Cohen, CR; Lingappa, JR; Baeten, JM; Ngayo, MO; Spiegel, CA; Hong, T; Donnell, D; Celum, C; Kapiga, S; Delany, S; Bukusi, EA (2012) Bacterial vaginosis associated with increased risk of female-to-male HIV-1 transmission: a prospective cohort analysis among African couples. PLoS medicine, 9 (6). e1001251. ISSN 1549-1277 DOI: 10.1371/journal.pmed.1001251

Downloaded from: http://researchonline.lshtm.ac.uk/1082628/

DOI: 10.1371/journal.pmed.1001251

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/
Bacterial Vaginosis Associated with Increased Risk of Female-to-Male HIV-1 Transmission: A Prospective Cohort Analysis among African Couples

Craig R. Cohen1,2*, Jairam R. Lingappa3,4,5, Jared M. Baeten3,4,6, Musa O. Ngayo7, Carol A. Spiegel8, Ting Hong3, Deborah Donnell9, Connie Celum3,4,6, Saidi Kapiga10, Sinead Delany11, Elizabeth A. Bukusi1,3,5,7

1 Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, United States of America, 2 Women’s Health & Empowerment Center of Expertise, University of California Global Health Institute, San Francisco, United States of America, 3 Department of Global Health, University of Washington, Seattle, Washington, United States of America, 4 Department of Medicine, University of Washington, Seattle, Washington, United States of America, 5 Department of Pediatrics University of Washington, University of Washington, Seattle, Washington, United States of America, 6 Department of Epidemiology, University of Washington, Seattle, Washington, United States of America, 7 Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya, 8 Department of Pathology and Laboratory Medicine, University of Washington, Madison, United States of America, 9 Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America, 10 Department of Epidemiology & Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom, 11 Wits Reproductive Health & HIV Institute, University of Witwatersrand, Johannesburg, South Africa

Abstract

Background: Bacterial vaginosis (BV), a disruption of the normal vaginal flora, has been associated with a 60% increased risk of HIV-1 acquisition in women and higher concentration of HIV-1 RNA in the genital tract of HIV-1–infected women. However, whether BV, which is present in up to half of African HIV-1–infected women, is associated with an increase in HIV-1 transmission to male partners has not been assessed in previous studies.

Methods and Findings: We assessed the association between BV on female-to-male HIV-1 transmission risk in a prospective study of 2,236 HIV-1–seropositive women and their HIV-1 uninfected male partners from seven African countries from a randomized placebo-controlled trial that enrolled heterosexual African adults who were seropositive for both HIV-1 and herpes simplex virus (HSV)-2, and their HIV-1–seronegative partners. Participants were followed for up to 24 months; every three months, vaginal swabs were obtained from female partners for Gram stain and male partners were tested for HIV-1. BV and normal vaginal flora were defined as a Nugent score of 7–10 and 0–3, respectively. To reduce misclassification, HIV-1 sequence analysis of viruses from seroconverters and their partners was performed to determine linkage of HIV-1 transmissions. Overall, 50 incident HIV-1 infections occurred in men in which the HIV-1–infected female partner had an evaluable vaginal Gram stain. HIV-1 incidence in men whose HIV-1–infected female partners had BV was 2.91 versus 0.76 per 100 person-years in men whose female partners had normal vaginal flora (hazard ratio 3.62, 95% CI 1.74–7.52). After controlling for sociodemographic factors, sexual behavior, male circumcision, sexually transmitted infections, pregnancy, and plasma HIV-1 RNA levels in female partners, BV was associated with a greater than 3-fold increased risk of female-to-male HIV-1 transmission (adjusted hazard ratio 3.17, 95% CI 1.37–7.33).

Conclusions: This study identified an association between BV and increased risk of HIV-1 transmission to male partners. Several limitations may affect the generalizability of our results including: all participants underwent couples HIV counseling and testing and enrolled in an HIV-1 prevention trial, and index participants had a baseline CD4 count ≥250 cells/mm3 and were HSV-2 seropositive. Given the high prevalence of BV and the association of BV with increased risk of both female HIV-1 acquisition and transmission found in our study, if this association proves to be causal, BV could be responsible for a substantial proportion of new HIV-1 infections in Africa. Normalization of vaginal flora in HIV-1–infected women could mitigate female-to-male HIV-1 transmission.

Trial Registration: ClinicalTrials.com NCT00194519

* E-mail: ccohen@globalhealth.ucsf.edu

Academic Editor: Heather Watts, NICHD, United States of America

Received November 6, 2011; Accepted May 9, 2012; Published June 26, 2012

Copyright: © 2012 Cohen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported through research grants from the Bill & Melinda Gates Foundation (grant 26469) and the US National Institutes of Health (grant R01 AI-083034). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Abbreviations: ART, antiretroviral therapy; BV, bacterial vaginosis; HSV, herpes simplex virus; IQR, interquartile range; STI, sexually transmitted infection.

* E-mail: ccohen@globalhealth.ucsf.edu
Introduction

Worldwide, an estimated 33.3 million people are infected with HIV-1, 60% in sub-Saharan Africa, where women account for the majority of those infected [1]. Antiretroviral therapy (ART), through reducing HIV-1 plasma [2] and genital HIV-1 RNA concentrations [3], has been associated with >90% reduction in HIV-1 transmission in observational studies [4] and a recent trial of earlier ART initiation [5]. However, only about half of HIV-1–infected adults qualify for ART initiation per current country guidelines, and only 37% of those qualifying for ART in Africa received treatment [1]. Thus, new HIV-1 prevention strategies that will reduce HIV-1 risk for those not on ART remain an urgent need.

Bacterial vaginosis (BV) is a common disorder characterized by changes in vaginal flora in which normally predominant Lactobacillus species are replaced by potential pathogens including Gardnerella vaginalis, genital Mycoplasma, and fastidious anaerobic bacteria [6,7]. For unknown reasons, BV is considerably more common among women in sub-Saharan Africa and other resource-poor countries than in developed countries, affecting up to 55% of women in some studies [8–10]. BV has been associated with a 60% increased risk of HIV-1 acquisition in women [11], and, among women with HIV-1, with higher HIV-1 concentrations in cervicovaginal fluids [12–14]. Bacteria associated with BV can induce viral replication and shedding in the genital tract [15,16], which may lead to increased HIV-1 infectiousness for women with BV [17,18]. However, to date, no study has examined whether BV increases the risk of female-to-male HIV-1 transmission. We hypothesized that HIV-1–infected women with BV have an increased risk of female-to-male HIV-1 transmission than women with normal vaginal flora. To answer this question, we prospectively studied a cohort of African heterosexual couples in which the female was HIV-1 seropositive and the male was HIV-1–uninfected who were enrolled in a randomized placebo-controlled trial of dually HIV-1 and herpes simplex virus (HSV) type 2–seropositive heterosexual African adults, and their HIV-1–seronegative partners.

Methods

Ethics Statement

The University of Washington Human Subjects Review Committee, University of California San Francisco Committee on Human Research, the Kenya Medical Research Institute (KEMRI) National Ethics Review Committee, and ethics review boards at each study site reviewed and approved the study protocol and consent documents.

Population and Procedures

We used data from a cohort of southern and East African HIV-1 serodiscordant heterosexual couples enrolled in a clinical trial (the Partners in Prevention HSV/HIV Transmission Study) evaluating HSV-2-suppressive therapy with acyclovir 400 mg bid provided to the HIV-1–infected partner to prevent HIV-1 transmission to their HIV-1–seronegative partners. As previously reported, acyclovir decreased plasma HIV-1 levels in the HIV-1–infected partners, but did not reduce HIV-1 transmission risk [19]. The present report is a secondary analysis of data from the subset of 2,236 couples from this prospective cohort in which the HIV-1–infected partner was female [19].

HIV-1–infected partners were required to be seropositive for HSV-2, with a CD4 count ≥250 cells/mm³, and without history of AIDS-defining conditions; couples were followed for up to 24 mo. HIV-1–infected women were seen monthly and underwent a pelvic examination at enrollment and every 3 mo to collect a vaginal swab for Gram stain for evaluation of BV. Enrollment vaginal swabs were collected on all participants. Quarterly vaginal swab collection was performed as part of a protocol modification implemented at each site once approved by the site institutional review board; vaginal Gram stain results were not obtained prior to site-specific approval of the protocol modification.

Plasma for HIV-1 RNA quantification was collected at baseline, 3-, 6-, and 12-mo visits, and at study exit; CD4 counts were performed at baseline and every 6 mo. HIV-1–infected partners who met national guidelines for initiation of ART during follow-up were referred to local HIV-1 care clinics, and those who became pregnant were referred to antenatal clinics for prevention of mother-to-child transmission services. HIV-1–infected women underwent a speculum pelvic examination at a visit 6 mo after enrollment, during which an endocervical Dacron swab for HIV-1 RNA quantification was obtained; swabs were not collected at a defined time in the menstrual cycle, although women usually deferred sampling during menstruation. HIV-1–uninfected men were seen quarterly for HIV-1 serologic testing.

Participants received comprehensive HIV-1 prevention including HIV-1 risk-reduction counseling (both individual and as a couple), quarterly sexually transmitted infection (STI) symptom assessment with syndromic treatment of STIs, and provision of free condoms. All participants provided written informed consent.

Laboratory Methods for Diagnosis of BV

Vaginal swabs collected at enrollment and quarterly follow-up visits were rolled onto glass slides, air dried, and methanol fixed at the study site and subsequently Gram stained at the Center for Microbiology Research Laboratory at KEMRI. Vaginal flora was evaluated using Nugent's criteria [20]: normal vaginal flora, intermediate flora, and BV categories were defined by Nugent's scores of 0–3, 4–6, and 7–10, respectively. Each slide was double-read by two technologists. A digital image of approximately every tenth slide was sent electronically to one of the investigators (CAS) for external quality control (EQC). Our target for concordant results between the laboratory and EQC was ≥90%. A discordant result was defined as a difference in the Nugent's score ≥1, which also caused a change in flora category (e.g., a score difference of 3 to 4, which changes the diagnosis from normal vaginal flora to intermediate flora). External quality control performed on 1,722 (8.7%) of 19,882 slides (the total number of slides included HIV-1–positive women included in this study, and HIV-1–negative women evaluated for a separate analysis) demonstrated an overall concordance of 92.2% (κ = 0.84); the concordance surpassed our predefined value of ≥90% based on expected inter-observer agreement in other studies [20,21].

Other Laboratory Procedures

HIV-1 serologic testing was by dual rapid HIV-1 antibody tests performed locally, with positive results confirmed by HIV-1 Western blot at the University of Washington [19]. For couples in which the initially HIV-1–uninfected male partner seroconverted to HIV-1 seropositive, analysis of HIV-1 env and gag gene sequences from both members of the couple were used to evaluate transmission linkage within the partnership [22]. Serologic testing for HSV-2 and nucleic acid amplification testing for STIs (specifically Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis) was done at study enrollment [23]. CD4 quantification was performed using standard flow cytometry. All laboratory
BV Increases Female-to-Male HIV-1 Transmission

procedures followed Good Laboratory Practices, and laboratories were enrolled in External Quality Assessment programs.

HIV-1 RNA was quantified from plasma at baseline, at months 3, 6, and 12, and at study exit; and from the 6-mo endocervical swab specimen (collected at the same visit as the 6-mo plasma specimen) with the COBAS Amplicor/COBAS TaqMan real-time HIV-1 RNA assay version 1.0 (Roche Diagnostics). Endocervical swabs were eluted in 1,000 µl of GUSCN lysis buffer, eluted for 15 min, vortexed briefly, and microfuged for 5 s at 14,000g to pellet debris before removal of fluid for testing. A final dilution step with 10× PBS was used to achieve sufficient volume for the COBAS AP/TM assay, with a lower limit of quantification of 240 copies (per milliliter for blood plasma and per swab for endocervical samples). Plasma and genital HIV-1 RNA concentrations were log_{10}-transformed to approximate normality. Samples below the limit of quantification were assigned values at half that limit.

Statistical Analysis

The primary outcome was female-to-male HIV-1 transmission, defined as those HIV-1 seroconversion events that were genetically linked within the partnership. Male partners who acquired HIV-1 from an outside partner contributed follow-up time up to HIV-1 seroconversion and were censored thereafter. Follow-up for men was also censored after their HIV-infected partner initiated ART.

The primary exposure was vaginal flora status, as measured at the quarterly study visit prior to each HIV-1 test, in order to represent vaginal flora status during the time of potential HIV-1 exposure to the male partner. If the result at the visit 3 mo prior to HIV-1 testing was expected but missing, the result 6 mo prior was used; if the results at both the 3 and 6 mo prior to HIV-1 testing were expected but missing the period was excluded from analysis. We analyzed vaginal flora in three categories: BV (Nugent score ≥7) and intermediate flora (Nugent score 4–6), each compared with normal flora (Nugent score ≤3). We performed two sensitivity analyses to assess the robustness of our vaginal flora exposure: first, we analyzed vaginal flora at the visit concurrent with HIV-1 serologic testing, and second, we analyzed vaginal flora based on the most severe exposure (highest Nugent category) occurring at either the prior or current visit.

Association between vaginal flora and time-varying covariates was assessed using logistic regression for each of intermediate and BV compared to normal flora, with GEE methods to account for correlation between visits. HIV incidence rates and confidence intervals were computed using Poisson rates; absolute rate differences were calculated [24].

To assess the risk of HIV-infection we performed multivariable Cox proportional hazards analysis to adjust for potential confounding factors, including demographic, medical, and behavioral characteristics. Variables were selected a priori for inclusion based on previously published association with HIV transmission, and included: (1) characteristics from the time of study enrollment: age (of both partners), region (East versus southern Africa), HSV-2 status of the HIV-1 uninfected male partner, male partner circumcision status, trial randomization assignment (acyclovir versus placebo), and laboratory confirmed STIs at enrollment (i.e., N. gonorrhoeae, C. trachomatis, and T. vaginalis) of both partners; and (2) time-dependent variables, including: pregnancy, hormonal contraceptive use, plasma HIV-1 levels, and CD4 count in the female HIV-1–infected partner, genital ulcer disease in both partners, and sexual behavior during the month prior to each visit, as reported by the male HIV-1–uninfected partner (analyzed as any unprotected sexual intercourse with the study partner, any report of outside partners, and total number of sex acts with the study partner). Robust standard errors were used to account for multiple observations from each person in the time-dependent analyses. Differences in plasma and cervical viral load were assessed using linear regression methods, adjusted for repeated observations. Data were analyzed using SAS version 9.2 (SAS Institute Inc.).

Results

Study Population

A total of 2,236 couples were included in this analysis (Table 1). The median age of HIV-1–infected female partners was 30 y and the median age of HIV-1–uninfected male partners was 33 y. Most couples were married and cohabitating. Couples engaged in sex a median of four times per month, and 30.5% of couples reported sex that was unprotected by condom use during the month prior to enrollment. Among the HIV-1–infected female participants, the median CD4 count was 481 cells/mm³ (interquartile range [IQR] 354–663) and the median plasma HIV-1 RNA concentration was 3.95 log_{10} copies/ml (3.24–4.53).

Follow-up and HIV-1 Incidence

Median follow-up for the HIV–1–seropositive female and HIV–1–seronegative male partners was 20.8 (IQR 13.3–24.1) and 19.3 mo (IQR 13.5–24.0), respectively. Over 3,318 person-years of follow-up, 90 incident HIV-1 infections among men were identified, of which 57 (63.3%) were determined by viral sequencing to be genetically linked within the partnership, for an incidence of linked transmission of 1.72 cases per 100 person-years (95% CI 1.30–2.23). Seven HIV-1 infections occurred in men whose HIV–1–seropositive female partner had no vaginal flora result during the interval when HIV-1 seroconversion occurred. In four of these seven cases, the vaginal swab collection was not expected, while in the remaining three, the result was missing. Thus, 50 HIV–1 incident infections among men with virologically linked HIV–1 transmissions with their female HIV–1–infected partners for whom BV data were available were included in this analysis.

BV at Baseline and during Follow-up

Of 12,126 visits expected to have vaginal swabs collected during the study, 10,232 (84.4%) had vaginal Gram stain data available. At enrollment, 869 women (41.1%) had BV, 487 (23.0%) had intermediate flora, and 757 (35.8%) had normal vaginal flora. Across all quarterly follow-up visits, the median proportion of women with BV and intermediate vaginal flora was 34.9% (IQR 34.2%–36.3%) and 22.8% (IQR 22.0%–23.9%), respectively, while the median proportion of women with normal vaginal flora was 42.8% (IQR 40.1%–44.1%). Of the 2,221 women with at least one Gram stain result available from the prior 3-mo visit (our main exposure), 537 (15.2%), 113 (5.1%), and 340 (15.3%) had BV, intermediate vaginal flora and normal vaginal flora, respectively, throughout follow-up. An additional 1,151 (51.8%) women had at least a single episode of BV during follow-up.

During follow-up, HIV–1–infected women who had one or more intervals with BV were slightly younger than women who had normal vaginal flora and more likely to have an uncircumcised male partner (Table 2). While periods where unprotected sex was reported did not differ by vaginal flora, HIV–1–infected women with BV were more likely to report an outside sexual partner in the last 30 d than HIV–1–infected women with normal vaginal flora. Plasma HIV–1 RNA concentration was slightly elevated, and mean CD4 count was slightly lower in HIV–1–infected women with BV compared to normal flora, with GEE methods to account for correlation between visits. HIV incidence rates and confidence intervals were computed using Poisson rates; absolute rate differences were calculated [24].
infected women during intervals with BV in comparison to intervals with normal vaginal flora (Table 2).

Effect of BV on Incidence of Female-to-Male HIV Transmission

During the study, HIV-1 incidence was 2.91, 1.48, and 0.76 per 100 person-years in men whose female partner in the seroconversion interval had BV, intermediate vaginal flora, and normal vaginal flora, respectively (Table 3). In unadjusted analysis, BV was associated with a 3.62-fold increased risk (95% CI 1.74–7.52) and a 2.15 increased attributable rate (95% CI 1.04–3.25) per 100 person-years of female-to-male HIV-1 transmission in comparison to women with normal vaginal flora (Table 3). In multivariable analysis controlling for sociodemographic factors, sexual behavior, male circumcision, sexually transmitted infections, pregnancy, and plasma HIV-1 RNA in female partners, men whose HIV-1–infected female partners had BV 3 mo prior to identifying HIV-1 seroconversion had a 3.17-fold increased adjusted risk (95% CI 1.37–7.33) of female-to-male HIV-1 transmission. Intermediate flora in comparison to normal vaginal flora was not associated with an altered risk of female-to-male HIV-1 transmission (Table 4). The two sensitivity analyses looking at vaginal flora at the same visit as HIV-1 seroconversion detection and the highest category of vaginal flora between the prior and same visit as HIV-1 seroconversion detection were consistent with these results (Table 4). Lastly, we did not find evidence of an effect of male circumcision on the relationship between BV in the HIV-1–seropositive female partner and linked HIV-1 infections in men (unpublished data).

Effect of BV on Genital and Plasma HIV-1 RNA Concentration

The mean log_{10} concentration of HIV-1 RNA in genital secretions and plasma were slightly elevated in participants with intermediate vaginal flora (log_{10} difference: 0.21 and 0.16, respectively) and BV (log_{10} difference: 0.19 and 0.18, respectively) (Table 5). After controlling for plasma HIV-1 RNA concentration at the same 6-mo visit, the mean log_{10} concentration of HIV-1 RNA in genital secretions was no longer significantly associated with vaginal flora (Table 5).

Discussion

In this prospective study of more than 2,200 southern and East African HIV-1–seropositive women and their HIV-1–seronegative male partners with genetic linkage of HIV-1 transmission pairs, we found that BV was independently associated with a 3-fold increased risk of female-to-male HIV-1 transmission. The potential significance of this finding is substantial, given that 35%, 15%, and 52% of women in this study had BV at enrollment, throughout follow-up, and at least one interval of BV during the 2 y of follow-up, respectively. This proportion of HIV-1–seropositive women with BV is consistent with prior studies demonstrating a prevalence of BV ranging from 30%–55% among women in sub-Saharan Africa [8–10]. Thus, assuming that the association we report is causal, BV may account for a substantial population attributable risk percent for new HIV-1 infections in men in Africa.

Although genital HIV-1 RNA predicts female-to-male HIV-1 transmission independent of the HIV-1 RNA concentration in...
blood [25], we found only a modest (0.2 log10) increase in HIV-1 RNA in women with BV in comparison to those with normal vaginal flora. Thus, it is likely that increased genital HIV-1 RNA caused by BV only partially explains our results. Most cross-sectional and longitudinal studies have found that women with BV have higher concentrations of HIV-1 RNA in genital secretions in comparison to women with normal vaginal flora [12,13,26]. However, two prospective studies did not find differences in genital HIV-1 RNA concentration associated with BV [14,27]. Differences with previous studies that found an association between BV and genital HIV-1 shedding could be due to the proportion of women with BV who were symptomatic, with potentially higher levels of inflammation associated with symptomatic BV, and the short duration (i.e., 14 d) after BV treatment in which vaginal samples were collected in the longitudinal studies to measure genital HIV-1 RNA, which may have been too soon for decreased T-cell activation [18], proinflammatory cytokines [28], or reestablishment of lactobacilli predominant flora [29].

An additional hypothesis to explain our findings is that BV in a female partner may indirectly increase HIV-1 susceptibility in men. A growing body of evidence suggests that the female and male genital microbiota is shared between sexual partners

Table 2. Participant characteristics during quarterly follow-up intervals with BV and intermediate vaginal flora versus normal vaginal flora.

<table>
<thead>
<tr>
<th>Participant Characteristics</th>
<th>Follow-up Intervals for Analysis of HIV-1 Transmission from Women to Men* (n=2,236 HIV-1–seropositive Women), n (%) or Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV Intervals (n=4,025)</td>
<td>p-Value</td>
</tr>
<tr>
<td>BV Intervals (n=4,025)</td>
<td>p-Value</td>
</tr>
<tr>
<td>Normal Vaginal Flora Intervals (n=4,474)</td>
<td>p-Value</td>
</tr>
<tr>
<td>Demographic characteristics</td>
<td></td>
</tr>
<tr>
<td>Age of HIV-1–seronegative partner, years</td>
<td>35 (29–42)</td>
</tr>
<tr>
<td>Children within the partnership</td>
<td></td>
</tr>
<tr>
<td>Having at least one child within the partnership</td>
<td>2,405 (59.8%)</td>
</tr>
<tr>
<td>Sexual behavior, HIV-1 uninfected partner (past month)</td>
<td></td>
</tr>
<tr>
<td>Any unprotected sex with study partner</td>
<td>432 (10.7%)</td>
</tr>
<tr>
<td>Any sex with an outside partner</td>
<td>608 (15.1%)</td>
</tr>
<tr>
<td>Male circumcision</td>
<td>2,158 (53.6%)</td>
</tr>
<tr>
<td>Number of sex acts with study partner</td>
<td>3 (1–6)</td>
</tr>
<tr>
<td>Clinical characteristics</td>
<td></td>
</tr>
<tr>
<td>CD4 count (cells/mm3) in the HIV-1–infected partner</td>
<td>453 (329–624)</td>
</tr>
<tr>
<td>Plasma HIV-1 level (log10 copies/ml) in the HIV-1–infected partner</td>
<td>4.09 (3.27–4.69)</td>
</tr>
<tr>
<td>HSV-2 serostatus, male partner</td>
<td>2,438 (60.7%)</td>
</tr>
<tr>
<td>Genital ulcer disease, HIV-1–infected partner on exam</td>
<td>92 (2.6%)</td>
</tr>
<tr>
<td>Genital ulcer disease, HIV-1–seronegative partner</td>
<td>36 (0.9%)</td>
</tr>
<tr>
<td>Pregnant, female partner (current visit)</td>
<td>263 (6.8%)</td>
</tr>
</tbody>
</table>

*aComparisons between BV exposure groups are adjusted for correlation by multiple measures from the same participant using generalized estimating equations. The number of data points assessed for each cell is total number of visits with each covariate characteristic during study follow-up.
bComparison of BV intervals to normal vaginal flora interval.
cComparison of intermediate vaginal flora intervals to normal vaginal flora intervals.
doi:10.1371/journal.pmed.1001251.t002

Table 3. Incidence of HIV-1 transmission to men, by the vaginal flora category of their female HIV-1–infected partner.

<table>
<thead>
<tr>
<th>Female-to-Male HIV-1 Transmission in Relation to Vaginal Flora*</th>
<th>HIV-1 Cases</th>
<th>Person-Years of Follow-up</th>
<th>HIV-1 Incidence (per 100 Person-years) (95% CI)</th>
<th>Absolute Risk Difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All seroconversions</td>
<td>57</td>
<td>3,317.8</td>
<td>1.72 (1.30–2.23)</td>
<td>—</td>
</tr>
<tr>
<td>Seroconversions with missing BV status</td>
<td>7</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Seroconversions with BV status</td>
<td>50</td>
<td>2,924.1</td>
<td>1.71 (1.27–2.25)</td>
<td>—</td>
</tr>
<tr>
<td>Normal vaginal flora (Nugent score 0–3)</td>
<td>9</td>
<td>1,181.6</td>
<td>0.76 (0.35–1.45)</td>
<td>ref</td>
</tr>
<tr>
<td>Abnormal vaginal flora (Nugent score 4–10)</td>
<td>41</td>
<td>1,742.5</td>
<td>2.35 (1.69–3.19)</td>
<td>1.59 (0.63–2.56)</td>
</tr>
<tr>
<td>Intermediate vaginal flora (Nugent score 4–6)</td>
<td>10</td>
<td>676.4</td>
<td>1.48 (0.71–2.72)</td>
<td>0.72 (0.24 to 1.67)</td>
</tr>
<tr>
<td>BV (Nugent score 7–10)</td>
<td>31</td>
<td>1,066.1</td>
<td>2.91 (1.98–4.13)</td>
<td>2.15 (1.04–3.25)</td>
</tr>
</tbody>
</table>

*For the primary analytic approach, vaginal flora from the adjacent previous visit (usually 3 mo prior) was used. If this result was missing, the most recent vaginal flora result from the visit 6 mo prior was used; otherwise the result was considered missing.
doi:10.1371/journal.pmed.1001251.t003
Recent data from Uganda have demonstrated that male circumcision reduces the risk of BV in female partners and that bacterial flora associated with BV commonly colonize the penis including the distal urethra [30,31]. Anaerobic and other bacteria increased in male partners of women with BV may cause inflammation by activating Langerhans cells and CD4+ T-cells, thereby increasing target cells for HIV-1 and susceptibility to HIV-1 infection [32,33]. Interestingly, male circumcision did not affect or modify the relationship between BV and female-to-male HIV-1 transmission in our study. In comparison to pre-circumcision abundances of bacterial phylotypes, post-circumcision abundances of anaerobic bacteria decreased, while abundances of facultative anaerobic bacteria increased significantly in the Rakai study [31]. Potential mechanisms need investigation, including whether the male genital microbiota, in particular anaerobes, are associated with urethral and penile inflammation and activation of Langerhans cells and CD4+ T-cells, which could increase risk of HIV-1 infection in men.

Lower socioeconomic status has been associated with higher BV prevalence [8,34]. Previous studies have also implicated race, multiple sex partners, trichomoniasis, HIV-1 infection, intrauterine device use, vaginal douching, recent antibiotic use, and the absence of vaginal colonization by H2O2-producing lactobacilli as risk factors for BV [8,9,34–38]. Following treatment, BV clinically recurs in 20%–30% of women within 3 mo [39], and recurs in approximately 75% of women with symptomatic as well as asymptomatic BV within 2 mo of treatment [29]. One reason for the high prevalence of BV and its frequent recurrence may result from the transfer of potentially pathogenic bacteria between heterosexual partners through genital, and potentially orogenital contact [40,41].

The high prevalence and frequent recurrence of BV has led to the development of several new strategies including frequent presumptive antibiotic treatment [42], and use of probiotic lactobacilli as an adjuvant or an alternative to antimicrobial therapy [43–45]. Recent advances in understanding the microbiota associated with BV [6,7], including the ability of G. vaginalis to...
and to a lesser degree, *Atopobium vaginae* to form biofilms recalcitrant to antibiotic treatment [46,47], may eventually lead to therapies that maintain a lactobacillus-predominant flora in the vagina.

Our study has several strengths starting with its large and diverse population of HIV–1–serodiscordant couples recruited from across multiple sites in southern and East Africa. Furthermore, genetic linkage of female-to-male transmitted HIV–1 minimized misclassification in our analysis [22]. One limitation of our analysis is that we do not know the specific vaginal flora present at the time of HIV–1 infection since vaginal microbiota can fluctuate weekly [48]. To address this, we conducted two sensitivity analyses, the first evaluating vaginal Gram stain results at the same visit when HIV–1 seroconversion was first noted, and the second evaluating the severity of vaginal flora between that and the prior visit. Both evaluations confirmed the results of our primary analysis. The cohort was a highly selective population (e.g., all participants underwent couples HIV counseling and testing, enrolled in an HIV–1 prevention randomized clinical trial, and index participants had a CD4 count ≥250 cells/mm³ at enrollment), which could impact on the generalizability of our results. Furthermore, all HIV–1–infected partners were co-infected with HSV–2; however, HSV–2 seroprevalence is >80% among HIV–1–infected persons in sub-Saharan Africa [19] and thus is unlikely to limit the generalizability of our findings. In addition, the relatively small number of female-to-male HIV–1 transmissions (nine among women with normal vaginal flora versus 31 among women with BV) requires mention. Finally, residual or unmeasured confounding, which cannot be completely excluded, could affect the significance of our findings.

This study clearly demonstrates that BV is associated with an increased risk of female-to-male HIV–1 transmission. BV is a highly prevalent condition among HIV–1–infected women. The association of BV with increased infectiousness of HIV–1–infected women requires additional research to understand potential pathogenic mechanisms as well as the etiology, treatment, and prevention of BV. While a large community randomized controlled trial that provided presumptive treatment of STIs including metronidazole for BV failed to reduce HIV–1 incidence [49], ongoing studies are evaluating more frequent presumptive BV therapy [42], while others are studying naturally occurring and genetically enhanced probiotics to reduce recurrent BV [44,45,50,51]. A lactobacillus-predominant vaginal flora might not only reduce the risk of HIV–1 acquisition in women [9,11], but also HIV–1 transmission to male partners, and points to the potential benefits of using the human microbiota to prevent disease.

Acknowledgments

We gratefully acknowledge the contributions of the HIV–1–serodiscordant couples who participated in this study and the Director, KEMRI for permission to publish this manuscript. We thank the members of the Partners in Prevention HSV/HIV Transmission Study Team including: University of Washington Coordinating Center and Central Laboratories, Seattle: Anna Wald (protocol co-chair), Mary S. Campbell, Robert W. Coombs, Lawrence Corey, James P. Hughes, Amalia Magaret, M. Juliana McElrath, Rhoda Morrow, James I. Mullins

Study sites and site principal investigators:

Cape Town, South Africa (University of Cape Town): David Coetzee; Eldoret, Kenya (Moi University, Indiana University): Kenneth Fife, Edwin Were; Gaborone, Botswana (Botswana Harvard Partnership): Max Essex, Joseph Makhemena; Kampala, Uganda (Infectious Disease Institute, Makerere University): Elly Katafira, Allan Ronald; Kigali, Rwanda (Rwanda Zambia HIV Research Group, and Emory University): Susan Allen, Enyitiyo Karikire, Etiene Karita; Kisumu, Kenya (Medical Research Institute Research staff); Kitwe, Zambia (Zambia Zambia HIV Research Group, and Emory University): Susan Allen, William Kanweka; Lusaka, Zambia (Zambia Zambia HIV Research Group, and Emory University): Susan Allen, Bellington Vwalika; Moshie, Tanzania (Kilimanjaro Christian Medical College, Harvard University): Rachel Manongi; Nairobi, Kenya (University of Nairobi, University of Washington): Carey Farquhar, Grace John-Stewart, James Kiwire; Ndola, Zambia (Zambia Zambia HIV Research Group, and Emory University): Susan Allen, Muhiana Inambao; Orange Farm, South Africa (Wits Institute for Reproductive Health & HIV, University of the Witwatersrand); Helen Rees, Soweto, South Africa (Perinatal HIV Research Unit, University of the Witwatersrand): Guy de Bruyn, Glenda Gray, James McIntyre; Thika, Kenya (University of Nairobi, University of Washington): Nelly Rwamba Mugo

Author Contributions

Conceived and designed the experiments: CRC, JRL, JMB, CAS EAB. Performed the experiments: CRC, JRL, JMB, TH, DD, CAS. Analyzed the data: CRC, JRL, JMB, TH, DD. Wrote the first draft of the manuscript: CRC, JRL, JMB, TH, DD. Contributed to the writing of the manuscript: CRC, JRL, JMB, TH, DD, CC EAB, CAS, SK, SD. ICMJE criteria for authorship contribution: CRC, JRL, JMB, TH, DD. Wrote the first draft of the manuscript: CRC, JRL, JMB, TH, DD, CAS, SK, SD, MON. Performed the experiments: CRC, JRL, CAS, MON, EAB. Analyzed the data: CRC, JRL, JMB, TH, DD, CAS, SK, SD. Contributed reagents/materials/analysis tools: RRW, LC, JRL, JMB, TH, DD, CAS, SK, SD, MON. Obtained funding: CRC, JRL, JMB, TH, DD, CAS, SK, SD, MON. Conceived and designed the experiments: CRC, JRL, JMB, TH, DD, CAS, SK, SD, MON. Made critical revisions of the manuscript: CRC, JRL, JMB, TH, DD, CAS, SK, SD, MON. Administrative/technical/material support: CRC, JRL, JMB, TH, DD, CAS, SK, SD, MON. Study supervision: CRC, JRL, JMB, TH, DD, CAS, SK, SD, MON.

References

Bacterial vaginosis was 2.9 per 100 person-years (that is, 2.9
out of every 100 men became HIV-positive per year) whereas
the HIV incidence in men whose partners had a normal
vaginal flora was 0.76 per 100 person-years. After controlling
for factors that might affect the risk of HIV transmission such
as male circumcision and viral levels in female partner’s
blood, the researchers estimated that bacterial vaginosis was
associated with a 3.17-fold increased risk of female-to-male
HIV transmission in their study population.

What Do These Findings Mean? These findings suggest
that HIV-positive African women with bacterial vaginosis are
more than three times as likely to transmit HIV to their male
partners as those with a normal vaginal flora. It is possible
that some unknown characteristic of the men in this study
might have increased both their own risk of HIV infection
and their partner’s risk of bacterial vaginosis. Nevertheless,
because bacterial vaginosis is so common in Africa (half of
the women in this study had bacterial vaginosis at least once
during follow-up) and because this condition is associated
with both female HIV acquisition and transmission, these
findings suggest that bacterial vaginosis could be responsi-
ble for a substantial proportion of new HIV infections in
Africa. Normalization of vaginal flora in HIV-infected women
by frequent presumptive treatment with antimicrobials
(treatment with a curative dose of antibiotics without testing
for bacterial vaginosis) or possibly by treatment with
probiotics (live “good” bacteria) might, therefore, reduce
female-to-male HIV transmission in sub-Saharan Africa.

Additional Information. Please access these Web sites via
the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001251.

- Information is available from the US National Institute of
 Allergy and infectious diseases on all aspects of HIV
 infection and AIDS and on bacterial vaginosis
- The US Centers for Disease Control and Prevention has
 information on all aspects of HIV/AIDS, including specific
 information about HIV/AIDS and women; it also has
 information on bacterial vaginosis (in English and Spanish)
- NAM/aidsmap provides basic information about HIV/AIDS,
 and summaries of recent research findings on HIV care and
 treatment, and information on bacterial vaginosis and HIV
 transmission (in several languages)
- Information is available from Avert, an international AIDS
 nonprofit group on many aspects of HIV/AIDS, including
detailed information on HIV and AIDS prevention, on
women, HIV and AIDS and on HIV/AIDS in Africa (in English
and Spanish); personal stories of women living with HIV are
available; the website Healthtalkonline also provides per-
sonal stories about living with HIV
- More information about the Partners in Prevention HSV/
 HIV Transmission Study is available