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This study assessed relationships among white matter hyperintensities (WMH), cerebrospinal fluid (CSF),
Alzheimer’s disease (AD) pathology markers, and brain volume loss. Subjects included 197 controls, 331
individuals with mild cognitive impairment (MCI), and 146 individuals with AD with serial volumetric
1.5-T MRI. CSF Ab1-42 (n ¼ 351) and tau (n ¼ 346) were measured. Brain volume change was quantified
using the boundary shift integral (BSI). We assessed the association between baseline WMH volume and
annualized BSI, adjusting for intracranial volume. We also performed multiple regression analyses in the
CSF subset, assessing the relationships of WMH and Ab1-42 and/or tau with BSI. WMH burden was
positively associated with BSI in controls (p ¼ 0.02) but not MCI or AD. In multivariable models, WMH
(p ¼ 0.003) and Ab1-42 (p ¼ 0.001) were independently associated with BSI in controls; in MCI Ab1-42
(p < 0.001) and tau (p ¼ 0.04) were associated with BSI. There was no evidence of independent effects of
WMH or CSF measures on BSI in AD. These data support findings that vascular damage is associated with
increased brain atrophy in the context of AD pathology in pre-dementia stages.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Alzheimer’s disease (AD) is the most common primary patho-
logical cause of dementia, and vascular disease has been reported as
the second most common (Brayne et al., 2009; Jellinger, 2006).
Some studies have shown that AD and vascular pathologies are
equally prevalent and that they can often co-occur (Brayne et al.,
2009; Jellinger, 2006; Schneider et al., 2007; White et al., 2002).
This is reflected in a recent statement to health care professionals
to aid understanding of vascular contributions to cognitive
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impairment and dementia (Gorelick et al., 2011). It is unclear,
however, how these differing pathologies have an impact on the
disease progression from normal ageing to clinically manifest AD.

Longitudinal in vivo techniques to measure AD and vascular
pathologies are now available to address this question. AD
pathology can be examined in vivo by examining cerebrospinal
fluid (CSF) levels of Ab1-42, which are negatively associated with
amyloid deposition in the brain (Shaw et al., 2009). CSF analysis also
permits investigation of tau levels, which are thought to be posi-
tively associated with neuronal injury and brain atrophy (Jack et al.,
2010). White matter hyperintensities (WMH) can be assessed
in vivo using multi-spectral magnetic resonance imaging (MRI)
acquisitions (Carmichael et al., 2010; Tiehuis et al., 2008). WMHs
have multiple histopathological correlates, including ependymal
loss, cerebral ischemia, demyelination, microcystic infarcts, venous
collagenosis, and gliosis (Gouw et al., 2011; Kim et al., 2008). They
increase with age and vascular risk factors (DeCarli et al., 2001;
Jeerakathil et al., 2004; Nordahl et al., 2006; Yoshita et al., 2006).
Furthermore, plasma amyloid levels are associated with WMHs,
allowing for hypertension (Gurol et al., 2006). This association may
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represent a separate disease pathway from cerebral amyloid
pathology, as plasma amyloid has not been shown to be associated
with CSF amyloid levels (Le Bastard et al., 2010).

Brain atrophy is an important marker of disease progression in
AD. Comparedwith normal ageing, rates of brain atrophy calculated
using serial MRI scans are much higher in clinically diagnosed AD,
with mild cognitive impairment (MCI) subjects showing interme-
diate rates (Henneman et al., 2009; Jack et al., 2004; Schott et al.,
2005). These markers of disease progression are closely associ-
ated with cognitive decline (Evans et al., 2010).

Assessing the independent associations of CSF amyloid, CSF tau,
and WMH with brain atrophy rate has the potential to identify
contributions of vascular and AD pathologies to macroscopic brain
loss over time. Understanding these relationships is especially
important in a clinical trial setting in which imaging is used as an
outcome measure. For example, more efficient trial designs may be
achieved by adjusting or stratifying for vascular burden, or target-
ing those without significant vascular burden. Clinical trials of AD
therapies are generally assumed to be largely free of cerebrovas-
cular disease because they exclude individuals with clinically overt
cardiovascular disease; in fact, WMHs may be prevalent and asso-
ciated with greater cognitive decline in this setting (Carmichael
et al., 2010). However. the independent impact of WMHs and AD
markers on progressive brain atrophy in such clinical trial cohorts is
not well understood.

The aim of this study was to investigate how baseline WMHs
and CSF Ab1-42 and tau relate to brain volume loss over the
following year in controls and MCI and AD subjects enrolled in the
Alzheimer’s Disease Neuroimaging Initiative (ADNI), a multi-site
natural history study.

2. Methods

We analyzed data from control, MCI, and AD subjects from the
ADNI (adni.loni.ucla.edu) who had baseline and 1-year follow-up
volumetric 1.5-T scans.

ADNI was launched in 2003 by the National Institute on Aging
(NIA), the National Institute of Biomedical Imaging and Bioengi-
neering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies, and non-profit organizations, as a $60
million, 5-year publiceprivate partnership. The primary goal of
ADNI has been to test whether serial MRI, positron emission
tomography (PET), other biological markers, and clinical and neu-
ropsychological assessment can be combined to measure the
progression of MCI and early AD. Determination of sensitive and
specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and to
monitor their effectiveness, as well as lessen the time and cost of
clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner,
MD, VA Medical Center and University of CaliforniadSan Francisco.
ADNI is the result of efforts of many co-investigators from a broad
range of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across the United
States and Canada. The initial goal of ADNI was to recruit the
following: 800 adults, 55 to 90 years of age, to participate in the
research; approximately 200 cognitively normal older individuals,
to be followed up for 3 years; 400 individuals with MCI, to be fol-
lowed up for 3 years; and 200 individuals with early AD, to be
followed up for 2 years. (For up-to-date information, see www.
adni-info.org).

Participants underwent baseline and periodic clinical and
neuropsychometric assessments as well as serial MRI. Written
informed consent was obtained, as approved by the Institutional
Review Board at each participating center. Demographic, Mini-
Mental State Examination (MMSE), genetic, CSF data, and cardio-
vascular risk factors were downloaded from the ADNI website
(www.loni.ucla.edu/ADNI). Approximately 60% of participants had
CSF taken for analysis (see: http://www.adni-info.org). Details of
the analysis of the CSF for Ab1-42 and tau have been described
elsewhere (Shaw et al., 2009).

Baseline WMH volume was estimated from T1-, T2-, and proton
density (PD)-weighted MR images using a previously described,
automated technique (Carmichael et al., 2010; Schwarz et al., 2009).
In brief, a linear combination of PD- and T2-weighted images were
aligned to the T1-weighted image using rigid registration. MR
images were stripped of non-brain tissues and non-linearly regis-
tered to aminimum deformation template.WMHwere identified at
each voxel in this template space, based on signal intensity of
the voxel in all MR images, signal intensity of neighboring voxels,
and prior probability of the existence of WMH. Brain volume
at baseline was measured semi-automatically from T1-weighted
images (Freeborough et al., 1997). Brain volume loss occurring
between the serial T1 scans was quantified using an automated
pipeline including brain segmentation (Leung et al., 2011) and
the boundary shift integral (BSI), which gives an estimate of tissue
loss over time directly from each scan pair (Freeborough and Fox,
1997; Leung et al., 2010b). Intracranial volume (TIV) was automat-
ically estimated by summing the gray matter, white matter,
and CSF segmentations using SPM8’s new segmentation toolbox
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8). This toolbox
uses prior probability maps for graymatter, whitematter, CSF, bone,
non-brain soft tissue, and air, improving the correspondence with
manual measures compared with previous versions of SPM (Leung
et al., 2010a; Ridgway et al., 2011).

Linear regression was used to estimate differences in means of
continuous variables across diagnostic groups. For categorical
variables, Fisher’s exact test was used. Linear regression was used
with annualized brain volume loss (based on BSI) as the dependent
variable and combinations of WMH, CSF Ab1-42, and tau as inde-
pendent variables. Analyses were performed separately for each
diagnostic group, with TIV included as a covariate. WMH burden
was log-transformed (base 2) to reduce skewness. First we assessed
the relationship of (log-transformed) WMH burden with annual-
ized BSI, adjusting for head size. Because WMH was entered as
a covariate after log (base 2) transformation, its estimated coeffi-
cient is the expected change in BSI corresponding to a doubling of
WMH on the original scale. In a further analysis using the subset of
subjects with baseline CSF available, we fitted the same regression
model but with Ab1-42 level included as a covariate. This analysis
was repeated replacing Ab1-42 with tau level. We further investi-
gated amodel with both CSF biomarkers included. For each variable
we calculated the semi-partial r2 values to estimate the extent to
which baseline WMH and CSF Ab1-42 and tau independently
explained subsequent brain volume loss. Furthermore, all analyses
were repeated additionally adjusting for baseline brain volume to
examine whether the established relationships could be explained
by atrophy before the first scan. Finally we repeated the analyses
adjusting for age to establish whether this could explain the as-
sociations of BSI with WMH and CSF markers. Scatter plots of
annualized BSI against log2WMH with overlaid regression lines
together with 95% CI were also generated to show unadjusted
associations. Analyses were conducted in Stata 12.0.

3. Results

Table 1 shows demographic, APOE, and imaging summary
statistics. Of note, subjects differed across diagnostic groups in
terms of gender, with a higher proportion of males in the MCI
group. As expected, subject groups also differed in terms of APOE ε4
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Table 1
Subject demographics, genetics, vascular risk factors, and volumetric imaging summary statistics

Controls, n ¼ 197 MCI, n ¼ 331 AD, n ¼ 146 p value across 3 groups

Age, y 76.0 (5.1) [75.2, 76.7] 74.8 (7.2) [74.1, 75.6] 75.3 (7.3) [74.1, 76.5] 0.18
Gender, n (%) female 93 (47) 122 (37) 69 (47) 0.025
MMSE/30 29.1 (1.0) [29.0, 29.2] 27.0 (1.8) [26.8, 27.2] 23.4 (1.9) [23.1, 23.7] <0.001
Diastolic BP, mm Hg 74.7 (10.5) [73.2, 76.2] 74.6 (9.5) [73.5, 75.6] 74.6 (9.3) [73.1, 76.2] 0.99
Systolic BP, mm Hg 134.9 (16.6) [132.6, 137.3] 135.4 (18.6) [133.4, 137.4] 136.5 (17.0) [133.7, 139.3] 0.71
Diabetes, n (%) history 10 (5) 26 (8) 8 (5) 0.46
Smoking, n (%)
Never 122 (62) 199 (60) 93 (64) 0.97
Previous 69 (35) 121 (37) 49 (33)
Present 6 (3) 11 (3) 4 (3)

APOE ε4, n (%)
0 alleles 140 (71) 152 (46) 48 (33) <0.001
1 allele 52 (26) 139 (42) 68 (47)
2 alleles 5 (3) 40 (12) 30 (21)

WMH volume, mL
Median (IQR) 0.25 (0.48) 0.25 (0.52) 0.36 (1.00) 0.002c

Brain volume/TIV 0.69 (0.04) [0.68, 0.69] 0.67 (0.04) [0.67, 0.68] 0.66 (0.04) [0.65, 0.66] <0.001
Interval, days 395.8 (25.7) [392.2, 399.5] 394.0 (24.6) [391.3, 396.6] 392.5 (23.3) [388.7, 396.3] 0.45
BSI, mL/year 5.92 (6.08) [5.06, 6.77] 10.65 (8.23) [9.76, 11.54] 14.09 (8.00) [12.78, 15.40] <0.001
CSF Ab1-42a, pg/ml 204 (55) [193, 215] 163 (54) [155, 171] 141 (40) [132, 150] <0.001
CSF taub, pg/ml 70 (28) [64, 75] 100 (51) [92, 108] 124 (57) [112,137] <0.001

Values reported are mean (SD) [95% CI] unless otherwise specified.
Key: BP, blood pressure; BSI, boundary shift integral; CSF, cerebrospinal fluid; IQR, interquartile range; MMSE, Mini Mental State Examination; TIV, total intracranial volume;
WMH, white matter hyperintensity.

a Available in 101 control, 168 MCI, and 82 AD subjects.
b Available in 101 control, 165 MCI, and 80 AD subjects.
c p value from comparison across groups of WMH on log scale.
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dose, brain atrophy rate, WMH volume, and CSF tau levels, with
these values increasing from controls to MCI to AD subjects. Groups
also differed in terms of MMSE, CSF Ab1-42, and brain volume/TIV,
with these values decreasing from controls to AD subjects.

Table 2 shows the partial regression coefficients for WMH, Ab1-
42, and tau, and Fig. 1 shows scatter plots of annualized BSI against
log2WMH for each subject group. Without adjustment for CSF Ab1-
42 or tau, WMH burden was positively associated with brain
volume loss in controls (after adjustment for head size). For the
subjects with available baseline CSF, both WMH and CSF Ab1-42
showed independent associations with volume loss in controls,
with lower CSF Ab1-42 and higher WMH volume associated with
greater losses. Squared semi-partial correlations showed that, in
control subjects, WMH explained an amount of variance in atrophy
rates similar to that of Ab1-42. There was no evidence of an inde-
pendent association of tau with brain volume loss in controls. The
WMH and Ab1-42 results remained largely unchanged with
adjustment for tau (model 4). The results in controls remained
statistically significant after exclusion of the visible outlier, which
can be seen in Fig. 1. The fitted regression equation for a control
subject with a head size of 1500 mL is given by the following:

Mean volume loss (in mL) ¼ 15.05 þ (0.78 * log2WMH) þ
(�0.036 * Ab1-42).

In MCI subjects, there was no evidence of an association
between WMH and brain volume loss, either with or without
adjustment for CSFAb1-42 or tau. Therewas evidence that CSFAb1-
42 was associated with volume loss (independent of WMH, and
independent of WMH and tau) in MCIs, and also evidence that
increased tau was associated with increased loss. The association of
tau and BSI no longer remained significant when additionally
adjusted for Ab1-42. In AD subjects, we found no evidence for
effects of WMH, CSF Ab1-42, or tau on brain atrophy rates.

All results remained largely unchanged when adjusting for
baseline brain volume in addition to head size (see supplementary
Table 1), suggesting that prior atrophy cannot explain the rela-
tionships found between WMH and CSF markers of AD pathology
with subsequent brain volume losses. There was no evidence
(p > 0.1, all tests) that brain volume was independently associated
with BSI loss from these models, apart frommodel 3 (WMH and tau
as covariates) in controls. Results from this model showed that
a larger brain volume at baseline was associated with greater brain
loss in the subsequent year (p ¼ 0.046).

Results altered little when adjusting for age in addition to head
size (see supplementary Table 2), suggesting that age does not
explain the associations between atrophy rates with WMH and CSF
Ab 1-42 and/or tau. There was some evidence that age was inde-
pendently negatively associated with BSI in the MCI (p < 0.05, all
models) and AD (p < 0.05, models 1 and 3) groups, but not in
controls (p > 0.6, all models).

There was no evidence of an effect of head size in any of the
analyses reported above (p > 0.05, all tests).

4. Discussion

In this study, we found that both increased WMH volume and
decreased CSF Ab level were independently associated with an
increase in brain volume loss (atrophy rate) in control subjects. In
this subject group, WMH explained nearly as much variance in
volume loss as CSFAb, with both explainingmuchmore than tau. By
contrast, in subjects with MCI or AD, in whom the atrophy rates
were higher, WMH volume was not found to be associated with
brain volume loss. Lower Ab levels and higher tau were indepen-
dently associatedwith higher volume loss inMCI patients; however,
the tau association was no longer significant once adjusted for Ab.
Neither Ab levels nor tau levels were found to be independently
associated with brain volume loss in AD. Importantly, the results
described are not materially altered by prior whole brain atrophy
as represented by baseline brain volume and TIV, or age.

The finding that WMHs and Ab levels are independently asso-
ciated with longitudinal brain volume loss in individuals lacking
clinically significant cognitive decline contributes to a growing
body of literature suggesting that AD, vascular pathology, and
mixed pathology are significant causes of neuronal loss accompa-
nying ageing, even when this brain injury or neuronal loss has no



Table 2
Adjusted regression coefficients [95% confidence intervals], p values, and semi-partial r2 values for associations with brain atrophy (BSI, mL/y)

Controls MCI subjects AD subjects

Model 1 n ¼ 197 n ¼ 331 n ¼ 146
WMH (doubling) 0.46 [0.09, 0.83]

p ¼ 0.015
r2 ¼ 0.030

0.08 [�0.29, 0.45]
p ¼ 0.67
r2 � 0.001

0.15 [�0.44, 0.73]
p ¼ 0.62
r2 ¼ 0.002

Model 2 n ¼ 101 n ¼ 168 n ¼ 82
WMH (doubling) 0.78 [0.28, 1.28]

p ¼ 0.003
r2 ¼ 0.080

0.07 [�0.45, 0.59]
p ¼ 0.80
r2 � 0.001

0.04 [�0.63, 0.72]
p ¼ 0.90
r2 � 0.001

Ab1-42 (per 10 pg/mL) �0.36 [�0.57, �0.14]
p ¼ 0.001
r2 ¼ 0.091

�0.43 [�0.66, �0.20]
p < 0.001
r2 ¼ 0.075

�0.28 [�0.68, 0.12]
p ¼ 0.17
r2 ¼ 0.024

Model 3 n ¼ 101 n ¼ 165 n ¼ 80
WMH (doubling) 0.82 [0.29, 1.34]

p ¼ 0.003
r2 ¼ 0.087

0.22 [�0.33, 0.77]
p ¼ 0.43
r2 ¼ 0.004

0.05 [�0.64, 0.75]
p ¼ 0.88
r2 � 0.001

tau (per 10 pg/mL) 0.17 [�0.27, 0.62]
p ¼ 0.44
r2 ¼ 0.006

0.28 [0.02, 0.54]
p ¼ 0.04
r2 ¼ 0.027

0.02 [�0.28, 0.32]
p ¼ 0.89
r2 � 0.001

Model 4 n ¼ 101 n ¼ 165 n ¼ 80
WMH (doubling) 0.78 [0.28, 1.29]

p ¼ 0.003
r2 ¼ 0.080

0.14 [�0.40, 0.68]
p ¼ 0.60
r2 ¼ 0.002

0.04 [�0.64, 0.73]
p ¼ 0.90
r2 � 0.001

Ab1-42 (per 10 pg/mL) �0.36 [�0.58, �0.14]
p ¼ 0.002
r2 ¼ 0.086

�0.40 [�0.65, �0.14]
p ¼ 0.002
r2 ¼ 0.054

�0.30 [�0.72, 0.11]
p ¼ 0.14
r2 ¼ 0.028

tau (per 10 pg/mL) <0.01 [�0.44, 0.44]
p > 0.99
r2 � 0.001

0.11 [�0.16, 0.39]
p ¼ 0.41
r2 ¼ 0.004

�0.01 [�0.31, 0.30]
p ¼ 0.97
r2 � 0.001

Key: AD, Alzheimer’s disease; BSI, boundary shift integral; MCI, mild cognitive impairment; WMH, white matter hyperintensity.
Model 1: Association between WMH and BSI, adjusting for head size.
Model 2: Adjusted association of WMH and Ab1-42 with BSI.
Model 3: Adjusted association of WMH and tau with BSI.
Model 4: Adjusted association of WMH, Ab1-42 and tau with BSI.

J. Barnes et al. / Neurobiology of Aging 34 (2013) 1996e2002 1999
clinically apparent cognitive manifestation. Importantly, this rela-
tionship was found among ADNI controls who were physically
healthy, highly educated, of a high socioeconomic status, and were
included only if overt cerebrovascular disease was not evident (all
subjects had�4 Hachinski score points). Therefore, our findings are
likely to under-represent the impact of WMH on brain ageing and
therefore atrophy rates among members of the general population
in whom Hachinski scores are likely to be higher (DeCarli et al.,
2005). A previous pathological study has suggested that mixed
pathology may be present in a high percentage of brains of normal
individuals (White et al., 2002), and a subsequent in vivo study has
suggested that additive contributions of AD and vascular disease to
cognitive decline may be observable in normal subjects in their 80s
(Wilson et al., 2010). The current study extends those findings by
showing that independent effects of AD and vascular pathology on
brain volume loss extend to very healthy elderly subjects.

The finding that only AD pathology, and not white matter
pathology, was associated with brain atrophy within the MCI group
may in part reflect the ADNI strategy of recruiting individuals
whose amnestic pattern of MCI strongly suggested a predominance
of AD pathology burden driving disease progression, as opposed to
vascular disease. Although amnestic MCI subjects are at a high risk
for conversion to AD, pathological studies of those recruited as
amnestic MCI suggest that a significant proportion will not have
underlying AD pathology (Jicha et al., 2006; Petersen et al., 2006).
This means the MCI group is likely to represent a bimodal pop-
ulation of those with AD pathology and high rates of atrophy, as
well as those with no pathology and low atrophy rates, thus further
driving the association between amyloid levels and atrophy rates in
this group. Proposed models of AD progression (Jack et al., 2010)
suggest a strong relationship between tau and atrophy, especially in
MCI. However published results from ADNI show mixed findings,
with some studies demonstrating evidence of an association
between baseline tau and atrophy rates (Fjell et al., 2010; Tosun
et al., 2010) and others not finding such relationships (Leow et al.,
2009; Schuff et al., 2009). These discrepancies, although poten-
tially explained in part by the differing methodologies used,
demonstrate that the relationship between baseline tau and
subsequent atrophy is complex.

In AD subjects, the atrophy rate is much higher than in MCI
subjects and controls, indicating that the disease is in a different
stage with rapid progression. The fact that, in ADs, no evidence of
associations were seen between atrophy rate and white matter
pathology, Ab, or tau, may reflect the fact that this population is
more likely to have underlying AD pathology and is therefore more
homogeneous (Jellinger, 2006), reducing power to detect associa-
tions. Previous studies have similarly found no evidence of an
association between Ab pathology and rate of atrophy in AD
patients (Josephs et al., 2008; Sluimer et al., 2010), suggesting that
Ab load is a weak marker of severity or progression at this stage of
the disease. Factors that may explain variance and drive brain
volume loss at this disease stage are yet to be determined, but may
include both genes and proteins involved in inflammatory
responses and apoptosis, as well as disease duration.

Our finding of increased WMH being associated with longitu-
dinal changes in brain volume is in keeping with other cross-
sectional analyses of brain volume and WMH in normal subjects
(Godin et al., 2009; Wen et al., 2006). Further, our study is in
keeping with other longitudinal findings that have revealed that
increased WMH volume at baseline was associated with greater
changes in ventricular CSF in subjects who were cognitively intact
at baseline (Silbert et al., 2008) and change in WMH was associ-
ated with change in brain volume in a large community based
study (Debette et al., 2011). Our study adds to this literature by
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Fig. 1. Scatter plots of annualized boundary shift integral (BSI [mL/y]) against white matter hyperintensities (WMH [log2mL]) in controls, subjects with mild cognitive impairment
(MCI), and subjects with Alzheimer’s disease (AD). Fitted regression lines (red) with 95% confidence interval for the predicted mean (gray).
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assessing the independent relationships between WMH and CSF
Ab1-42 and tau at baseline and brain volume losses over the
following year in 3 diagnostic groups representing the range in
clinical status from normal ageing to AD. Our study builds on an
emerging model of the vascular contribution to decline in AD,
which suggests that vascular damage is associated with cognitive
decline in the context of AD predominantly in pre-dementia stages
(Carmichael et al., 2012; Debette et al., 2011; Wilson et al., 2010).
Furthermore, it may be that in the control group, some subjects
have incipient AD, some have incipient vascular cognitive
impairment, and some have incipient mixed vascular and AD. The
relationship between BSI and potential explanatory variables is
complex. Future work is required to elucidate which factors may
be important and how these may interact (for example, age and
white matter disease).

WMH volume results have been reported previously for the
ADNI dataset (Carmichael et al., 2010), as have CSF results (Shaw
et al., 2009). Atrophy rates have also been previously reported in
different subsets of the ADNI dataset (Evans et al., 2009; Leung
et al., 2010b; Schott et al., 2010a; Schott et al., 2010b).

This study has a number of limitations. First, we have no post
mortem proof of clinical diagnosis, and therefore we cannot
investigate whether a proportion of subjects in each diagnostic
group had significant underlying vascular cognitive impairment.
Although the ADNI study set out to reduce the likelihood of
including other pathologies such as vascular dementia, post
mortem studies report that 2.4% of clinically diagnosed AD cases
have isolated vascular pathology, and approximately one-third
may have vascular pathology in addition to AD (Jellinger, 2006).
The proportion of MCI and control subjects with preclinical or
prodromal vascular dementia or mixed dementia may be higher.
In ADNI, only approximately 60% of subjects had CSF taken at
baseline, limiting the group sizes and therefore the power to
detect potential relationships between CSF variables and brain
volume losses in this study. A major limitation was that the ADNI
study did not acquire fluid attenuated inversion recovery (FLAIR)
images, which can improve the accuracy of WMH volume esti-
mation. Such acquisitions have been included in ADNI2. Although
our results are potentially useful for the planning of future studies,
the generalizability of the findings may be limited to those studies
with recruitment similar to that of ADNI, as relationships between
CSF biomarkers, white matter disease, and brain atrophy rates
may differ according to the study population characteristics.
Finally, we did not investigate other forms of vascular pathology
measurable on MRI, including lacunes and microbleeds. Micro-
bleeds in particular could also help to distinguish WMH attrib-
utable to amyloid angiopathy rather than conventional vascular
disease; but assessment of these requires T2*-weighted MRI,
which is not available on the first ADNI dataset but is for ADNI
2 and ADNI GO. However, the independent association between
WMH and CSF Ab level found in our study argues against
the majority of the observed WMH being related to amyloid
angiopathy.

In conclusion, these data further support the notion that
vascular damage is associated with brain volume loss in the context
of AD pathology, predominantly in pre-dementia stages. In contrast,
Ab levels are also related to progressive cerebral volume loss in the
MCI group, which comprises subjects with prodromal AD and those
who will not progress to AD. We found evidence of an association
between tau levels and atrophy only in the MCI group. Our findings
are particularly relevant to the current interest in prevention trials
(Mullard, 2012; Reiman et al., 2010; Richard et al., 2012; Selkoe,
2012); intervention to reduce vascular burden and its effects on
progressive brain loss may be most effective early in dementia
before symptoms become apparent. Furthermore, the finding that
WMH explains significant additional variability beyond that
explained by CSF measures suggests that WMH volume should be
considered for stratification or adjustment to increase power in
prevention trials.
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