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INTRODUCTION
            Many fetal size variables, for example head measurements, abdominal  measurements  and
femur length, increase over the course of gestation. Reference  intervals  (RIs)  and  centile  charts
provide a means of assessing these measurements, at  a  given  gestational  age  (GA)  or  across  a
range of GAs respectively, and are tools of great importance in clinical medicine.
            RIs (sometimes, misleadingly, called  ‘normal  ranges’)  represent  the  interval  between  a
pair of symmetrically placed extreme centiles (such as the 5th and 95th for  a  90%  interval)  of  a
size variable, denoted y, at a given GA. Centile charts plot the values of y corresponding to one  or
more RIs against the relevant GA over a range of GAs. In the field of fetal size,  values  which  lie
outside the RI are  regarded  as  extreme  and  may  indicate  the  presence  of  a  disorder  such  as
intrauterine growth  restriction1  or  macrosomia2.  More  informative,  however,  than  this  forced
dichotomy is the calculation of a  value’s  centile  position,  or  z-score,  relative  to  the  reference
population,  estimated  from  knowledge  of  the  distribution  of  y  at  a  given  GA.  For  a  given
observation, the proximity of the centile position to 0% or 100% (alternatively the magnitude  and
sign of the z-score) is then a measure of how extreme the observation is compared to the reference
data  at  that  GA.  A  centile  position  above  50%  (equivalently  a  positive  z-score)  signifies  a
measurement greater than average for that GA, and a centile position below 50% (or a negative  z-
score) one less than average.
            Whilst recent years have seen the publication of a variety of strategies for the  construction
of RIs, incorrect methods have still been used for fetal measurements of all kinds1. The  choice  of
suitable methodology in this field is especially  crucial  as  inaccurate  centiles  may  lead  to  false
conclusions regarding the development of the fetus, resulting in suboptimal clinical care.
             In  the  preceding  article  Anon  et  al3  construct  centile  charts  of  the   axial   cerebellar
hemisphere circumference (CHC)  and  area  (CHA)  through  gestation  using  one  such  method,
based  upon  regression  modelling  of  both  the  mean  and  the  standard  deviation  (SD)   across
gestational age (GA), as detailed by Altman and Chitty4 and Royston and Wright1.
            It is the aim of the present article to further examine the statistical approach used by  Anon
et al, whilst  taking  a  more  general  look  at  the  problem  of  constructing  GA-related  RIs  and
considering alternative approaches to this problem. Techniques for longitudinal data,  where  each
subject  contributes  repeated  observations,  as   opposed   to   cross-sectional   data,   where   they
contribute only one, require a different approach and are not considered here. Further  information
on this area can be found in, for example, Royston and Altman5 and Royston6.
            Whilst many of the techniques explored here could be, and indeed have been,  used  in  the
context of anthropometric measurements, the focus here is on applications in the field of fetal size.

THE GENERAL PROBLEM
            Prior to the statistical analysis, many RIs and charts for  fetal  size  are  already  flawed  by
weaknesses in study design. As with any study, the choice  of  an  appropriate  sample  is  of  great
importance. Whilst some published studies use routinely collected data, resulting in  the  inclusion
of multiple observations on some fetuses, Altman and Chitty4 note that these fetuses are  likely  to
be those with clinical indication, introducing bias to  the  sample.  They  advocate  collecting  data
specifically for the purpose of developing the RI, with each fetus being included only once.
            Within this framework it is important to have as unselected a sample  as  possible  because
reference data should relate to ‘normal’ fetuses. Altman and  Chitty4  suggest  it  as  reasonable  to
exclude fetuses subsequently found  to  have  a  congenital  abnormality,  though  recommend  the
inclusion of neonatal deaths and fetuses large or small for dates at birth where this is not the  case.



Maternal conditions which could affect fetal growth are also deemed reasonable exclusion criteria.
            Whilst imprecise estimates of the RI will be obtained when the sample size  of  the  dataset
is too small1 , it is not easy to  accurately  specify  appropriate  sample  sizes.  In  particular,  when
interest is focused on the extreme centiles, as is often the case, several hundred  observations  may
be necessary to obtain estimates at an appropriate level of precision.
            There are a variety of available statistical approaches for the calculation  of  RIs,  the  most
important of which are to be reviewed presently. The method needs to produce  reference  centiles
which  change  smoothly  with  GA  and  provide  a  good  fit  to  the  data.  Whilst   clearly   these
requirements are essential, it is also preferable, for the sake of general usability  and  accessibility,
to maintain as simple a statistical model as possible.  Accordingly,  the  choice  of  approach  must
strike a balance between these conditions.
            A further desirable feature are tools to calculate the relevant centile positions and  z-scores
for  any  further  measurements,  which  again  should  be  as  user-friendly  as  possible   in   their
application. Not only is the calculation of z-scores useful  on  an  observation-specific  level,  they
have also been shown to  be  instrumental  in  the  assessment  of  chart  comparison7  and  quality
control8.

MEAN AND SD MODEL
            The statistical approach followed by Anon et al3, here  referred  to  as  the  ‘mean  and  SD
model’, is one which has been found to be sufficiently general to cope with a wide  range  of  fetal
measurements available from ultrasound scanning1.
            Generally,  under  the  assumption  that  at  each  GA  the  measurement  of  interest  has  a
Gaussian (or normal) distribution with mean  and  SD  that  vary  smoothly  with  GA,  the  centile
curve at a given GA may be calculated by

centileGA = meanGA + K x SDGA                                                   (1)

where meanGA and SDGA are, respectively, the mean and  SD  at  the  required  GA,  and  K  is  the
desired normal equivalent deviate (NED). The NED takes a value corresponding to the  proportion
of the standard normal distribution (with mean 0 and SD 1) lying to the left of it. For example, the
50th centile (with a proportion of 0.5 of the standard normal distribution  to  the  left  of  it)  has  a
NED of 0, whilst the determination of a 90% reference range (i.e. the 5th and 95th centile  curves)
would require K=±1.645.
            The ‘mean and SD model’ approach aims to find functions that adequately  represent  how
the mean and SD change with GA, allowing any desired centile curve to be  readily  calculated  by
appropriate choice of K.

            Firstly the mean is modelled by fitting a polynomial curve  to  the  raw  data  by  means  of
least squares regression  analysis.  Royston  and  Wright1  recommend  the  initial  use  of  a  cubic
polynomial (a +  bt  +  ct2  +  dt3,  where,  for  simplicity,  GA  is  represented  by  t).  If  the  cubic
coefficient, d, is not significantly different from zero (approximately if d is less than twice its SD),
a quadratic polynomial (a + bt +  ct2)  should  be  fitted  with  the  same  assessment  made  of  the
quadratic coefficient, c. The  process  should  be  repeated  until  no  further  removal  of  terms  is
possible. Whilst  quadratic  or  cubic  curves  will  often  give  good  fit  to  the  data,  Altman  and
Chitty4 suggest the linear-cubic model (a + bt + dt3) as a good alternative for fetal  size  data.  It  is
also advocated that the choice of  curve  be  based  not  only  on  statistical  significance,  with  the



quality of fit to the data and aesthetic appearance, especially at the extremes of GA, also  being  of
importance.
            Anon et al3 found  a  linear  model  (a  +  bt)  to  be  sufficient  for  the  CHC  curve  and  a
quadratic polynomial to be suitable for CHA.

            Once a suitable mean model has been decided upon, attention can turn to the variability  in
the data. Residuals from the fitted mean model (observed value minus predicted value)  should  be
calculated and plotted against GA to show if and how variability changes with GA4.
            Previously, modelling of the variability was not often considered, even though in the  field
of fetal size SD almost always changes with GA9. Whilst other methods have been proposed10, the
approach most frequently used is that of Altman9. It follows from the assumption that the  variable
under consideration is normally distributed at all  GAs  that  the  residuals  from  the  mean  model
should also be normally distributed. This in turn means that the absolute residuals  (residuals  with
the  sign  removed)  have  a  half  normal  distribution.  As  the  mean  of  a  half  standard  normal
distribution is ?(2/?), the mean of the absolute residuals multiplied by ?(?/2) is an  estimate  of  the
SD of the residuals. Hence if the SD is not reasonably constant over GA, predicted values  from  a
regression of the absolute residuals on age multiplied by ?(?/2) will give age-specific estimates  of
the SD of the residuals, and hence of y.
            An alternative formulation for Altman’s approach favoured by Royston  and  Wright1,  and
employed in this instance by Anon et al3,  is  to  produce  ‘scaled  absolute  residuals’  (SARs)  by
multiplying the absolute residuals by ?(?/2). The SARs are then  regressed  on  GA,  the  predicted
values from which again estimate the SD of the residuals.
            Under either formulation, if the absolute residuals, be  they  scaled  or  unscaled,  show  no
trend with GA, the SD is estimated as the SD of the  unscaled  original  residuals  (observed  value
minus  predicted  value).  If  there  is  a  trend,  polynomial  regression  is  needed  to  estimate   an
appropriate curve in the same way as for the  mean.  Altman9  suggests  it  unlikely  a  curve  more
complex than quadratic is required for a satisfactory fit to the SD. Superimposing ±1.645 x SD  on
the residual plot is useful to see how well the SD had been modelled as approximately 90% of  the
observed residuals should fall within these limits.
            Anon et al3 found the CHC SARs to be suitably represented by a  linear  relationship  with
GA, whilst those for CHA required a cubic polynomial.
            As  the  regression  analysis  to  estimate  the  mean  should  really  take  into  account  any
increase in SD with GA, at this juncture the mean model can be refit  using  the  reciprocal  of  the
square of the estimated SD as weights.  However,  Altman  and  Chitty4  report  that  the  effect  of
refitting is almost always rather small.

            A useful tool in assessing model fit are z-scores (also known as SD scores), defined as

z = (observed y value - meanGA) / (SDGA)                                           (2)

where meanGA and SDGA are, respectively, the mean and SD given  by  the  model  for  the  GA  at
which the observation is  made.  Hence  z-scores  represent  the  observed  values  expressed  on  a
standard normal scale (with a mean of 0 and SD of 1), with the mean and SD adjusted for GA.
            Altman and Chitty4 recommend three methods of evaluation for the goodness of fit,  all  of
which Anon et al3 appear to have conducted. These methods will be illustrated using data on  fetal
biparietal diameter (BPD). A subset of 850 of the 19,647 fetuses analysed by Salomon et al11 were



fit with a ‘mean and SD model’ in the standard manner,  as  outlined  above,  resulting  in  a  cubic
mean model and a linear SD model.
            Firstly, a plot of the z-scores against GA should be checked for existence  of  any  patterns.
The z-scores should be randomly scattered about zero at  all  GAs,  with  any  deviation  from  this
indicating that the mean curve may require modification. This is shown in Fig. 1 for  the  example
dataset, with the BPD z-scores appearing to adhere to this stipulation.
            Secondly, a normal plot (essentially a scatterplot of the actual data  values  plotted  against
the ‘ideal’ values from a normal distribution) can be used to check that the  z-scores  have  a  close
to normal distribution. This is signified by  a  roughly  straight  line  but  can  be  confirmed  more
formally using the Shapiro-Wilk  W  test  or  Shapiro-Francia  W’  test.  Fig.  2  shows  that  in  the
example dataset the BPD z-scores do have a close to normal distribution and  this  is  corroborated
by both the Shapiro-Wilk W and Shapiro-Francia W’ tests having P-values of 0.998.
            Finally, the appropriate proportion of observations should fall between  and  outside  fitted
centiles, for example approximately 90% of z-scores should lie between z = -1.645 and z =  1.645.
Deviation from this may imply that a higher order polynomial curve for the SD is needed. For  the
example dataset, lines corresponding to a BPD z-score of ±1.645 have been plotted  on  Fig.  1.  A
brief  examination  suggests  that  approximately  90%  of  the  data  lie  between  the  lines,   with
calculations confirming that 4.9% of the data lie  below  z  =  -1.645  and  4.2%  above  z  =  1.645
(compared to an expected 5% for each). It  is  unlikely  that  the  values  are  both  exactly  5%,  so
figures such as these indicate an adequate level of fit.
            This aspect of the data can be further examined in a plot such as in Fig. 3,  a  histogram  of
the  z-scores  with  an  overlaid  standard  normal  distribution.  If  the  model  fits  well   then   the
histogram should match up with the standard normal distribution meaning  that  the  expected  and
observed centiles lie at the same values. Given the sample size of the dataset, the histogram for the
BPD data shows a close to standard normal distribution, indicating an adequate model fit.
            Once a satisfactory model has been determined, the centile curves for the desired reference
interval may be calculated by substituting the expressions for the mean and SD into  equation  (1).
The z-score for any new individual may be calculated using equation (2) and  its  centile  obtained
using the inverse normal distribution. Finally, the calculated centiles should  be  superimposed  on
the scatter diagram of observed values against GA to ensure a suitable fit.

            Beside the study currently under consideration, this  approach  to  the  construction  of  RIs
has been widely used in the field of fetal measurements. Altman  illustrated  his  absolute  residual
approach by developing reference centiles of fetal foot length9. Chitty et al constructed new charts
for fetal head circumference, biparietal  diameter  and  other  head  dimensions12,  fetal  abdominal
circumference and area13, and fetal femur length14. Royston  and  Wright  estimated  RIs  for  fetal
head circumference (using the same data as Chitty et al12), hemoglobin concentration  and  kidney
volume1.  Salomon  et  al  constructed  new  reference  charts  and  equations  for  fetal   biparietal
diameter, head circumference, abdominal circumference and femur length11.

Extensions to the mean and SD model
            Several extensions to the basic ‘mean and SD model’ approach described above have been
posited  as   ways   to   improve   the   performance   of   the   method.   The   use   of   logarithmic
transformations and fractional polynomials are described below.

Mean and SD model with logarithmic transformation



            Many size measurements tend  to  follow  a  skewed  normal  distribution  at  a  given  GA,
usually a positive skew where the right tail of the distribution is longer  than  the  left.  Whilst  this
clearly conflicts with the assumption that at each  GA  the  data  come  from  a  population  with  a
normal distribution, it can often be overcome by the application of  a  logarithmic  transformation.
This same solution will also increase the ease with which a model can be fitted  if  the  SD  of  the
original measurements increase rapidly with GA.
            Royston10 suggests initially attempting to fit the mean model to the original measurements.
If the residuals from this model show a positive skew then a logarithmic transformation should  be
performed on the original values, y, and the model refitted on log(y).
            If residuals from the refitted model are once again skewed, it is then  recommended  to  try
using a modified logarithmic transformation of the form log(y + C), where C is positive if the new
residuals are negatively skewed, and negative otherwise. A polynomial model of the  same  degree
as the optimal model for log(y) is  then  repeatedly  fitted,  with  the  value  of  C  varied  until  the
highest (i.e. least significant) P value for the normality test  of  the  residuals  is  reached.  Often  a
value of C will be found that makes the distribution of residuals satisfactorily normal.
            Once acceptable residuals from the mean model are obtained, the rest of the ‘mean and SD
model’ fitting procedure is continued as before. However,  it  is  important  to  back-transform  the
curves  once  the  model  is  finalised  using  the  antilog  (exponential  if   a   natural   logarithmic
transformation  was   used),   also   remembering   to   subtract   C   for   a   modified   logarithmic
transformation.
            Whilst this simple procedure can easily cope with the problem of skewed data, Altman and
Chitty4  report that very few fetal size measurements require transformation.
            The effect of the logarithmic transformation is illustrated here using data  on  birth  weight
in 58,940 neonates as analysed by Salomon et al15. Fig. 4, a scatterplot of birth weight against GA
at birth, shows a marked increase in variability with GA and also suggests a  slight  positive  skew
to the data at a  given  GA.  In  Fig.  5  the  birth  weights  have  undergone  a  natural  logarithmic
transformation, resulting in a more constant variance over GA  and  any  evidence  of  skew  being
removed. The fitting of a ‘mean and SD model’ on this transformed data should now be  relatively
more simple.

             The  modification  of  the  ‘mean  and  SD  model’   by   the   addition   of   a   logarithmic
transformation is somewhat less common than the unmodified version in the  fetal  size  literature.
Royston10   used   a   modified   logarithmic   transformation   in   an   example   concerning   fetal
triglycerides. After fitting an initial quadratic mean  model,  positive  skew  was  identified  in  the
residuals. A logarithmic transformation was  performed  on  the  original  values  and  a  quadratic
mean  model  fitted  on  log(y).  However,  this  introduced  negative   skewness,   so   a   modified
logarithmic transformation was utilised.  Wright  and  Royston16,  in  an  example  regarding  fetal
abdominal circumference, also used a logarithmic transformation.

Mean and SD model using fractional polynomials
            Fractional polynomials (FPs), formalised by Royston and  Altman17,  extend  the  range  of
models afforded  by  conventional  polynomials  by  allowing  parameters  to  also  take  fractional
powers. Whilst a conventional polynomial is of the form

a + bt + ct2 + dt3 +…,



FPs are defined as

a + btp1
 + ctp2

 + dtp3 +…,

where p1, p2, p3,… are chosen from a predetermined set, usually taken to be {-2, -1, -0.5, 0, 0.5, 1,
2, 3}. Here a value of -1 represents the inverse of t and 0.5 the square root of t. By convention  the
power 0 is defined to be log(t). If one or more power in the  model  is  duplicated  then  the  model
will include ‘repeated powers’, whereby the second term is multiplied by log(t). As an example,  a
FP of degree 3 with powers (0, 2, 2) (i.e. p1=0, p2=2 and p3=2) is of the form

a + blog(t) + ct2 + dt2log(t).

            Estimation of the best fitting FP for a given dataset involves both a  systematic  search  for
the best power or combination of powers from the permitted set, and estimation of  the  associated
parameter coefficients. This selection process includes fitting  a  model  for  each  combination  of
powers in the permitted  set.  This  means,  for  example,  that  fitting  a  fractional  polynomial  of
degree 2 (i.e. of the form a + btp1  +  ctp2)  using  the  standard  set  detailed  above  would  involve
fitting a different model  for  each  of  the  36  permissible  combinations  of  powers.  From  these
models the one with lowest residual standard deviation is chosen to be optimal.
            FPs give at least as  good  a  fit  to  data  as  a  conventional  polynomial  of  corresponding
degree and often offer a better fit than conventional polynomials  of  higher  degree.  Royston  and
Wright1 recommend the use of FPs for modelling the mean  or  SD  curve  if  a  quartic  or  quintic
polynomial is required for an adequate fit to the data.

             Over  recent  years  use  of  FPs  in  the  construction  of  RIs  has  become  more  popular.
Kurmanavicius  et  al18  created  ranges  for  biparietal  diameter,  occipito-frontal  diameter,  head
circumference and cephalic index using this method, although in each case, bar the cephalic  index
SD,  the  best  fitting  fractional   polynomial   was   found   to   be   a   conventional   polynomial.
Kurmanavicius et al19 also  modelled  mean  abdominal  diameter,  abdominal  circumference  and
femur length using FPs, with only femur length SD taking a fractional model. Size charts for  fetal
bones  (radius,  ulna,  humerus,  tibia,  fibula,  femur  and  foot)  were  presented   by   Chitty   and
Altman20 after fitting FPs, with all but one mean model, though  none  of  the  SD  models,  taking
fractional form.

ALTERNATIVE METHODS
            Beside the ‘mean and SD  model’,  Wright  and  Royston16  report  the  other  most  widely
applied statistical approaches for estimating GA-specific reference intervals in practice to be those
of smoothed crude centiles21 and LMS22, 23, 24, detailed below.

Centile curves based on direct centile estimates
            For a sufficiently large dataset (several hundred  observations  at  each  week  of  gestation
according to Altman and Chitty4), one intuitive approach  is  to  calculate  empirical  estimates  for
each desired centile at a given GA. Whilst the curves  produced  by  joining  these  values  will  be
rough, even for large sample sizes, smoother curves can be obtained by considering ‘windows’  of
GAs instead of  each  GA  separately.  Here,  increasing  window  size  will  increase  smoothness,
though information can easily be lost through oversmoothing16.



             A  more  formalised  version  of  this  approach,  with  a  second  stage  involving   centile
smoothing based on the technique of Cleveland25, is  presented  by  Healy  et  al21.  This  approach
makes no assumption about the nature of the distribution of measurements at a given GA but takes
advantage of the knowledge that both the centiles themselves and the intervals between centiles  at
a fixed GA should behave smoothly.
             In  the  first  stage,  observations  are  ordered  by  GA  and  the  first  k,  where  k  usually
represents 5-10% of the total  data,  selected.  Initial  empirical  centile  estimates  at  the  required
values,  for  example  5%,  10%,  25%,  50%,  75%,  90%  and  95%,  are  calculated   from   these
k  measurements  by  sorting  and  counting,  and  then  plotted  against  the  median   GA   of   the
k observations. This ‘window’ of k observations is then moved on to encompass  measurements  2
to k+1, then 3 to k+2, etc., with the same estimation procedure repeated on each occasion, until all
observations have been included.
            The initial  centile  estimates  will  be  irregular,  so  the  second  stage  smoothes  them  to
provide more usable centile curves. It is first assumed that each centile curve can be approximated
by a polynomial of degree p, so that yi, the smoothed value of the ith centile, is given by

yi = a0i + a1it + a2it2 +…+ apitp,                                                   (3)

where t again represents GA. Now consider the proportion  corresponding  to  the  ith  centile  (for
example 0.5 for the 50th centile) and define zi as its normal equivalent deviate (NED), similarly to
before.
            The coefficients a for a fixed j are then modelled as a polynomial in zi, so that

aji = bj0 + bj1zi +…+ bjqjzi
qj,                                                       (4)

where the degree qj of the polynomial may differ from one value of j to another. This  restricts  the
distance between centiles and prevents the resulting curves  from  crossing.  Combining  equations
(3) and (4)  gives  a  linear  model  for  the  centile  values  which  can  be  fitted  by  least  squares
regression. It  follows  that  for  any  observation  a  corresponding  z-score  can  be  calculated  by
solving a polynomial equation, though the order of the polynomial may realistically  prohibit  this.
Goodness of fit should be judged by counting the points falling between adjacent centiles.

            This method was applied by Wright and  Royston16  to  measurements  of  fetal  abdominal
circumference and provided an adequate fit.

LMS
            The LMS method, introduced by Cole22, 23 and refined  by  Cole  and  Green24,  provides  a
general  method  for  fitting  smooth  centile  curves  to   reference   data.   It   utilises   the   power
transformation family of Box and Cox26 to allow the skewness of the measurement distribution, as
well as the median and variability, to vary with age. These  three  features  of  the  distribution  are
summarised by the parameters ?, ? and ?, the initials of which (L, M and S) give rise to  the  name
of the method. The  original  form22,  23  necessitated  age  to  be  split  into  groups  -  an  arbitrary
procedure whereby different groupings would  produce  different  centile  curves.  This  subjective
stage was removed by Cole and Green24 through the addition of  a  nonparametric  aspect.  Due  to
the superiority of the later version, only this is detailed here.
            As previously asserted, many size measurements follow a skewed normal distribution. The



use of a suitable power transformation, which stretches one tail of the distribution and shrinks  the
other, can remove this skewness and ‘normalise’ the  data.  One  such  family  of  transformations,
proposed by Box and Cox26, is used in the LMS method, with the optimal  power  at  a  given  age
calculated from the data to completely remove skewness in the distribution. As skewness  changes
with age, the calculated power also changes.
            Given a variable of interest y with median  ?  and  a  power  transformation  so  that  y?  (or
log(y) if ?  = 0) is normally distributed, we consider the transformed variable

                                           x = ((y - ?)? -1) / ?            if ? ? 0                                         (5)
                                                  log(y / ?)                    if ? = 0

based on the Box-Cox transformation26. This transformation maps the median ? of y to x  =  0  and
is continuous at ? = 0. For ? = 1 the SD of x is  the  coefficient  of  variation  (CV)  of  y,  and  this
remains approximately true for all moderate values of ?24. The optimal value of ?  now  minimises
the SD of x.
            Denoting the SD of x (and CV of y) by ?, the z-score (or SD score) of  x  (and  hence  y)  is
given by

                                              z = x / ?
                                                = ((y - ?)? -1) / ? ?       if ? ? 0                                         (6)
                                                   (log(y / ?)) / ?           if ? = 0

and is assumed to take a standard normal distribution.
            Assume that the distribution of y varies with GA t and that  ?,  ?  and  ?  at  t  are  read  off
smooth curves L(t), M(t) and S(t). Then



                                     z = ((y / M(t))L(t) - 1) / (L(t)S(t))         if L(t) ? 0                         (7)
                                           (log(y / M(t))) / S(t)                      if L(t) = 0.

            Rearranging equation (7) shows that centile 100? of y at t is given by

                                 C100?(t) = M(t)[1 + L(t)S(t)z?](1 / L(t))        if L(t) ? 0                         (8)
                                                M(t)exp(S(t)z?)                        if L(t) = 0,

where z? is the normal equivalent deviate of size ?. This shows that if L, M and S are smooth,  then
so are the centile curves.
            Cole and Green24 then introduce a  penalised  likelihood  function,  derived  from  equation
(7), with three integrals providing  roughness  penalties  for  the  curves  L(t),  M(t)  and  S(t).  The
extent  of  these  penalties,  and  hence  the  smoothness  of  the  curves,  are  controlled  by   three
smoothing parameters, and these are the only parameters requiring specification in order to fit  the
model. However, ‘equivalent degrees of freedom’  (EDF),  calculated  for  each  fitted  curve  as  a
function  of  these  smoothing  parameters,  give  a  more  useable  measure  of  the  extent  of   the
smoothing.
             The  illustrative  examples  of  Cole  and  Green24,  although  not  from  the  field  of  fetal
measurements, show values of the L curve falling well below zero. This indicates the  presence  of
considerably more skew that a log transformation would remove and  the  extent  of  variability  of
the L curves with age reinforces the notion that transformation using a single power for all ages  is
inappropriate.

            Whilst examples of the application of the LMS method for fetal size do not  abound,  using
the same fetal abdominal circumference data as Chitty  et  al13,  Wright  and  Royston16  used  this
approach to fit centile curves to good effect.

DISCUSSION
            There are several viable methods available, of varying  complexity,  for  constructing  age-
related RIs and centile charts. Ideally, methods should  be  understandable  by  clinicians,  and  the
results easy to use, even without a statistical computer package. It is desirable  that  any  published
method should provide the potential user with the means  to  calculate  the  corresponding  z-score
and centile for a  given  measurement.  The  mere  provision  of  a  mean  model  or  centile  chart,
regardless of the quality, is not really adequate. Any approach must also be sufficiently flexible  to
be  applied  successfully  to  many  sets  of  data.  Unfortunately,  none  of  the  methods  currently
available  fulfil  all  these  criteria,  so  it  is  unlikely  that  any  one  would  be  appropriate  in  all
circumstances.
            In the simplest setting, if it is plausible that  the  observed  measurements  at  each  GA  do
indeed come from a population with a normal distribution and, in addition, the variance across the
age range  is  constant,  then  the  use  of  conventional  polynomial  regression  may  be  justified.
However, the strict adherence to these assumptions is unlikely, meaning that  the  model  may  not
produce sufficiently reliable reference intervals. Slightly more  realistic  is  the  acknowledgement
that variance is likely to change over the age range. This  feature  can  be  included  by  fitting  the
‘mean and SD model’ as described  previously,  though  again  the  assumption  of  an  underlying
normal distribution is not always tenable. This issue can often be dealt with by  the  addition  of  a
(modified) logarithmic transformation prior to the model fitting to correct  any  skew  (distribution



asymmetry). However, this approach still suffers from the well-known  limitations  of  polynomial
curve shapes. This last hurdle can be overcome by the relaxation of the restrictions imposed on the
powers of the  polynomial, allowing the use of fractional polynomials (FPs). As FPs give  at  least
as good a fit to data as a conventional polynomial of corresponding degree,  and  as  the  fitting  of
FPs with most basic statistical software is relatively straightforward, there  seems  little  reason  to
not adopt them as standard.
             All  of  these  variations  on  the  ‘mean  and  SD  model’  benefit  from   being   relatively
conceptually  simple  and  easy  to  use,  with  the  necessary  techniques  available  in  most  basic
statistical  packages.  The  resulting  centile  curves  and  z-scores  can  be  expressed   as   explicit
formulae meaning that  the  centile  position  of  any  individual  is  easily  obtainable.  Whilst  the
method as described here is  adequate  for  most  fetal  measurements,  there  are  some  cases  that
cannot be handled properly by this approach. It is important to  emphasise  the  strong  assumption
that at each GA the data come from a population with a normal distribution.  Whilst  skewed  data
may sometimes be corrected by a log  transformation,  this  is  not  always  successful,  with  time-
varying skewness especially difficult to accommodate. Even after transformation, kurtosis (a  non-
normal distribution shape) may remain  in  the  data,  again  in  contravention  of  the  assumption.
Variables  with  a  complex  curve  shape  beyond  those  available  from  conventional   (or   even
fractional) polynomials may also require alternative techniques.

            The method of producing centile curves based on empirical centile estimates  as  described
by Healy et al21 makes no assumption about the nature of the  distribution  of  measurements  at  a
fixed GA, which is an appealing feature. This approach provides  a  flexible  way  of  constructing
centile curves which is capable of handling many patterns  of  growth  due  to  the  lack  of  a  pre-
specified functional form. However, there are some drawbacks. Experience is needed  to  find  the
best ways of choosing the values of the adjustable parameters involved, and clearly there  is  some
degree of subjectivity here. The estimation  of  the  centile  values  of  further  observations  is  not
simple unless a very basic model has been  fitted.  There  is  also  some  vulnerability  to  outlying
values affecting  the  derived  centile  values.  We  concord  with  the  conclusion  of  Altman  and
Chitty4 that this is not a suitable method for the derivation of fetal size charts,  except  when  other
methods are unsuccessful.

             The  LMS   method   with   penalised   likelihood24   is   extremely   flexible   and   widely
applicable16. It is usually easy to produce convincing centile curves, regardless of  the  complexity
of the curve shape, and  time-varying  skewness  is  easily  dealt  with.  It  also  has  the  appealing
byproduct of the L, M and S curves which completely summarise the  measurement’s  distribution
over the age range and facilitate further investigation  into  the  underlying  structure  of  the  data.
Penalised  likelihood  provides  an  elegant  solution  to  rid  the  earlier  method  of   its   arbitrary
categorisation, with the smoothing of the three curves becoming an integral part of  the  likelihood
maximisation. Now the only arbitrariness in the procedure is  the  choice  of  the  three  smoothing
parameters.
            There are, however, some general problems with the smoothing  approach.  Where  data  is
more sparse near the ends of the age range, ‘edge effects’ (spurious changes in  the  centiles)  may
be observed, though this can be avoided by truncating the data at each end.  One  major  drawback
of nonparametric estimators is the lack of a succinct formula with which to estimate further centile
values. This means that centiles may only be displayed graphically or in tabular form. Finally,  the
assumption of normality following the Box-Cox transformation may be violated  by  the  presence



of kurtosis, which the transformation does not adjust for.
            A more recently proposed  generalisation  of  the  LMS  approach,  the  LMSP  method  of
Rigby and Stasinopoulos27, uses the Box-Cox  power  exponential  (BCPE)  distribution  to  try  to
overcome the issue of kurtosis. A fourth parameter is introduced  in  the  power  transformation  in
order to account for the observed kurtosis in the distribution and centile estimation  proceeds  in  a
manner not dissimilar to that of the conventional LMS method.
            Whilst for the first-time user, application of the LMS method may appear a  daunting  task,
the advent of specially designed programs such as Cole and Pan’s  LMSChartmaker28,  as  well  as
packages for the widely used general statistical  programs,  mean  that  with  brief  instruction  this
need not be the case.

            Wright and Royston16 advise that a ‘simple formula’ to allow estimation of centile position
for an individual is extremely valuable. If, when considering the statistical approach  to  follow  in
light  of  requirements  specific  to  the  data  under  analysis,  this  requirement  is  deemed  to   be
essential, then this would exclude both the LMS  method  and  any  approach  based  on  empirical
centile estimates. Of the methods examined here, this leaves the only the  parametric  approach  of
the ‘mean and SD model’. So the choice of approach is really reduced to the trade-off between the
simplicity, usability and accessibility of the inferior model provided by  the  parametric  approach,
and the superior but less user-friendly model provided by the LMS method.
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Figure 1. Plot of calculated Z-scores against gestational age in the example dataset.



Figure 2. Normal plot of calculated Z-scores in the example dataset.



Figure 3. Histogram of calculated Z-scores in the example dataset with overlaid standard normal distribution.



Figure 4. Scatterplot of fetal birth weight against gestational age in the example dataset.



Figure 5. Scatterplot of logarithmically transformed fetal birth weight against gestational age in the example
dataset.


