
1 
 

Current Biology, Volume 23 

Supplemental Information 

The Demographic Transition Influences 

Variance in Fitness and Selection 

on Height and BMI in Rural Gambia 
Alexandre Courtiol, Ian J. Rickard, Virpi Lummaa, Andrew M. Prentice, Anthony J.C. Fulford, and 
Stephen C. Stearns 
 
 
Supplemental Experimental Procedures 
 

Demographic data: From 1950 until present, residents of three villages 
(Keneba, Kantong Kunda, Manduar) in the West Kiang district of The Gambia have 
been continuously treated and studied by the UK Medical Research Council. This 
arrangement was initiated by Sir Ian McGregor, when the population of the largest 
village, Keneba, numbered approximately 700 inhabitants. Local residents, who are 
mostly of Mandinka ethnicity, have traditionally subsisted largely on crops of rice, 
sorghum and millet, with a single cash crop of groundnuts. Over the study period, 
there has been incremental improvement in the provision of the healthcare to the 
local population, most notably in the form of increased antenatal and natal care since 
the 1970s. Overall under-five mortality rate declined from more than 40% prior to 
1970 to less than 10% in the present day [3]. Fertility has also historically been high, 
with women giving birth to a total of around seven children over their lifetime on 
average [19]. The society is highly polygynous, and women spend virtually all of their 
adult lives married, beginning reproduction at about 18 years of age. 

 
Our analysis was conducted at the ‘person-year’ level, which means that each 

line of data corresponded not to an individual person, but to a year in which a unique 
individual was present in the population, a ‘person-year’. To derive such a data set, 
one must have a reliable longitudinal information resource that monitors individuals 
repeatedly over the study period. This has been made possible in West Kiang 
through a combination of approximately-annual health surveys (1950 to 1980), clinic 
attendance (1974 to present) and annual demographic surveys (2004 to present). 
Resident individuals were given unique ID numbers that identified them as residing 
in one of the villages. All research projects conducted at MRC Keneba (including 
secondary data analysis) are approved by the Gambian Government/MRC Ethics 
Committee. We restricted our analysis to individuals identified as being from Keneba 
and Manduar, and considered only years from 1956 onwards, because data 
collected before this point in these two villages may not be reliable, and the reliable 
data series for Kanton Kunda, the smallest village, would be much shorter [18]. Data 
from both villages were pooled since their inhabitants can be considered as being 
part of a single human population. We used only female individuals, for between the 
end of the annual health surveys (1980) and the start of the demographic surveys 
(2004), the focus of data collection on adults was on women and children, via clinics. 
From the entire complement of data, we derived a ‘last contact year’. Individuals 
were scored as being ‘present’ in every year beginning with their birth year until their 
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year of death or last contact year. We removed a small number of individuals (N=5) 
with inconsistency between the years of birth, death and last contact; they likely had 
incorrect recorded ages of maternity. Another 791 individuals were not included in 
the present analysis because of the lack of information about their anthropometrics. 
In sum, we assembled data on 51,909 person-years representing 2818 individuals. 
 

Fitness measures: We estimated fitness at the person-year level and defined 
total fitness Wtotal as the genetic contribution that each individual present in year n 
made to the population in year n + 1. Thus, in a given year individuals scored 1 for 
surviving, or zero for dying, plus 1 for each offspring produced. As individuals of 
different ages are pooled, correlations across ages in survival/fertility are implicitly 
considered on a cross-sectional basis. From our total fitness estimate, we 
distinguished two fitness components: i) pre-adult fitness Wchild that represents the 
component of Wtotal that is driven by mortality before 15y and that we computed as a 
binary (0 for death before 15y, 1 otherwise); and ii) adult fitness Wfertility that 
represents the component of Wtotal that is driven by fertility from 16y onward and that 
we computed as the number of offspring produced by a given individual in a given 
year. From total fitness and its components, we derived the corresponding relative 
measures, wtotal, wchild and wfertility, by dividing each value by their associated mean 
over all person-years of the year in question. 
 

Variance in relative annual fitness: From the relative fitness-related 
measures, wtotal, wchild and wfertility, we derived three corresponding variances: i) 
variance in relative total fitness, var(wtotal); ii) variance in relative child survival, 
var(wchild); iii) variance in relative fertility, var(wfertility). Note that for any relative 
fitness-related measure w, var(w) could also be computed from the absolute fitness 
values W as var(W)/(mean(W)^2). Those two formulations are indeed 
mathematically identical but we present both for clarification since studies on 
opportunity for selection using aggregated data tend to use the latter formulation. 
 

Height and BMI centiles: During the annual surveys (1950-1980) and clinic 
visits (1975- present), measurements of weight/height have been recorded. The 
ages at which they have been taken varies with respect to time, but most individuals 
have been weighed several times, usually from birth onwards (Figure S2). However, 
since data collection only began in 1950, limiting the analysis to individuals who had 
been weighed at a particular age would bias the data series with respect to time (e.g. 
if birth measurements were used we would only be able to include individuals born 
from 1950 onwards) or toward individuals who survived until a particular age (e.g. if 
we used measurements taken in adulthood). 

 
To deal with these problems and to maximize information use, we devised a 

technique that allowed all individuals to be included in analysis, provided they were 
measured for the metric in question at least once. For each metric, we first produced 
a population-level LOWESS curve describing all measures as a function of the age 
at which an individual was measured, i.e. growth charts (Figure S2). Using these 
curves, we then transformed measures into residuals corresponding to a relative 
measure of a given trait that is independent from growth-induced variations. We then 
assigned each residual data point a rank relative to the 100 other data points that 
were closest in terms of age at measurement. To avoid cohort effects, we restricted 
this ranking procedure so that the date of birth of the individuals to whom the other 
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data points corresponded were a maximum of five years before or after that of the 
date of birth of the focal individual. Therefore, each measure was associated with a 
rank from 1 to 100, i.e. a percentile, representing the height/BMI of an individual that 
could be considered as independent from age and cohort effects. As a result, each 
individual is represented by a pool of ranks, one for each measure on record. From 
this pool, the median value was chosen and used in analysis. This allowed us to 
obtain one metric for height and one for BMI for all individuals, irrespective of how 
many times they have been measured. In addition, computing the median reduces 
the potential influence of misreported measurements. 

 
Considering the median value of several percentiles that have been computed 

at different ages for each individual implies the assumption that the growth 
trajectories of individuals are parallel. This assumption seems reasonable given our 
data, for the ratio of the variation in percentile scores within/between individuals is 
much smaller than expected in the absence of parallel growth curve (using 
individuals with at least three measurements and with at least 20 years between the 
first and last measurements: N=812; observed variance ratio for height = 0.25, 
observed variance ratio for BMI = 0.72; variance ratio when measurements for both 
traits are permuted among the same individuals = 17). We also verified that median 
ranks did not systematically vary according to cohort or age, and thus that values 
from individuals born in different time periods or measured at different ages were 
comparable with one another. Height and BMI were only very weakly correlated with 
one another (ρ = 0.09 from our calculated scores), and therefore can be considered 
to largely capture independent aspects of individual anthropometry. In contrast, 
height and weight were strongly correlated (ρ = 0.63), and would therefore not have 
been appropriate for separate analysis. 

 
Standardized selection gradients: We investigated phenotypic selection on 

height and BMI for our three fitness-related measures using the traditional framework 
introduced by Lande and Arnold [27]. For each fitness-related measure, we 
estimated the standardized linear selection gradients β as derived from the following 
linear regression models:  

,௬ݓ  ൌ 1  ௬score_heightߚ  BMI௬score_BMIߚ   ,௬ߝ
 
In this regression model, ݓ,௬ is the relative fitness-related measure considered for a 
given person ݅ in a given year ݕ, and score_height and score_BMI are the centile 
scores for height and BMI of a given individual ݅, converted into z-scores through 
standardization within each year. The intercept is constrained to 1 because fitness-
related measures are mean-centered within each year. The term ߝ,௬ corresponds to 
the residual relative fitness, the component of fitness which is not captured by our 
covariates. The framework of Lande and Arnold [27] has been specifically developed 
to model the selection gradient on each trait despite the correlation between traits 
(as long as this correlation is not too high). Consequently, our estimates of selection 
on BMI are not confounded by the selection acting on height but capture the effect of 
weight on fitness, controlling for height. 
 
 Trend analyses of selection gradients: Each selection gradient estimate is 
associated with a certain level of uncertainty (measurement and sampling error) and 
neglecting this uncertainty has been shown to compromise analysis of trends in 
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selection over time [28]. In particular, because the level of uncertainty varies 
between years (Figure 1), biases could be particularly large in an analysis that 
ignored this uncertainty. Therefore, we decided to test the relationship between 
selection gradients and time using gradients estimated within each of 500 datasets 
simulated by bootstrapping individuals from the original data, rather than using direct 
estimates of selection gradients. From each simulated dataset, selection gradients 
were correlated with time for both height and BMI using the Spearman non-
parametric correlation test, after rescaling both fitness-related measures and 
anthropometric scores within each year [27]. P-values were computed by comparing 
the average of the 500 correlation coefficients to the distribution of this statistic under 
the null hypothesis. This latter was approximated by averaging the 500 
corresponding correlation coefficients produced by bootstraps for each of 500 
datasets for which years were randomly shuffled (so 250,000 correlations were 
performed for each gradient/fitness-measure combination). As observed estimates 
and the null hypothesis both considered the non-independence between data points 
from different years involving the same individuals, the test is not biased by this non-
independence. To analyze the robustness of our test, we checked that the 
distribution of p-values under the null hypothesis was uniform. 
 
 Furthermore, the uncertainty in selection gradient estimates also potentially 
depends on the uncertainty in variance in relative fitness estimates. Therefore, an 
artifactual relationship can emerge when trying to predict one from the other, which 
is nonetheless required to disentangle the effect of changes in variances in relative 
fitness on selection, from other changes happening through time. Consequently, we 
also estimated the relationship between selection gradients and variance in relative 
total fitness and its components within each of 500 datasets simulated by 
bootstrapping individuals from the original data, and we present r-squared values 
averaged over all simulations (Table 2). 
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Figure S1. Related to the Results and Discussion 
 

 
Temporal change in vital rates across a demographic transition in rural Gambia. 
Solid red line represents the mean annual survival rate for children up to the age of 
15 years. The dotted red line represents the mean annual survival rate for adults 
(over 15 years). For both, survival rates are indicated by the y-axis on the left of the 
plot. Mean annual fertility rate is represented by the black line; corresponding values 
are indicated by the y-axis on the right of the plot.
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Figure S2. Related to the Supplemental Experimental Procedures 
 

 
Growth charts for (A) height and (B) BMI in the rural Gambian sample. 
Anthropometric measures are displayed as a function of the age at which an 
individual was measured and are symbolised by small dots. Curves correspond to 
population-level Lowess smoothing used to compute the centile scores used in 
selection analyses. Fits were produced using the function loess() in R, with a span 
parameter set at 0.15 for both traits. 
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