95% confidence intervals for τ and σ estimates
in four experiments
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Posterior mean Posterior median Posterior 95% c.i.

k−1 1.56 1.55 [1.53; 1.60]

γ−1 1.00 1.00 [0.92; 1.08]

βcc(0) 1.44 1.36 [0.89, 2.30]

βaa(0) 1.40 1.39 [1.25; 1.64]

βca 0.30 0.31 [0.16; 0.50]

βac 0.32 0.32 [0.18; 0.48]

Ec(0) 2.1× 10−5 1.9× 10−5 [1.3× 10−5; 3.8 × 10−5]

Ic(0) 1.2× 10−5 1.4× 10−5 [0.6× 10−5; 2.9 × 10−5]

Rc(0) 0.13 0.12 [0.06; 0.26]

Ea(0) 2.1× 10−5 2.0× 10−5 [1.1× 10−5; 3.5 × 10−5]

Ia(0) 1.0× 10−5 1.0× 10−5 [0.3× 10−5; 1.5 × 10−5]

Ra(0) 0.16 × 10−5 0.16 [0.09; 0.28]

σc 0.11 0.10 [0.08; 0.15]

σa 0.08 0.08 [0.05; 0.11]

Table 3: Mean, median and 95% confidence intervals for the parameters of
the structured model applied to the A/H1N1 pandemic data

τ k−1 γ−1 β0 E(0) I(0) R(0) σ

2.5% quantile 0.04 1.55 0.93 0.80 5.2× 10−6 1.6 × 10−6 0.02 0.04

25% quantile 0.09 1.57 1.03 1.16 1.6× 10−5 7.0 × 10−6 0.12 0.05

Median estimate 0.11 1.59 1.08 1.35 2.3× 10−5 1.6 × 10−5 0.17 0.06

75% quantile 0.13 1.60 1.13 1.56 3.1× 10−5 2.8 × 10−5 0.22 0.07

97.5% quantile 0.17 1.63 1.23 2.13 5.2× 10−5 6.5×10−5 0.33 0.10

Median when R(0) shifted +10% 0.11 1.59 1.09 1.41 2.0× 10−5 1.9 × 10−5 0.19 0.06

Median when R(0) shifted +20% 0.11 1.59 1.09 1.44 1.8×10−5 2.1 × 10−5 0.24 0.06

Median when R(0) shifted -10% 0.11 1.59 1.08 1.31 2.2× 10−5 2.2 × 10−5 0.15 0.07

Median when R(0) shifted -20% 0.12 1.59 1.09 1.27 1.9× 10−5 2.1 × 10−5 0.13 0.07

Median when k−1 shifted +10% 0.11 1.59 1.09 1.33 1.8× 10−5 2.2 × 10−5 0.15 0.06

Median when k−1 shifted +20% 0.12 1.60 1.08 1.34 1.8×10−5 2.3 × 10−5 0.17 0.06

Median when k−1 shifted -10% 0.12 1.58 1.08 1.28 2.0× 10−5 2.0 × 10−5 0.16 0.06

Median when k−1 shifted -20% 0.12 1.57 1.09 1.31 1.9× 10−5 2.0 × 10−5 0.16 0.06

Median when γ−1 shifted +10% 0.11 1.59 1.12 1.23 2.2× 10−5 2.1 × 10−5 0.15 0.07

Median when γ−1 shifted +20% 0.10 1.59 1.14 1.18 2.0× 10−5 2.4 × 10−5 0.15 0.07

Median when γ−1 shifted -10% 0.11 1.59 1.06 1.37 1.9× 10−5 2.0 × 10−5 0.16 0.07

Median when γ−1 shifted -20% 0.10 1.59 1.02 1.46 2.0× 10−5 1.8 × 10−5 0.17 0.07

Table 4: Original estimates compared to the ones resulting from respectively
tilting the priors on R(0), γ−1 or k−1 by +10, +20, -10 or -20%
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Figure 1: Convergence of the posterior density as the Euler discretization
time-step δ decreases (x-axis in the log-scale)
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Figure 2: Acceptance rate as a function of Nparts, in two situations where
the noise amplitude is respectively 10% (full line) and 5% (dotted line).
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Figure 3: Illustration of how the underlying dynamic of the effective contact
rate can be estimated from weekly recorded cases (τ = 0.05)
Green dots indicate simulated observed incidence (top panels). Green lines
indicate simulated effective contact rate trajectories (bottom panels). Black
dotted lines indicate the mean of the pointwise posterior density. Dark and
light blue show credible intervals, respectively at 50% and 95% levels.
Top left: experiment 1.b, weekly number of cases observed with noise
Top right: experiment 2.b, weekly number of cases observed with noise
Bottom left: experiment 1.b, simulated and estimated trajectory of the ef-
fective contact rate
Bottom right: experiment 2.b, simulated and estimated trajectory of the
effective contact rate
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Figure 4: MCMC traceplots for each component of θ
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Figure 5: Modeling choices and implications, aiming for robustness
Black dotted lines indicate the mean of the pointwise posterior density. Dark
and light blue show credible intervals, respectively at 50% and 95% levels.
Left panels: estimates from an alternative modeling approach: exploring the
full posterior density of an IBM diffusion model (left)
Right panels: estimates from an alternative methodological approach: ex-
ploring the posterior density of a BM diffusion model conditionned on a
likelihood maximizing parameter θ∗ provided by the MIF algorithm (right)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.069

0.07

0.071

0.072

0.073

Iterations

σ

Figure 6: MCMC traceplot for σ when using a Particle Gibbs scheme with
reparametrization
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