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Abstract

Background: The use of restricted randomisation methods such as minimisation is increasing. This paper
investigates under what conditions it is preferable to use restricted randomisation in order to achieve balance
between treatment groups at baseline with regard to important prognostic factors and whether trialists should be
concerned that minimisation may be considered deterministic.

Methods: Using minimisation as the randomisation algorithm, treatment allocation was simulated for hypothetical
patients entering a theoretical study having values for prognostic factors randomly assigned with a stipulated
probability. The number of times the allocation could have been determined with certainty and the imbalances
which might occur following randomisation using minimisation were examined.

Results: Overall treatment balance is relatively unaffected by reducing the probability of allocation to optimal
treatment group (P) but within-variable balance can be affected by any P <1. This effect is magnified by increased
numbers of prognostic variables, the number of categories within them and the prevalence of these categories
within the study population.

Conclusions: In general, for smaller trials, probability of treatment allocation to the treatment group with fewer
numbers requires a larger value P to keep treatment and variable groups balanced. For larger trials probability of
allocation values from P = 0.5 to P = 0.8 can be used while still maintaining balance. For one prognostic variable
there is no significant benefit in terms of predictability in reducing the value of P. However, for more than one
prognostic variable, significant reduction in levels of predictability can be achieved with the appropriate choice of P
for the given trial design.
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Background
The main aim of randomisation in randomised clinical
trials (RCTs) is to reduce the risk of selection bias at trial
entry. A secondary aim is to generate groups that are
comparable in terms of key prognostic factors. Clinical
trials often enrol sufficiently small numbers that clinic-
ally relevant imbalances in prognostic factors between
groups may occur by chance, particularly if simple ran-
dom allocation, for example, a coin toss, is used. In any-
thing but the largest trials there can be imbalances in
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the distribution of prognostic variables between treat-
ment groups [1]. These differences can weaken the
power of the trial and make it hard to distinguish be-
tween real and spurious treatment effects.
Toorawara et al. [2] wrote that treatment balance may

be ‘desirable in a range of scenarios including small trials,
interim analyses, early termination, analysis of subgroups
or where the credibility of an unbalanced trial may be
problematic, e.g. in the case of a small treatment effect.’
Altman and Bland [3] also agree that balance is especially
desirable for trials with strong prognostic factors and
modest treatment effects. Within-centre imbalance may
be considered more problematic than imbalance within
other prognostic factors for practical reasons. Resources
tral Ltd. This is an Open Access article distributed under the terms of the
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for a particular treatment may be limited within centres,
for example, limited intensive care facilities available for
the study, or limited number of surgeons trained in a par-
ticular procedure. The Committee for Proprietary Medi-
cinal Products (CPMP) [4] encourages balancing at the
centre level, and dynamic allocation techniques can be
used to do this. This has led researchers to develop re-
stricted randomisation methods to ensure balance of
prognostic variables across treatment groups at baseline.
An example of this is the minimisation method, which has
been labelled the ‘platinum standard’ of randomisation [5],
where for each characteristic of interest, the total number
of patients within each treatment group is calculated, and
the next allocation is assigned to minimise the difference
between the groups. However, care must be taken to en-
sure proper execution of these methods, as errors can be
costly. A programming error in the randomisation sched-
ule of the COMET trial [6] led to a severe imbalance in
distribution between treatment groups for two prognostic
factors, age and ethnicity. The trial team sought advice
from the funding body and independent clinical trials ex-
perts and re-recruitment of the entire study sample was
recommended.
Taves realised that the next assignment could usually

be predicted if the exact system used in the minimisa-
tion procedure was known [7]. With knowledge of the
current group totals the next allocation could be pre-
dicted in nearly 70% of cases. Pocock and Simon argued
that the probability of assignment to the optimal treat-
ment (that is, the allocation that would minimise the dif-
ference between treatment groups) according to the
minimisation algorithm should be set at some value less
than one to ensure that the next assignment cannot be
predicted with certainty [8]. They compared allocation
systems where the probability (P) of receiving the opti-
mal treatment was reduced from 1.0 to 0.75, and found
that this increased the risk of treatment imbalance com-
pared with P = 1.0. However, they and others accept that
in many trials, particularly multi-centre trials, it is feas-
ible to set this P at 1.0 [8,9]. The reasons for this are that
the randomisation will usually be managed remotely per-
haps by an independent service and the individual centre
data will not easily be disentangled from the complete
dataset.
To reduce the probability of guessing the treatment al-

location when the number in one group is less than the
other(s) we can assign a treatment using a P-value less
than 1.0. It is unclear, however, what effect this would
have on the balance between treatment arms and within
the levels of any prognostic factor [10].
Against this background the use of restricted random-

isation methods, such as minimisation, is increasing. This
paper investigates under what conditions it is preferable
to use restricted randomisation in order to achieve
balance between treatment groups at baseline with regard
to important prognostic factors, and whether trialists
should be concerned that minimisation may be considered
deterministic.

Methods
Using minimisation as the randomisation algorithm,
hypothetical patients entering a theoretical study were
assigned values for the prognostic factors by random as-
signment with varying stipulated probabilities. Treat-
ment allocations of these hypothetical patients were
simulated and the imbalances that might occur following
randomisation using minimisation were examined.
The following factors were varied in a series of 1,000

simulations: size of trial (N); number of prognostic vari-
ables, the number of categories within these variables
and the distribution of the population within these cat-
egories (called the prevalence within these categories);
and the probability of allocation to optimal treatment
(P). The probability of allocation P was varied between
P = 0.5 (the case of simple randomisation) and P = 1
(fully deterministic). These were the values also se-
lected by Hills et al. [1] and Brown et al. [11] for their
simulations. Starting with the simplest case of two
treatments, simulations with varying values of P were
performed, first with one binary variable where pa-
tients entering the trial had equal likelihood of pre-
senting with the characteristic of either category
within the prognostic variable (that is, there was equal
prevalence within the population). Then simulations
were performed where the prevalence within this vari-
able was not equal within the population, to see if this
had an effect on predictability and/or treatment imbal-
ance. Next, the effect of increasing numbers of prog-
nostic variables was explored by increasing these to
two, three and four variables. The simulated patient
characteristics were checked to ensure the simulations
had been correctly encoded. Similar sets of simulations
were then performed for 3 and 4 treatments to investi-
gate the effect of increasing the number of treatment
groups.
Simulations were performed using a Microsoft Access

database and programming in VBA (Visual Basic for Ap-
plications). The desired characteristic variables of N pa-
tients were randomly generated with selected probability
using inbuilt computer functions for random number
generation. These simulated patients were randomised
using the minimisation algorithm with the specified
probability of optimal treatment allocation. The program
recorded whether simple randomisation had been ap-
plied (that is, when there was a tie between treatment
groups with the smallest number of allocations to date),
whether the random twist had been applied (see below
for definition), or if the allocation was deterministic



Table 1 Profile of the first 20 patients entered into a trial

Prognostic factors Group A Group B

Gender Male 3 2

Female 7 8

Age band, years <80 6 9

≥80 4 1

Type of fracture Proximal femur 0 2

Distal forearm 4 4

Clinical vertebral 0 0

Other 6 4

Time since fracture 0 to 3 months 5 7

>3 months 5 3

Results are presented as numbers of patients.
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(could have been predicted with certainty). The number
of times the allocation could have been determined with
certainty was calculated as the predictability (see below
for definition). The treatment imbalance within prognos-
tic factors and for the trial overall was calculated (see
below for definition of imbalance).

Definition of predictability
The number of times the allocation could have been de-
termined correctly was calculated as the predictability.
This assumes that the guesser knows that treatment al-
location is using the method of minimisation and knows
the exact algorithm for this, knows the characteristics
and treatment allocations of all patients randomised to
date, and is trying to correctly identify the next alloca-
tion. For example, using probability of allocation P = 1.0,
if there is one treatment arm with the smallest number
of participants then the allocation would be determinis-
tic and could be predicted. If there was more than one
treatment arm with the smallest number of participants
then simple randomisation would be used and the treat-
ment would not be predictable (although the user could
guess correctly approximately 50% of the time in the
two-treatment case).
This definition of predictability differs from the one

used by Hills [1] and Brown [11] where they used vari-
ous guessing strategies based on: a) the previous alloca-
tion only; b) the previous allocation to a particular
clinician, and c) the previous five allocations to a par-
ticular clinician. The method presented in this paper as-
sumes knowledge of all previous allocations for a given
clinician or centre, and could therefore represent the
case where the randomisation algorithm employs mini-
misation by one or more factors and stratification by
centre. Predictability is measured by knowledge of the
algorithm and the characteristics of the presenting pa-
tients and no guessing of allocation is included. The sce-
narios where variables have increased numbers of factor
levels can be extended to show the effect if centre is in-
corporated as a minimisation variable.
With P <1.0, if the allocation was to the treatment that

would have been assigned had P been equal to 1.0, then
the allocation was again deemed to have been predict-
able. If the allocation was to the alternative treatment,
the random twist (see below) had been applied and the
allocation was not predictable.

Definition of random twist
Random twist occurs when a probability of allocation
P <1.0 is used to determine treatment allocation in the
event of only one treatment group having the least
number of patients (in the case of a tie between two or
more treatment groups, simple randomisation is used).
Using P = 1.0 then the treatment allocation is defined
here to be predictable; but if P <1 is used and the allo-
cation does not go to the expected treatment (the de-
terministic allocation), the random twist is said to have
been applied and the allocation could not have been
correctly predicted.

Example of minimisation with varying values of P
Assume the first 20 patients entered into a hypothetical
trial have the profile shown in Table 1.
If the 21st patient has the factors female, age <80

years, proximal femur, 0 to 3 months:

Total in group A with the same characteristics 7 + 6 +
0 + 5 = 18
Total in group B with the same characteristics 8 + 9 +
2 + 7 = 27

With P = 1.0: the 21st patient is allocated to group A be-
cause 18 is <27. The allocation is said to be deterministic.
With P = 0.8: the 21st patient is allocated to group A

with probability 0.8. The 21st patient is allocated to
group B with probability 0.2. If the patient is allocated to
group A then the allocation is said to be deterministic. If
the patient is allocated to group B then the random twist
has been applied. The allocation is truly randomised and
could not have been predicted with certainty.

Definition of imbalance
For N ≥50, imbalance was defined as at least 10% chance
of at least 5% absolute imbalance between treatment
groups within any of the prognostic factors, or overall
treatment imbalance in the trial (that is, at least 100 of
the 1,000 simulations resulted in at least 5% absolute im-
balance across the groups in the percentage of people
with a certain prognostic factor).
For very small values of N (<50), a 5% absolute imbal-

ance represents very small differences in actual numbers,
so this value has to be amended for very small trials.
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When calculating imbalance, the values in Table 2 were
used.

Results
Observations in the two-treatment case
One prognostic variable
In the two-treatment case with one binary variable,
equal prevalence in each category and probability of as-
signment P = 1.0, the number of observed ties was 50%
and simple randomisation was used in these cases. The
percentage of deterministic allocations was 50% when
P = 1, dropping by 2.0 to 5.0% for 10 ≤ N ≤50; by 1.0
to 1.7% for 60 ≤ N ≤100; and by only 0.1 to 0.5% for N
>100 as the value of P was decreased to 0.7, and before
imbalance was observed. Therefore, for N >50 the
number of times the random twist was used, as P was
decreased, was almost totally offset by the drop in the
number of ties giving no overall decrease in the likeli-
hood of predictability with decreasing values of P, but
at a potential cost in terms of treatment imbalance for
N <90. In these cases, treatment imbalance both within
prognostic variables and between treatment arms was
evident for P = 0.7. For N ≥90, good balance was
achieved with P-values dropping to 0.7 but there was
no significant benefit in the decrease in predictability.
When the prevalence in the single binary variable was

unequal the observations for the decrease in predictabil-
ity with changing probability of assignment (P) were
similar to those for a binary variable with equal preva-
lence but there was more likelihood of imbalance within
prognostic variables at P = 0.8 for N <80 and for imbal-
ance at P = 0.7 for N up to 100. Overall balance across
treatment arms was no different, with unequal preva-
lence with both scenarios showing imbalance at P = 0.7
for N <90; P = 0.6 for N = 90 or 100, and at P = 0.5 for
N ≥200.
In the two-treatment case with one three-category

variable the number of ties and predictions with chan-
ging probability of assignment was almost the same as
with a binary variable (for N = 100 the number of ties
was 1% higher and the number of predictions was 1%
lower). However, there was a greater chance of imbal-
ance being observed with decreasing values of P, espe-
cially for smaller trials. Imbalance at both the variable
Table 2 Cutoff for imbalance in small trials

Size of trial (number of participants) Cutoff for imbalance

10 40% (7:3)

20 20% (12:8)

30 10% (17:13)

40 10% (22:18)

≥50 5% (27:23)

Cutoff is given in % (numbers in each of the 2 groups in a 2-treatment trial).
and treatment level was consistently shown for N <90 at
P = 0.8 and for N ≤100 at P = 0.7.
For simulations with one four-category variable the

observations for the decrease in predictability with chan-
ging probability of assignment (P) was almost the same
as with a binary variable. Within-variable imbalance was
evident for N up to 100 and P = 0.8, and there was a
greater chance of overall treatment imbalance for N up
to 50 with P = 0.9 and for N up to 100 with P = 0.8.
So, for the simulations with one prognostic variable

we conclude that increasing the number of categories
within the variable (or selecting categories within the
variables that result in unequal distribution of patients
within these categories) increase the likelihood of treat-
ment imbalance within categories and between treat-
ment arms overall. However these factors do not
significantly affect the predictability of allocation with a
given probability of allocation value (P).

Two prognostic variables
With two binary variables, both with equal prevalence
and probability of allocation P = 1.0, the number of ob-
served ties was approximately 28% and simple random-
isation was used in these cases. The percentage of
deterministic allocations was 72% when P = 1.0, drop-
ping to around 60% when P = 0.7, before imbalance was
starting to be observed. Therefore, in this case (unlike
the case of only one prognostic factor), there was a
benefit of a 12% drop in the number of predictions as
the level of P was reduced from 1.0 to 0.7. However for
N = 100 and P = 0.7 there was imbalance at the level of
the prognostic variables, so for N ≤100 a value of P
higher than 0.7 would be recommended. For N <90
there was imbalance observed between treatment arms
at P = 0.7.
With two binary variables of unequal prevalence the

number of ties and predictions was almost the same as
two variables with equal prevalence. However, different
prevalence within prognostic factors again had an effect
on imbalance. For N = 100, there was observed imbal-
ance within prognostic variables when P = 0.8, which
again demonstrated the effect of prevalence on imbal-
ance. Therefore, although there was a gain in terms of
the number of deterministic allocations as the probability
of allocation P was decreased, this came at the expense of
treatment balance across prognostic variables. As above,
overall treatment balance was only compromised at
P = 0.7 for N <90.
In the two-treatment case with two three-category var-

iables with equal prevalence and P = 1.0, the number of
observed ties was 30% and simple randomisation was
used in these cases. The percentage of deterministic allo-
cations was 70% when P = 1.0, dropping to 60% when
P = 0.7. This was almost the same as with two binary
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variables but there was greater likelihood of imbalance be-
ing observed with P <1.0 for small trials. Within-variable
imbalance was observed with P = 0.9 for N = 100 and
overall treatment imbalance at P = 0.8 for N <100.
For two variables, one binary and one with three cat-

egories, both with equal prevalence, for N = 100 there was
imbalance within variables at P = 0.8 but not at P = 0.9
(similar to the simulation with one three-category vari-
able). For two variables, both with four categories, for
N = 100 there was imbalance observed within variables
at P = 0.9 and between treatment arms at P = 0.7. For
N = 200 there was imbalance within variables at P = 0.7.

Three prognostic variables
In the two-treatment case with three binary prognostic
variables with equal prevalence and P = 1.0, the number
of observed ties was around 20% and simple randomisa-
tion was used in these cases. The percentage of deter-
ministic allocations was approximately 80% when P = 1,
dropping to around 63% when P = 0.7, when imbalance
was starting to be observed. Therefore, in this case there
was a 17% drop in the number of predictions as the level
of P is reduced from 1.0 to 0.7. However, when N = 100,
there was a potential for imbalance within the variables
at P = 0.7 and across treatment arms at P = 0.7 for N up
to 80.
For three binary prognostic variables with different

prevalence there was observed imbalance within variables
for N up to 100 at P = 0.8 and for N = 200 at P = 0.7.
Again, there was imbalance across treatment arms at
P = 0.7 for N up to 80.

Four prognostic variables
In the two-treatment case with four binary variables all
with equal prevalence and P = 1.0, the number of ob-
served ties was approximately 15% and simple random-
isation was used in these cases. The percentage of
deterministic allocations was around 85% when P = 1.0,
dropping to around 65% when P = 0.7, when imbalance
was observed. Therefore, in this case, there was a 20%
drop in the number of predictions as the level of P was
reduced from 1.0 to 0.7. However, there was a potential
for imbalance when N = 100 and P = 0.8; and at N = 200
with P = 0.7. Again, there was imbalance across treatment
arms at P = 0.7 for N up to 80.
For four binary prognostic variables with different

prevalence there was observed imbalance within variables
for N up to 100 at P = 0.9 and for N = 200 at P = 0.7.
Again, there was imbalance across treatment arms at
P = 0.7 for N up to 80.

Summary of two-treatment case
The size of the trial, number of prognostic variables,
number of categories within these and the prevalence of
the categories in the study population all affected the
point at which imbalance began to be observed with de-
creasing values of P. The number of prognostic variables
determined the frequencies of ties and deterministic al-
locations but the likelihood of imbalance was dependent
also on the number of categories within these variables
and the prevalence of these characteristics within the
study population. The higher the number of categories
in the prognostic variables and the more uneven the dis-
tribution of the characteristics in the study population
the greater was the chance of observing imbalance with
probability of allocation P <1.0.
With two treatments and one prognostic variable,

there was very little decrease in predictability as prob-
ability of allocation P was decreased, typically <1%. As
the P-value was decreased, the number of random twists
increased but very often this increase was reflected more
in a decrease in the number of simple randomisations
taking place (when treatment groups are equal) rather
than in a decrease in the number of possible predictions.
In this case there appeared to be little advantage to be
gained from using a P -value less than 1.0.
With two variables predictability can be reduced by 10

to 12% for N >100 when P = 0.7 to 0.8, but some scenar-
ios require P = 0.9 or P = 1.0 to avoid imbalance
(Table 3). With three variables predictability can be re-
duced by up to 17% and with four variables up to 20%,
but again some scenarios require P = 0.9 or P = 1.0 to
avoid imbalance (Table 3).

Observations in the three-treatment case
One prognostic variable
In the three-treatment case, with one binary variable
and equal prevalence in each category, and probability of
allocation P = 1.0, the number of observed ties was 67%
and simple randomisation was used in these cases. The
percentage of deterministic allocations was 33% when
P = 1.0, dropping only by 0.5 to 1% for N ≥100 as the
value of P was decreased to 0.7 and before imbalance
began to be observed. Therefore, as in the two-
treatment case with one binary variable, the number of
times the random twist was used is almost totally off-
set by the drop in the number of ties, giving no overall
decrease in the likelihood of predictability with de-
creasing values of P, but at a potential cost in terms of
treatment imbalance. For N = 100, treatment imbalance
within prognostic variables was evident for P = 0.7. For
N >100 good balance was achieved with P -values
dropping to 0.7 but there was no significant benefit in
the decrease in predictability.
When the prevalence in the single binary variable was

unequal the observations for the decrease in predictabil-
ity with changing probability of assignment (P) were
again negligible but there was more likelihood of



Table 3 Summary of observations from the two-treatment case

Predictability
at P = 1.0, %

Na Recommended
P-value

Predictability at this
P-value, %

Reduction in
predictability, %

P-value at which
imbalance occurs

One variable

Two categories 50.0 <90 0.8b 45.0 to 48.8 1.2 to 5.0 0.7

90 to <200 0.7b 49.0 1.0 0.6

≥200 0.7b 49.5 to 49.9 <1.0 0.5

Two categories - unequal
prevalence

< 80 0.9b 45.0 to 48.8 1.4 to 5.0 0.8

80 to <200 0.8b 49.0 <1.0 0.7

≥200 0.7b 49.0 to 49.9 <1.0 0.5

Three categories <90 0.9b 45.0 to 48.8 1.2 to 5.0 0.8

90 to <200 0.8b 49.0 1.0 to 1.1 0.7

200 and
<300

0.7b 49.0 1.0 0.6

≥300 0.7b 49.3 to 49.6 <1.0 0.5

Four categories ≤100 0.9b 40.0 to 49.0 1.0 to 5.0 0.8

200 and
<400

0.7b 49.0 to 49.3 0.7 to 1.0 0.6

≥400 0.7b 49.5 to 49.6 <1.0 0.5

Two variables

Both with 2 categories 72.0 100 0.8 63.0 9.0 0.7

200 0.7 60.0 12.0 0.6

≥300 0.7 60.0 12.0 0.5

Both with 2 categories -
unequal prevalence

<100 1.0 - - 0.9

100 0.9 68.0 4.0 0.8

200 0.7 60.0 12.0 0.6

≥300 0.7 60.0 12.0 0.5

One with 2 categories, one
with 3 categories

100 0.9 68.0 4.0 0.8

200 to 300 0.7 60.0 12.0 0.6

≥400 0.7 60.0 12.0 0.5

Both with 3 categories ≤100 1.0 - - 0.9

200 to 300 0.7 60.0 12.0 0.6

≥400 0.7 60.0 12.0 0.5

Both with 4 categories 70.0 ≤100 1.0 - - 0.9

200 0.8 64.0 6.0 0.7

300 to 400 0.7 60.0 10.0 0.6

500 0.7 60.0 10.0 0.5

Three variables

All with 2 categories - equal
prevalence

80.0 100 0.8 68.0 12.0 0.7

200 to 300 0.7 63.0 17.0 0.6

≥400 0.7 63.0 17.0 0.5

All with 2 categories - unequal
prevalence

100 0.9 74.0 6.0 0.8

200 0.8 69.0 11.0 0.7

300 0.7 63.0 17.0 0.6

McPherson et al. Trials 2013, 14:86 Page 6 of 12
http://www.trialsjournal.com/content/14/1/86



Table 3 Summary of observations from the two-treatment case (Continued)

≥400 0.7 63.0 17.0 0.5

Four variables

All with 2 categories- equal
prevalence

85.0 100 0.9 78.0 7.0 0.8

200 0.8 72.0 13.0 0.7

300 to 400 0.7 65.0 20.0 0.6

≥500 0.7 65.0 20.0 0.5

All with 2 categories- unequal
prevalence

100 1.0 - - 0.9

200 0.8 72.0 13.0 0.7

300 to 400 0.7 65.0 20.0 0.6

≥500 0.7 65.0 20.0 0.5
aThe categories of N are dependent upon the point at which imbalance is observed (the value of probability of assignment P). bFor one prognostic variable the
reduction in predictability is so small as the probability of assignment P is reduced that the recommended P-value is 1.0.
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imbalance within prognostic variables at P = 0.8 for
N up to 200. Overall balance across treatment arms was
no different with unequal prevalence with both scenarios
showing imbalance at P = 0.6 for N = 100 and no treat-
ment imbalance for N >100.
In the three-treatment case with one three-category

variable the number of ties and predictions with chan-
ging probability of assignment was almost the same as
with a binary variable (for N = 100 the number of ties
was 1% higher and the number of predictions was 1%
lower). However, there was a greater chance of observing
imbalance with decreasing values of P, especially for
smaller trials of up to N = 100. Imbalance at the variable
level was shown for N = 100 at P = 0.9 and between
treatment arms at P = 0.7. For N >100 good balance was
achieved with P-values down to 0.6 but there was no sig-
nificant benefit in terms of reduction in predictability as
the P-value was decreased.
For simulations with one four-category variable the

observations for the decrease in predictability with chan-
ging probability of assignment (P) was again almost the
same as with a binary variable. Within variable imbal-
ance was evident at N = 100 and P = 1.0 at the 5% level
but not the 10% level and there was a greater chance of
overall treatment imbalance for N = 100 with P = 0.7.
For N = 200 there was a significant likelihood of within
variable imbalance at P = 0.8 but good balance between
treatment arms was achieved with P -values down to 0.6.
So, for the simulations with one prognostic variable

we conclude that increasing the number of categories
within the variable (or selecting categories within the
variables that result in unequal distribution of patients
within these categories) increased the likelihood of treat-
ment imbalance within categories and between treat-
ment arms overall. However these factors did not
significantly affect the predictability of allocation with a
given probability value (P). Also, reducing the value of
P associated with treatment allocation did not reduce
this level of predictability.

Two prognostic variables
With two binary variables both with equal prevalence
and P = 1.0, the number of observed ties was approxi-
mately 44% and simple randomisation was used in these
cases. The percentage of deterministic allocations was
56% when P = 1.0, dropping to around 48% when P = 0.7,
before imbalance was starting to be observed. Therefore,
in this case (unlike the case of only one prognostic factor),
there was evidence of a benefit of an 8% drop in the num-
ber of predictions as the level of P was reduced from 1.0
to 0.7. However for N = 100 and P = 0.8 there was imbal-
ance at the level of the prognostic variables so for N ≤100
a value of P higher than 0.8 would be recommended. Im-
balance between treatment arms was not reached until
P = 0.6 for N = 100, P = 0.5 for N = 200 and not at all
for N >200.
With two binary variables of unequal prevalence the

number of ties and predictions was almost the same as
two variables with equal prevalence. However, different
prevalence within prognostic factors again had an effect
on imbalance. For N = 100, there was a potential for im-
balance within prognostic variables when P = 1.0, which
again demonstrated the effect of prevalence on imbal-
ance. Therefore, although there was a gain in terms of a
decrease in the number of deterministic allocations as
the probability of allocation P was decreased, this came
at the expense of treatment balance across prognostic
variables. As above, overall treatment balance was only
compromised at P = 0. 6 for N = 100.

Three prognostic variables
In the three-treatment case with three binary prognostic
variables with equal prevalence and P = 1.0, the number of
observed ties was around 33% and simple randomisation
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was used in these cases. The percentage of deterministic al-
locations was approximately 67% when P = 1.0, dropping
to around 55% when P = 0.7, when imbalance was ob-
served. Therefore, in this case there was a 12% drop in the
number of predictions as the level of P was reduced from
1.0 to 0.7. However, when N = 100, there was a potential
for imbalance within the variables at P = 0.9 and imbalance
was not observed across treatment arms until P = 0.6. For
three binary prognostic variables with different prevalence
the likelihood of imbalance both within variable and across
treatment arms was not significantly different from above.

Four prognostic variables
In the three-treatment case with four binary variables all
with equal prevalence and P = 1.0, the number of ob-
served ties was approximately 26% and simple random-
isation was used in these cases. The percentage of
deterministic allocations was around 74% when P = 1.0,
dropping to around 57% when P = 0.7, when imbalance
began to be observed. Therefore, in this case, there was
a 17% drop in the number of predictions as the level of
P is reduced from 1.0 to 0.7. However, there was a po-
tential for imbalance when N = 100 and P = 1.0; and at
N = 200 with P = 0.7. Again, there was no imbalance
across treatment arms until P = 0.6.

Summary of three-treatment case
With three treatments and one prognostic variable, there
was very little decrease in predictability as P is de-
creased, typically <1%. As the P -value was decreased,
the number of random twists increased but very often
this increase was reflected more in a decrease in the
number of simple randomisations taking place (when
treatment groups are equal) rather than in a decrease in
the number of possible predictions. In this case there
was little advantage to be gained from using a P -value
less than 1.0.
With two variables predictability could be reduced by

approximately 8% for N >100 when P = 0.7, but some
scenarios required P = 0.9 or P = 1.0 to avoid imbalance
(Table 4). With three variables predictability could be re-
duced by up to 12% and with four variables up to 17%,
but again some scenarios required P = 0.9 or P = 1.0 to
avoid imbalance (Table 4).

Observations in the four-treatment case
One prognostic variable
In the four-treatment case with one binary variable and
equal prevalence in each category and probability of al-
location P = 1.0, the number of observed ties was ap-
proximately 76% and simple randomisation was used in
these cases. The percentage of deterministic allocations
was 24% when P = 1.0, and did not decrease at all for
N ≥100 as the value of P was decreased to 0.6, and
before imbalance was observed. Therefore, as in the
two- and three-treatment cases with one binary variable,
the number of times the random twist was used was al-
most totally offset by the drop in the number of ties, giv-
ing no overall decrease in the likelihood of predictability
with decreasing values of P, but at a potential cost in
terms of treatment imbalance. For N ≥100, treatment
imbalance within prognostic variables was evident for
P -values dropping to 0.6 but there was no significant
benefit in the decrease in predictability.

Two prognostic variables
With two binary variables, both with equal prevalence and
P = 1.0, the number of observed ties was approximately
55% and simple randomisation was used in these cases.
The percentage of deterministic allocations was 45% when
P = 1.0, dropping to around 41% when P = 0.7, before im-
balance was observed for N >100. Therefore, in this case
(unlike the case of only one prognostic factor), there was a
benefit of a 4% drop in the number of predictions as
the level of P was reduced from 1.0 to 0.7. However
for N = 100 and P = 0.8 there was imbalance at the
level of the prognostic variables, so for N ≤100 a value
of P higher than 0.8 would be recommended. Imbal-
ance between treatment arms was not reached until P = 0.6
for N = 100 and not at all for N ≥200.

Three prognostic variables
In the three-treatment case with three binary prognostic
variables with equal prevalence and P = 1.0, the number
of observed ties was around 42% and simple randomisa-
tion was used in these cases. The percentage of determin-
istic allocations was approximately 58% when P = 1.0,
dropping to around 49% for N >100 when P = 0.7, when
imbalance was observed. Therefore, in this case there was
a 9% drop in the number of predictions as the level of
P was reduced from 1.0 to 0.7. However, when N = 100,
there was a potential for imbalance within the variables
even at P = 1.0 and imbalance was not reached across
treatment arms until P = 0.6.

Four prognostic variables
In the four-treatment case with four binary variables all
with equal prevalence and P = 1.0, the number of ob-
served ties was approximately 33% and simple random-
isation was used in these cases. The percentage of
deterministic allocations was around 67% when P = 1.0,
dropping to around 53% for N >100 and P = 0.7, when
imbalance was observed. Therefore, in this case, there
was a 14% drop in the number of predictions as the level
of P was reduced from 1.0 to 0.7. However, there was a
potential for imbalance when N = 100 and P = 1.0, and
at N = 200 with P = 0.7. Again, there was no imbalance
evident across treatment arms until P = 0.6 (Table 5).



Table 4 Summary of observations from the three-treatment case

Predictability
at P = 1.0, %

Na Recommended
P-value

Predictability at
this P-value, %

Reduction in
predictability, %

P-value at which
imbalance occurs

One variable

Two categories 33.0 100 0.8b 32.0 1.0 0.7

200 to 300 0.7 b 33.0 0 0.5

≥400 0.7 b 33.0 0 -

Two categories - unequal
prevalence

100 1.0 33.0 0 1.0

200 0.8 b 33.0 0 0.7

300 0.7 b 33.0 0 0.5

≥400 0.7 b 33.0 0 -

Three categories 100 1.0 32.0 0 0.9

200 0.7 b 32.5 <1.0 0.6

300 0.7 b 33.0 <1.0 0.5

≥400 0.7 b 33.0 <1.0 -

Four categories 100 1.0 32.0 0 0.9

200 0.9 b 32.5 <1.0 0.8

300 0.7 b 32.7 <1.0 0.6

≥400 0.7 b 32.5 <1.0 0.5

Two variables

Both with 2 categories 56.0 100 0.9 54.0 2.0 0.8

200 0.7 48.0 8.0 0.6

300 0.7 48.0 8.0 0.5

≥400 0.7 48.0 8.0 -

Both with 2 categories -
unequal prevalence

100 1.0 56.0 0 1.0

200 0.9 54.0 2.0 0.8

300 0.7 49.0 7.0 0.6

≥400 0.7 48.0 8.0 0.5

Three variables

All with 2 categories - equal
prevalence

67.0 100 1.0 67.0 0 0.9

200 to 300 0.7 55.0 12.0 0.6

≥400 0.7 56.0 11.0 -

All with 2 categories -
unequal prevalence

100 1.0 67.0 0 0.9

200 to 300 0.7 55.0 12.0 0.6

≥400 0.7 55.0 12.0 0.5

Four variables

All with 2 categories - equal
prevalence

74.0 100 1.0 74.0 0 1.0

200 0.8 64.0 10.0 0.7

300 0.7 57.0 17.0 0.6

≥400 0.7 58.0 16.0 0.5
aThe categories of N are dependent upon the point at which imbalance is observed (the value of probability of assignment P). bFor one prognostic variable the
reduction in predictability is so small as the probability of assignment P is reduced that the recommended P-value is 1.0.
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Table 5 Summary of observations from the four-treatment case

Predictability
at P = 1.0, %

Na Recommended
P-value

Predictability at
this P-value, %

Reduction in
predictability, %

P-value at which
imbalance occurs

One variable

Two categories (equal
prevalence)

24 to 25 100 0.7b 24 0 0.6

≥200 0.7 b 25 0 -

Two variables

Both with 2 categories
(equal prevalence)

45 100 0.9 44 1 0.8

200 0.7 41 4 0.6

≥300 0.7 41 4 -

Three variables

All with 2 categories
(equal prevalence)

58 100 1.0 58 0 1.0

200 0.7 49 9 0.6

300 0.7 49 9 0.5

≥400 0.7 49 9 -

Four variables

All with 2 categories
(equal prevalence)

67 100 1.0 67 0 1.0

200 0.8 59 8 0.7

300 0.7 53 14 0.5

≥400 0.7 53 14 -
aThe categories of N are dependent upon the point at which imbalance is observed (the value of probability of assignment P). bFor one prognostic variable the
reduction in predictability is so small as the probability of assignment P is reduced that the recommended P-value is 1.0.
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Table 6 summarises the maximum benefit in terms of
decreasing predictability for different treatment and vari-
able combinations. For one prognostic variable there
was no great benefit in the drop in predictability values
as probability of allocation (P) was decreased regardless
of the number of treatments or the number of prognos-
tic variables but significant benefits could be achieved
when more prognostic variables were incorporated into
the algorithm.

Discussion
A major purported concern with constrained methods of
randomisation is that they may increase the predictability
of the next treatment allocation and this could lead to se-
lection bias. Chalmers et al. [12] reviewed 145 papers pub-
lished between 1946 and 1981 and found imbalance in at
least one prognostic variable in 14.0% of blinded random-
isation studies, 26.7% of unblinded studies and 58.1% of
non-randomised studies. They attributed the imbalance to
Table 6 Maximum decrease in predictability for different trea

One variable Two varia

Two treatments <1% 4 to 12%

Three treatments <1% 2 to 8%

Four treatments <1% Maximum
bias in treatment and suggested that this was possibly due
to investigators being able to predict the next treatment.
However, imbalances may occur by chance, without inves-
tigator bias. For example, in 2002 the American Academy
of Emergency Medicine commissioned an independent
panel to reanalyse the data from a 1995 trial (the NINDS
trial published in the New England Journal of Medicine)
on the basis of imbalance in patient characteristics at
baseline, which they felt may have invalidated the whole
trial [13]. After detailed analysis, the committee concluded
that the results were indeed valid. Nevertheless, imbal-
ances can lead to questions about the credibility of results.
It is unclear how often imbalances occur in large late-

phase trials but empirical evidence from three multi-
centre studies has shown how using simple randomisation
could result in serious baseline imbalance at crucial ana-
lyses points within small, medium and large trials [14].
Some trialists believe that although restricted randomisa-
tion may improve precision and reduce bias in small trials,
tment and variable combinations

bles Three variables Four variables

6 to 17% 7 to 20%

11 to 12% 10 to 17%

4% Maximum 9% 8 to 14%
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it would be safer to address any imbalance with statistical
corrections [15]. However, others maintain that ‘statistical
efficiency is of no comfort to someone whose trial is ser-
iously imbalanced and may be suspected of providing a
biased estimate of the treatment effect’ [16]. This view-
point is also reinforced by CPMP [4] who state that in the
case of ‘very strong baseline imbalance, no adjustment
may be sufficiently convincing to restore the results.’ In
2005, Senn outlined three misunderstandings about ran-
domisation - ‘randomisation does not guarantee balance,
balanced covariates may not be ignored and the possible
distribution of unmeasured covariates in a validly
randomised trial does not invalidate the probability state-
ments about the effect of the treatment’ [17]. This paper
has concentrated, therefore, on the ability of the method
of minimisation to balance for known prognostic variables
and how best to achieve this without compromising allo-
cation predictability. Of course, this is only applicable to
studies where the treatment allocations are not blinded.
Taves maintained that if the study cannot be double-blind
then some randomisation should be added to the mini-
misation and suggested that the issue of whether random-
isation should always be added to minimisation to prevent
selection bias in trials that cannot be double-blinded, is
due for re-evaluation [18].
The International Conference on Harmonisation (ICH)

E9 guideline [19] states that although unrestricted ran-
domisation is an acceptable approach, dynamic allocation
procedures may help to achieve balance across a number
of factors. However, they indicate that deterministic dy-
namic procedures should be avoided and an appropriate
element of randomisation should be incorporated for each
treatment allocation. A deterministic procedure would al-
locate to the treatment group with the lowest totals with
certainty (that is, P = 1), and so the allocation could be
guessed if the characteristics of all previously randomised
patients and their treatment allocations were known. The
CPMP [4] regards dynamic allocation as highly controver-
sial, even if deterministic schemes are avoided. They,
therefore, advise avoidance of such methods and if they
are used they should be justified both clinically and
statistically.
Prediction rates increase if the randomisation algo-

rithm incorporates stratification by centre (since this
produces a row in the minimisation table for each centre
or a list per centre for blocked randomisation). Predic-
tion rates decrease if centre is used as a minimisation
factor since each centre does not know the characteris-
tics or treatment allocation of participants from the
other centres.
The results presented in this paper demonstrate that

in general for smaller trials, a larger probability of alloca-
tion value, P, is needed to keep treatment and variable
groups balanced. For larger trials, P <0.8 can be used
while still maintaining balance but the benefits for de-
creasing predictability is variable. If interim analysis is
planned for a trial of more than two treatments it would
be preferable to wait until at least 100 patients had been
recruited in order to compare the groups without any
complicated statistical methods as the potential for im-
balance is high.
For one prognostic variable there was no great benefit

in the drop in predictability values as P was decreased
regardless of the number of treatments or the number of
prognostic variables. For two treatments and one prog-
nostic variable simple randomisation is used 50% of the
time. Therefore, the random twist can only potentially
be applied to the other 50% of randomisations. Even
with a lower probability of allocation to the optimal
treatment (P) this results in very few cases in which the
random twist will be applied for small trials.
So, there is no benefit in employing a complicated al-

gorithm to try and reduce predictability when there is
only one prognostic variable incorporated into the mini-
misation algorithm. The recommendation here would be
to either use random permuted blocked randomisation
or, if using minimisation, use a probability of allocation
P = 1 and incorporate some other method to reduce
predictability, such as a) concealing the prognostic vari-
ables and/or categories within these from the recruit-
ment personnel; b) including collection of a variable that
is not used for minimisation at the time of randomisa-
tion, or c) incorporating centre as a minimisation vari-
able. However, significant reduction in the level of
predictability can be achieved when there is more than
one prognostic variable with the appropriate choice of P
(as seen in Table 6).
Generally speaking, overall treatment balance is rela-

tively unaffected by reducing the probability P but
within-variable balance can be affected by any P -value
less than 1. This effect is magnified by higher numbers
of prognostic variables, the number of categories within
them and the prevalence of these categories within the
study population.

Conclusions
Trialists have continued to debate the use of minimisa-
tion for treatment allocation in clinical trials [3,16-18]
and many still advocate its use. The reasons they give
for this are mainly because of resource and organisa-
tional issues at a centre level, and to provide baseline
balance. Some continue to be concerned about the pre-
dictability of the method but recognise that it may be
possible to use the simple case with probability of alloca-
tion P = 1 and use other techniques to control this.
Methods that can be used to limit predictability include
not giving the exact details of the minimisation algo-
rithm in the protocol (recommended by ICH [19]),
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adding in other factors to produce noise, alternating be-
tween randomisation and minimisation, or incorporating
centre as a minimisation variable.
The simulations performed for this paper looked

closely at the effect of varying the probability of treat-
ment allocation P as a method to reduce the predictabil-
ity of minimisation, and the effect of this on balance
within prognostic variables and treatment groups. In
general, for smaller trials, the probability of treatment al-
location to the treatment group with fewer numbers re-
quires a larger value P in order to keep treatment and
variable groups balanced. For larger trials probability
values between P = 0.5 and P = 0.8 can be used while
still maintaining balance. For one prognostic variable
there is no significant benefit in terms of predictability
in reducing the value of P. However, for more than one
prognostic variable, significant reduction in the level of
predictability can be achieved with the appropriate
choice of value of P for the given trial design.
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