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Summary 

Burkholderia multivorans, a member of the Burkholderia cepacia complex (Bcc), is an 

important pathogen of the cystic fibrosis (CF) lung. Mannitol, approved as an inhaled 

osmolyte therapy for use in CF patients, promotes exopolysaccharide (EPS) production by 

the Bcc. In the present study, we investigated the role of mannitol-induced EPS in the 

adherence of B. multivorans. We report that mannitol promoted adherence of two 

representative B. multivorans strains. However, whilst this enhanced adherence was largely 

EPS-dependent in an environmental isolate, it was EPS-independent within a CF outbreak 

strain, suggesting strain-to-strain variation in adhesins. Genome sequencing of the outbreak 

strain enabled the identification of two distinct loci encoding putative fimbrial and afimbrial 

adhesins.  The putative fimbriae-encoding locus was found to be widely distributed amongst 

clinical and environmental B. multivorans. In contrast, the locus encoding the putative 

afimbrial adhesin (of the filamentous haemagglutinin family, FHA) was restricted to clinical 

isolates. Both loci contributed to biofilm formation and mucin adherence. Furthermore, we 

report that mannitol promoted expression of both loci, and that the locus encoding the 

putative FHA-family adhesin is a key determinant of the enhanced adherence observed 

following growth in mannitol. Our studies provide the first characterization of B. multivorans 

adhesins, and in so doing highlight the strain-dependent role of EPS in the Bcc, and the 

difficulties in assigning phenotypic traits to Bcc EPS due to the wider response to mannitol. 

Our observations also highlight the need to monitor the microbiological impact of inhaled 

mannitol therapy in Bcc-infected CF patients. 
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Introduction 

Organisms of the Burkholderia cepacia complex (Bcc) are problematic opportunistic 

bacterial pathogens of the cystic fibrosis (CF) lung. Bcc infection is most commonly 

associated with chronic infection and a gradual deterioration in lung function, and is 

consistently identified as an independent risk factor for mortality amongst CF patients (Jones 

et al., 2004;Kalish et al., 2006;Liou et al., 2001).  B. cenocepacia and B. multivorans are the 

most common Bcc species associated with CF respiratory infections, together accounting for 

approximately 90% of Bcc infections. Until recently, B. cenocepacia was the most commonly 

isolated species, being associated with epidemic spread amongst CF patients. As a 

consequence, B. cenocepacia has received the most research attention, resulting in the 

identification of numerous putative virulence determinants (recently reviewed by (Loutet & 

Valvano, 2010). However, B. multivorans has surpassed B. cenocepacia in incidence of 

respiratory infection amongst CF patients in the United States (LiPuma, 2010) and several 

European countries (Brisse et al., 2004;Coenye & Vandamme, 2003;Govan et al., 

2007;Norskov-Lauritsen et al., 2010), and in comparison to B. cenocepacia, very little is 

known about the virulence mechanisms and strategies used by B. multivorans within the CF 

host. 

  

Amongst the putative virulence determinants most studied within the Bcc is 

exopolysaccharide (EPS). When grown on certain carbon sources (most notably mannitol), 

Bcc species produce EPS resulting in a mucoid phenotype (Bartholdson et al., 2008). Whilst 

clinical B. cenocepacia isolates are frequently non-mucoid (EPS-negative) as a result of 

mutations within EPS biosynthetic or regulatory pathways, clinical isolates of B. multivorans 

frequently retain the capacity for EPS production (Zlosnik et al., 2011). EPS production by 

the Bcc has been associated with bacterial persistence within the lung (Conway et al., 2004), 
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biofilm formation (Cunha et al., 2004) and inhibition of neutrophil activity (Bylund et al., 

2006). Additionally, it has recently been proposed that an inverse correlation exists between 

the quantity of EPS production by Bcc organisms and the rate of decline in CF lung function, 

and that infections with non-mucoid Bcc are associated with reduced patient survival 

(Zlosnik et al., 2011). The fact that mannitol is a potent inducer of EPS production by the Bcc 

has gained clinical relevance following the approval of a dry powder preparation of mannitol 

for use as an inhaled osmolyte in CF patients. Whilst this inhaled mannitol therapy has been 

shown to enhance lung function in CF patients (Bilton et al., 2011;Daviskas et al., 

2010;Jaques et al., 2008;Teper et al., 2011), the potential impact on the course of 

Burkholderia infection within the CF lung is unknown, not least because Bcc-colonization is 

amongst the listed exclusion criteria that prevents participation in clinical trials.  

 

In the present study, we set out to investigate the role played by mannitol and the associated 

mucoid phenotype in adherence of B. multivorans. As reported herein, we observed that 

mannitol promoted adherence, but there existed strain-to-strain variation in the extent to 

which EPS contributed to this phenotype. Specific adhesins have not previously been 

described in B. multivorans, and so we sought to identify and characterise the strain-specific 

adhesins that contributed to these differing phenotypes. Herein we describe the identification 

and characterisation of two distinct adhesin-encoding loci in an outbreak strain of B. 

multivorans. These loci, which contribute to biofilm formation and mucin adherence, appear 

specific to B. multivorans and show enhanced expression in the presence of mannitol. These 

observations provide new insight into B. multivorans biology and highlight the potential 

microbiological impact of inhaled mannitol therapy in CF patients. 
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Methods  

Bacterial strains, plasmids, and growth conditions.  Bacteria were routinely cultured at 37 

°C in Luria-Bertani (LB) broth (containing 5 g/l NaCl) supplemented with 1.5 % agar as 

required. Liquid cultures (10 ml volumes in 30 ml culture vessels) were incubated with 

shaking at 250 rpm unless stated otherwise. Strains and plasmids are detailed in Table 1. For 

routine culture, media were supplemented with trimethoprim (100 μg/ml for Bcc; 50 μg/ml 

for E. coli), tetracycline (100 μg/ml for Bcc; 25 μg/ml for E. coli), gentamicin (50 μg/ml for 

Bcc), or kanamycin (25 μg/ml for E. coli) as required. Sugar media contained 0.2 % yeast 

extract (Oxoid) supplemented with either 2 % D-mannitol (for EPS-inducing conditions; 

YEM media), or 2 % D-mannose for non-EPS-inducing conditions (Sage et al., 1990). All 

strains employed in this study exhibited comparable growth rates within the media used. 

 

DNA sequencing of B. multivorans C1576 and identification of loci encoding putative 

adhesins. Genomic DNA from B. multivorans C1576 was extracted using the PureLink 

Genomic DNA kit (Invitrogen) and sequenced on an Illumina platform following library 

preparation using the TruSeq DNA protocol (Illumina). Reads were initially mapped to the B. 

multivorans ATCC 17616 reference genome, enabling identification of unmapped reads 

(sequences present in C1576 but absent from ATCC 17616). These unmapped reads were 

subjected to both de novo assembly and re-mapping to alternative Bcc reference genomes. 

Mapping and de novo assembly was performed using CLC Genomics Workbench (CLC bio). 

Loci encoding putative adhesins were located within the mapped/assembled sequence reads 

by BLASTN analysis, and the identity of the putative adhesins to known sequences was 

assessed by BLASTN and BLASTP analysis at NCBI and www.burkholderia.com (Winsor et 

al., 2008).  
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Transcriptome analysis by RNA-seq.  Using the RiboPure-Bacteria kit (Ambion), total 

RNA was isolated from bacterial cells harvested from agar plates containing 0.2 % yeast 

extract supplemented with either 2 % mannitol (YEM) or 2 % mannose (two biological 

replicates per culture condition).  Following DNAse-treatment (10 U DNase, 1 hr), RNA 

quality was assessed on the Agilent 2100 Bioanalyzer, and only samples with RNA integrity 

values >7.0 were processed further. Ten micrograms of total RNA were subjected to two 

successive rounds of rRNA depletion using MicrobeExpress (Ambion). Sequencing libraries 

were prepared from the resulting mRNA-enriched RNA using the TruSeq RNA protocol 

(Illumina) according to the manufacturer’s instructions prior to sequencing on an Illumina 

HiSeq2000 platform. Mapping of resulting reads to appropriate reference sequences, 

calculation of RPKM values (reads per kilobase of transcript per million mapped reads) and 

subsequent expression analyses to identify differentially-expressed genes (two-group 

unpaired comparison, with statistical analysis performed on proportions using Baggerley’s 

test with FDR-corrected P-values) was achieved using CLC Genomics Workbench with 

default parameters. 

 

Construction of mutants and complemented strains. Insertional inactivation of target 

genes was performed using the pGPΩTp suicide vector as described previously (Flannagan et 

al., 2007). In brief, a 400-500 bp PCR product mapping within the target gene was cloned 

into pGPΩTp to facilitate homologous recombination and thus insertional inactivation of the 

target gene. In trans complementation of the resulting mutants was achieved using the 

previously described pDA17 vector (Flannagan et al., 2008), a broad-host range plasmid that 

drives constitutive expression of the cloned gene from the dhfr promoter.  All plasmids (for 

mutagenesis and complementation) were mobilised into the appropriate B. multivorans 

recipient strain by triparental mating with the helper plasmid, pRK2013 (Figurski & Helinski, 
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1979). Transformants were selected using gentamicin in conjunction with either trimethoprim 

(to select for pGPΩTp integrants) or tetracycline (for pDA17 complemented strains). Mutants 

and complemented strains were confirmed by appropriate PCR validation. All primer 

sequences are available upon request. 

 

Adherence to fibronectin.  Bacterial adherence to fibronectin was assessed as described 

previously (Mil-Homens et al., 2010), with minor modification. Wells of a 96-well 

polystyrene plate were coated with 150 µl of 10 μg/ml fibronectin (Sigma) at 4 °C overnight. 

Bacteria harvested from fresh overnight LB agar plates were standardised to 10
9
 CFU/ml in 

PBS. Fibronectin-coated wells received either 150 µl of bacterial suspension, or 150 µl PBS 

(control), and were incubated at room temperature for 2 h, after which wells were washed 4x 

with 200 µl PBS.  Plates were baked (60 °C, 45 min), prior to staining of adhered cells with 

filter sterilized 0.1 % (w/v) crystal violet for 15 min. Following staining, wells were washed 

4x with PBS, before solubilising bound crystal violet with 95 % ethanol (30 min). 

Absorbance (570 nm) of solubilised crystal violet was measured on a BioRad Microplate 

reader. There were 16 replicate wells per strain in each individual experiment. 

 

Adherence to mucin. Mucin adherence assays were performed as described previously 

(Ammendolia et al., 2010), with minor modification. In brief, 50 μl aliquots of 50 μg/ml 

filter-sterilized porcine mucin protein (Sigma) were applied to wells of a 96-well polystyrene 

microtiter plate and incubated overnight at 37 °C. Bacteria were harvested from LB agar 

plates or mannitol/mannose sugar broths following overnight incubation, and standardised to 

10
9
 CFU/ml in PBS. Mucin-coated wells received either 50 µl bacterial suspension, or 50 µl 

PBS, and were incubated at room temperature for 3 h, after which wells were washed 10x 

with 200 µl aliquots of PBS. Bound bacteria were released from mucin with sterile 0.25 % 
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Triton X-100 (Sigma) and enumerated by plating appropriate dilutions (in triplicate) onto LB 

agar. Six wells were processed per strain in each individual experiment.  

 

Biofilm assay. Biofilm formation was assessed using the 96-well plate and accompanying 

peg-lid of the MBEC Assay device (Innovotech).  Bacteria were harvested from LB agar and 

standardized to 10
7
 CFU/ml in tryptone soya broth (TSB) (Oxoid). Wells received either 150 

μl of bacterial suspension or an equal volume of uninoculated TSB. The peg lid was placed 

on the plate, and the plate incubated at 37 °C for 24 h with shaking (125 rpm). Following 24 

h incubation, the peg lid was transferred to a fresh 96-well plate containing pre-warmed TSB, 

and incubated for a further 24 h (37 °C, 125 rpm). The peg lid was then transferred to a 96-

well plate containing 200 µl PBS per well, and incubated at room temperature for 2 min to 

remove loosely-attached bacteria. The peg lid was baked (60 °C, 20 min) prior to being 

transferred to a 96-well plate containing 200 μl of 0.1 % (w/v) crystal violet per well, and 

incubated for 30 min at room temperature. Three separate wash plates (200 μl of PBS per 

well) rinsed the pegs following staining, and the bound crystal violet was subsequently 

solubilised with 95 % ethanol (30 min) prior to measuring absorbance at 570 nm. 

 

Galleria mellonella infection model. Infection of larvae was performed largely as described 

previously (Seed & Dennis, 2008). Larvae were obtained from LiveFoods UK and stored in 

woodchips at 14 °C prior to use. Using a 25 μl 22s gauge gas-tight Hamilton syringe, larvae 

were injected in the hindmost proleg with either 10 μl PBS (control) or 10 μl bacterial 

suspension (10
6
 CFU/ml). Following injection, larvae were incubated at 37 °C, and their 

survival was monitored for up to 72 hours.  
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Dot-blot hybridizations. Genomic DNA was extracted using the Pure Link Genomic DNA 

Purification kit (Invitrogen) and was normalised to 85 ng/μl in 0.1 M NaOH. Three microliter 

aliquots of the resulting DNA were replica-spotted onto Hybond-N+ membranes (GE 

Healthcare) and air-dried. Membranes were rinsed (4 x SSC, 5 min; 0.5 x SSC, 5 min) prior 

to baking (80 °C, 2 h). The PCR DIG probe Synthesis kit (Roche) was used to generate 

probes specific for the genes encoding the fimbrial usher protein and HecB-like protein, with 

the probe sequences corresponding to nucleotides 2515-2940 of JX191919 and nucleotides 

12641-13084 of JX191920 respectively. Subsequent pre-hybridisation, hybridisation, 

washing and detection was performed using the DIG-Easy Hyb, DIG Wash and Block Buffer 

Set, and CDP-Star (Roche Applied Science) according to manufacturer’s instructions. 

 

Statistical analysis.  All experiments were performed at least in triplicate, with subsequent 

statistical analysis by one-way ANOVA followed by relevant comparisons of orthogonal 

contrasts (IBM SPSS Statistics, v. 20). P < 0.05 was deemed to be statistically significant.  

 

Results 

The contribution of exopolysaccharide to bacterial adhesion is strain-dependent in B. 

multivorans. We sought to determine the role played by mannitol and the associated mucoid 

phenotype in the adherence of B. multivorans. Of the putative EPS biosynthetic gene clusters 

typically found within the Bcc, the bce gene cluster is the most highly conserved 

(Bartholdson et al., 2008). It has previously been shown that disruption of the gene encoding 

the BceB glycosyltransferase eliminates EPS biosynthesis and thus the mucoid phenotype in 

B. ambifaria (Bartholdson et al., 2008). Consequently, to enable the EPS-dependent and 

EPS-independent effects of mannitol to be determined, we inactivated bceB in two 

representative strains of B. multivorans – the environmental isolate B. multivorans ATCC 
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17616, and the CF isolate B. multivorans C1576. This CF isolate is the index case of an 

outbreak within a paediatric CF unit in Glasgow (UK) that was associated with unusually 

high mortality (Whiteford et al., 1995). This outbreak strain has previously been designated 

as ST-27 by multi-locus sequence typing (MLST) (Baldwin et al., 2005), and will be referred 

to as such within this study. As anticipated, disruption of bceB in the B. multivorans strains 

resulted in a complete loss of EPS production, as judged by visual scoring of mucoidy and 

quantitative analyses (dry weight and sugar content) of EPS extractions from wildtype and 

bceB mutants following growth on YEM media (data not shown). Disruption of bceB did not 

impact on the growth of strains under any culture conditions tested.  

 

We used the mucin adherence assay to assess whether mannitol and/or the associated EPS 

production influenced adhesion of B. multivorans strains ATCC 17616 and C1576. Wildtype 

and bceB mutants of each strain were cultured in the presence of either mannitol (EPS-

inducing) or mannose (non-inducing), immediately prior to quantifying adherence to mucin-

coated wells. As shown in Fig. 1, within the context of our in vitro assay, the environmental 

ATCC 17616 strain adhered considerably better to mucin than the clinical isolate C1576. 

However, irrespective of their basal level of adherence, mannitol promoted adherence of both 

strains to mucin (orthogonal contrast, ATCC 17617: t = 8.9, df = 51, P < 0.0005; orthogonal 

contrast, C1576: t = 4.5, df = 24, P < 0.0005). Mannose was chosen as a non-EPS-inducing 

control as (in contrast to other sugars/sugar alcohols tested) mannitol and mannose supported 

comparable overnight growth of bacteria (when used to supplement 0.2 % yeast extract). 

Mannose has been suggested to act as an anti-adhesive for certain bacterial species, reducing 

adherence to epithelial cells (Acord et al., 2005). However, it has previously been reported 

that mannose does not block mucin-binding by Pseudomonas (Burkholderia) cepacia (Sajjan 

& Forstner, 1992).  Consistent with this, mucin adherence of our B. multivorans strains of 
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interest was not reduced by pre-treatment with mannose (data not shown), indicating that the 

differential adherence observed between the mannitol- and mannose-grown cultures is due to 

mannitol promoting adherence, rather than mannose reducing adherence. 

 

Whilst mannitol promoted the adherence of both isolates to mucin, comparison of the 

wildtype and corresponding EPS-deficient bceB mutants revealed differing roles for EPS. As 

shown in Fig. 1(a), inactivation of bceB in ATCC 17616 significantly impaired this enhanced 

adherence in the presence of mannitol (orthogonal contrast: t = -6.2, df = 51, P < 0.0005), 

indicating that it was largely EPS-dependent. In contrast, the enhanced adherence of C1576 

observed following growth in mannitol was unaffected by the inactivation of bceB 

(orthogonal contrast: t = -0.2, df = 24, P > 0.05; Fig. 1b), indicating that it was independent of 

EPS status. The differing role for EPS in adherence within these strains is not due to different 

levels of EPS production, as both wild-type strains yielded comparable amounts of EPS 

(typically 8 – 11 mg dry weight per petri dish). These observations led us to sequence the 

genome of B. multivorans C1576 isolate in an attempt to identify genes encoding strain-

specific adhesins that may account for this strain-to-strain variation in adherence phenotype. 

 

Identification of loci encoding putative fimbrial and afimbrial adhesins in B. 

multivorans C1576. Illumina genome sequencing of isolate C1576 with subsequent mapping 

to the ATCC 17616 reference genome allowed us to identify sequences present within C1576 

that were absent from ATCC 17616. Analysis of these unmapped reads resulted in the 

identification of two distinct loci encoding putative fimbrial and afimbrial adhesins (Fig. 2). 

The sequences of these loci have been deposited in GenBank under the accession numbers 

JX191919 (fimbrial) and JX191920 (afimbrial).   
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The putative fimbriae-encoding locus is predicted to encode three putative fimbrial proteins, 

a FimC chaperone protein and a fimbrial usher protein. The nucleotide sequence of the locus 

is >99 % identical to an equivalent fimbriae-encoding locus present in B. multivorans CGD1, 

a recently-sequenced isolate from a chronic granulomatous disease (CGD) patient (Varga et 

al., 2012). In CGD1, the locus is formed by genes BURMUCGD1_3349 to 

BURMUCGD1_3353. The organisation of the locus is identical in the two isolates, and 

amino acid identity between the corresponding encoded proteins is 99-100 %. A similar locus 

with the same gene organisation is observed in two other sequenced CGD B. multivorans 

isolates (CGD2 and CGD2M), although the percentage amino acid identity of the encoded 

proteins compared to those of C1576 is lower (average 83 %). Outside of B. multivorans, the 

predicted fimbrial proteins of B. multivorans C1576 typically exhibit 35-55 % amino acid 

identity with proteins encoded by comparable loci in other sequenced Burkholderia or non-

Burkholderia species.  

 

The locus encoding the putative afimbrial adhesin of B. multivorans C1576 is depicted in Fig. 

2(b). Based on sequence similarity to representative proteins (Fig. S1 & S2), the locus is 

predicted to encode components of a two-partner secretion (TPS) pathway responsible for the 

secretion of an adhesin of the filamentous haemagglutinin (FHA) family. The locus encodes 

two putative TpsA proteins (264 kDa and 68 kDa respectively) that belong to the FHA-family 

of outer membrane proteins, although only the larger of these two proteins has a mass 

consistent with the large exoproteins of the TpsA family. The locus is also predicted to 

encode a single protein of the TpsB family that likely facilitates secretion of the FHA family 

adhesin(s). Phylogenetic analysis confirms relatedness of this protein to known TpsB 

transporter proteins, particularly the HecB protein of Erwinia chrysanthemi (Kim et al., 

1998;Rojas et al., 2002) (Fig. S3). Consequently, we propose that the TpsB family protein of 



13 

 

B. multivorans C1576 is a HecB-like protein. Consistent with this, comparable phylogenetic 

analysis of the 264 kDa TpsA family protein of B. multivorans C1576 shows relatedness to 

the HecA protein of Erwinia chrysanthemi (Fig. S4), although the phylogenetic distances are 

greater than that observed between the corresponding TpsB proteins. Immediately 

downstream of the hecB-like gene is a gene encoding a putative PpiC-type peptidyl-prolyl 

cis-trans isomerase (PPIase) protein, predicted to localise to the cytoplasmic membrane.  It is 

conceivable that this PPIase plays a role in the secretion of the FHA family protein, as has 

been described for a periplasmic PPIase of Bordetella pertussis (Hodak et al., 2008).   

 

Analyses of available Burkholderia genomes reveals that the closest FHA-related adhesins to 

that of B. multivorans C1576 are found in the environmental isolate B. ambifaria MC40-6 

(approximately 83 % amino acid identity between corresponding proteins) and B. phymatum 

STM815 (approximately 65 % amino acid identity between corresponding proteins). Amino 

acid identity to related proteins of non-Burkholderia species (including the prototypic 

FHA/FhaC of Bordetella pertussis and the HecA/HecB of Erwinia chrysanthemi) is 

approximately 28-30 %. 

 

The loci encoding the putative adhesins of B. multivorans C1576 differ in their strain 

distribution. The analysis of available genome sequences referred to above suggested that 

the two loci were not widely distributed within the Bcc and wider Burkholderia genus. Using 

dot-blot hybridization, we assessed the distribution of each locus (based on the presence or 

absence of a representative gene for each) within a wider panel of Burkholderia isolates, with 

a particular focus on clinical B. multivorans isolates. Genomic DNA was isolated from a total 

of 97 Bcc isolates, comprising 83 clinical B.multivorans isolates (including 26 representatives 

of strain ST-27), six environmental B. multivorans isolates, and representatives of other Bcc 
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species (for strain details, see Table S1). In the course of verifying the B. multivorans isolates 

belonging to the ST-27 outbreak strain, MLST analysis revealed that whilst all shared an 

identical MLST type, this differed by a single nucleotide within the lepA locus from the 

previously published MLST type for B. multivorans C1576 (Baldwin et al., 2005). The 

corrected MLST profile for the ST-27 outbreak strain (represented by the index case C1576) 

is thus: atpD 13, gltB 7, gyrB 6, recA 10, lepA 224, phaC 42, and trpB 6. 

 

Genomic DNA from the assembled strain panel was probed for the presence of genes 

encoding the putative fimbrial usher and the HecB-like proteins. Based on the presence of 

these representative genes, results (summarised in Table 2, and detailed in Table S1) reveal 

that the locus encoding the putative fimbrial proteins is widely distributed amongst both 

clinical and environmental B. multivorans isolates, being observed in 76/89 isolates tested. In 

contrast, the locus encoding the FHA-family adhesin is more restricted in distribution, being 

limited to clinical isolates and particularly the ST-27 outbreak strain (occurring in 100% of 

ST-27 isolates, compared to < 9% of non-ST-27 isolates). None of the non-B. multivorans 

isolates within the strain panel harboured either gene.  

 

The fimbrial and FHA-family adhesins of B. multivorans C1576 contribute to mucin 

adherence and biofilm formation. We next sought to evaluate the role of these putative 

adhesins in adherence and biofilm formation. Individual mutants were generated by 

insertional inactivation of the genes encoding the putative HecB-like and fimbrial usher 

proteins (resulting in strains hecB CR and fim CR respectively, Table 1). Both mutants were 

complemented in trans using the pDA17 constitutive expression vector. Additionally, RT-

PCR analysis confirmed that genes flanking the inactivated genes within each of the mutants 

were still expressed (data not shown).  
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To evaluate the role of the adhesins in abiotic adherence, we assessed the ability of the strains 

to adhere to mucin and to the extracellular matrix protein fibronectin. Neither mutant 

exhibited a significant reduction in fibronectin binding (orthogonal contrast: t = -0.3, df = 25, 

P > 0.05). In contrast, both adhesin mutants were significantly reduced in their adherence to 

mucin relative to the wildtype strain (orthogonal contrast: t = -6.7, df = 85, P < 0.0005; Fig. 

3a). Appropriate complementation of the mutants (fim CO and hecB CO) partially restored 

mucin adherence (P < 0.05 relative to the corresponding mutant strain), albeit not to wild-

type levels (Fig. 3a). This partial complementation has been observed previously with the 

pDA17 vector, including in a recent study of an adhesin-like gene of B. cenocepacia (Mil-

Homens et al., 2010), and we believe it reflects sub-optimal gene dosage from the 

complementation vector.  

 

We assessed the ability of all strains to form biofilm using the MBEC biofilm device 

(Innovotech). As shown in Fig. 3(b), both mutant strains (fim CR and hecB CR) exhibited 

significantly impaired biofilm formation relative to wildtype C1576 (orthogonal contrast: t = 

-6.4, df = 115, P < 0.0005), indicating that both adhesins are important for biofilm formation. 

Appropriate complementation of both mutants fully restored biofilm formation (Fig. 3b). 

 

Finally, to investigate the role of these adhesins during infection, all strains were assessed 

within the Galleria mellonella infection model, a model that has been used previously to 

investigate the role of Burkholderia adhesins (Mil-Homens et al., 2010). Neither mutant 

exhibited altered larval killing compared to wildtype C1576, with all strains killing 100% of 

larvae within 72 hours at an inoculum of approximately 10
4
 CFU (data not shown). Larvae 

injected with PBS exhibited 100% survival for the duration of the experiment. Therefore, 



16 

 

individually, neither the putative fimbrial usher protein nor the HecB-like protein are required 

for full virulence in the Galleria model. 

 

Mannitol promotes expression of the putative fimbrial and FHA-family adhesins. 

Having shown that growth of C1576 in mannitol promoted adherence to mucin in an EPS-

independent manner (Fig. 1b), we assessed whether growth in mannitol increased the 

expression of either of the putative adhesin-encoding loci characterized above. As part of a 

wider on-going study of the genome-wide transcriptional response of B. multivorans to 

mannitol, we have performed RNA-seq analysis on the Illumina platform. The full dataset 

arising from these studies will be published elsewhere. However, analysis of this 

transcriptome dataset reveals that growth in mannitol promotes expression of both loci 

encoding the putative fimbrial and afimbrial adhesins (Fig. 4). This is particularly the case for 

the putative fimbriae-encoding locus, every gene of which is significantly upregulated by 

growth in mannitol. We also observed significant upregulation of the cepacian biosynthetic 

gene clusters bce-I and bce-II (Ferreira et al., 2010) following growth in YEM (Table S1), 

consistent with the observed induction of EPS biosynthesis on YEM, and the previous report 

that growth on YEM upregulates bceE expression in B. ambifaria AMMD (Bartholdson et 

al., 2008).   

 

The putative FHA-family adhesin of B. multivorans C1576 contributes to the enhanced 

adherence following growth in mannitol. Having shown upregulation of both the fimbrial 

and afimbrial adhesins in response to mannitol, we assessed the extent to which the 

individual adhesins contribute to the mannitol-promoted adherence phenotype observed 

previously (Fig. 1b). The wildtype and adhesin mutants were cultured in mannose or 

mannitol-supplemented broth prior to the mucin adherence assay. Relative to wildtype, both 
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mutants showed impaired mucin adherence following growth in mannose-containing media 

(orthogonal contrast: t = -2.2, df = 112, P < 0.05), consistent with the results presented in Fig. 

3(a), and consistent with a general defect in adherence following inactivation of either 

adhesin. Despite this lower basal level of adherence, the adherence of the fim CR strain was 

still elevated 5- to 6-fold following growth in mannitol (orthogonal contrast: t = -16.6, df = 

112, P < 0.0005). This is consistent with observations of the wildtype, and suggests that the 

putative fimbrial adhesin does not play a significant role in the enhanced mucin adherence 

that is induced by mannitol.  In contrast, the adherence of the hecB CR strain is not enhanced 

following growth in mannitol (orthogonal contrast: t = -0.7, df = 112, P > 0.05), indicating 

that the putative FHA-family adhesin contributes to the mannitol-induced mucin adherence.  

 

Discussion   

In this study we have shown that mannitol can promote adherence of B. multivorans in an 

EPS-independent manner that is associated with the upregulation of genes encoding putative 

fimbrial and FHA-family adhesins. Whilst it is the fimbrial locus that is most significantly 

elevated following growth in mannitol, it is the locus encoding the putative FHA-family 

adhesin that appears to be a key determinant of the enhanced adherence. Although perhaps 

unexpected, this may reflect the fact that the hecB gene is predicted to encode the transporter 

for the FHA adhesin rather than the adhesin itself, and thus hecB expression is not a reliable 

indicator for the amount of mature adhesin on the cell surface.  

 

Whilst adhesins have been described in other members of the Bcc and within the wider 

Burkholderia genus (Balder et al., 2010;Mil-Homens et al., 2010;Mil-Homens & Fialho, 

2012;Urban et al., 2005), the present study represents the first investigation of putative 

fimbrial and FHA-family adhesins within the Bcc, and the first characterisation of any 
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specific adhesins within B. multivorans. Whilst fimbrial and FHA-family adhesins are 

common within the Burkholderia genus, there is considerable diversity at the amino acid 

level between the adhesins of different species. Such sequence variation within adhesins can 

profoundly alter their binding specificities and affinities, thus impacting on host tropism and 

capacity for virulence (Sokurenko et al., 1998;Weissman et al., 2006). Burkholderia species 

are an extremely versatile group of organisms, having been reported as human and animal 

pathogens, plant pathogens, plant growth promoters and endosymbionts of insects and fungi 

(for review, see (Vial et al., 2011). The role played by species-specific and strain-specific 

adhesins in conferring such diverse host- and niche-adaptations of Burkholderia remains to 

be elucidated. Within the present study, we observed that the environmental isolate (ATCC 

17616) adhered significantly better to mucin than the clinical isolate (C1576), and further 

studies are required to identify the molecular basis for this. A heightened capacity for 

adherence to mucin may promote colonisation of the airways.  Epidemiological data suggests 

that the majority of new cases of B. multivorans infection in CF patients are due to 

acquisition from environmental sources (Brisse et al., 2004;Coenye & Vandamme, 

2003;Govan et al., 2007;Norskov-Lauritsen et al., 2010), and it is notable that CF isolates of 

B. multivorans that share the same MLST profile as the environmental ATCC 17616 isolate 

have been recovered from CF patients (Baldwin et al., 2008). 

 

In contrast to the widely-distributed fimbrial-encoding locus, it is striking that the locus 

encoding the putative FHA-family adhesin reported herein was found only in clinical isolates. 

Clearly further environmental isolates need to be studied to test this association more 

rigorously – the low number of environmental B. multivorans included in the assembled 

strain panel reflect the infrequent isolation of this species from the natural environment 

(Baldwin et al., 2008). Furthermore, all but two of the clinical isolates detailed in Table S1 
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that were found to harbour the hecB-like gene (representative of the FHA-encoding locus) 

belong to sequence types known to be associated with patient-to-patient transmission, notably 

ST-27, ST-25 and ST-179 (Baldwin et al., 2008). Putative transmissibility factors have been 

identified in other Bcc species (Clode et al., 2000), and whilst their predictive value has been 

questioned (Govan et al., 2007), our observations justify further studies to investigate the 

strength of the association of the FHA-encoding locus with transmissible strains, and its 

potential as a marker for transmissibility amongst clinical B. multivorans. 

 

The rationale for this study of adhesins within the B. multivorans ST-27 strain stemmed from 

our observations that whilst mannitol promoted bacterial adherence to mucin, the role played 

by EPS was strain-dependent. There remains considerable debate about the significance of 

EPS production as a Bcc virulence factor, fuelled by the fact that arguably one of the most 

virulent Bcc strains (B. cenocepacia ET-12) does not produce EPS and is consistently non-

mucoid (Bartholdson et al., 2008;Zlosnik et al., 2008). Our observations from the present 

study emphasize the difficulty in establishing the role of EPS in virulence, as the growth 

conditions commonly used to induce and study EPS (the mannitol-containing media, YEM) 

clearly elicit a response within the bacterium that is wider than the EPS biosynthetic pathway. 

Consequently, attempts to identify the role of EPS through phenotypic observations of whole 

organisms are prone to being skewed by the wider EPS-independent response to mannitol, 

potentially resulting in phenotypic traits being wrongly assigned to the mucoid phenotype. 

We suggest that the approach undertaken in the present study (parallel studies of the wildtype 

and an isogenic EPS-deficient mutant) is best-suited for identifying phenotypes truly 

associated with EPS production, although clearly such an approach depends on having 

sufficient knowledge of the genetic basis of EPS biosynthesis. Our observation that EPS 

plays a significant role in the mucin adherence of ATCC 17616 but not the C1576 strain also 
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highlights the multi-factorial aspect of Bcc virulence. The contribution of individual 

virulence determinants can vary from strain-to-strain and can be influenced by the presence 

or absence of other complementary factors. With specific reference to EPS, one consequence 

of this is that the biological significance of the documented mucoid to non-mucoid transition 

that is frequently observed in sequential Bcc isolates from individual CF patients (Zlosnik et 

al., 2008) may be strain-dependent. This may also be influenced by differences within the 

EPS itself, as the differing roles attributed to the EPS of the two strains studied herein may 

reflect differences in EPS composition and structure. Whilst beyond the scope of the current 

study, there is clearly merit in performing a structure-function analysis of Burkholderia EPS.  

 

During early pilot studies of inhaled mannitol therapy, it was acknowledged that the ability to 

utilise mannitol as a carbon and energy source was common amongst both Bcc and 

Pseudomonas aeruginosa (the dominant CF pathogen) (Robinson et al., 1999). However, it 

was considered unlikely that this would significantly affect bacterial burden in the lung due to 

the abundance of alternative nutrient sources within respiratory secretions. This appears to 

have been borne out by clinical trials that have found no difference in sputum microbiology 

between treatment and control groups (Jaques et al., 2008;Teper et al., 2011). However, the 

fact that mannitol promotes EPS production, together with our observations that mannitol 

promotes expression of adhesin-encoding loci that contribute to abiotic adherence and 

biofilm formation, indicate that administration of mannitol is likely to have profound 

phenotypic consequences on Bcc within the lung. Furthermore, by enhancing expression of 

the adhesins, it is conceivable that mannitol may promote the initial colonisation of the 

airways with Bcc. The full impact of mannitol on relevant virulence traits of the Bcc (and 

indeed other microbial species commonly found in the CF lung) has yet to be established. 

However, based solely on observations to date, the phenotypic impact of mannitol on the Bcc 



21 

 

is unequivocal, and close microbiological monitoring of patients receiving inhaled mannitol 

therapy would appear prudent.  
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Table 1. Strains and plasmids used in this study. 

Strain or plasmid Relevant characteristics  
Source and/or 

reference 

B. multivorans strains   

C1576 CF clinical isolate; Index case of outbreak strain,  

ST-27 

(Mahenthiralingam 

et al., 2000) 

fim CR  C1576, pGPΩTp::fim, Tp
R This study 

hecB CR  C1576, pGPΩTp::hecB, Tp
R This study 

fim CO  C1576, pGPΩTp:: fim, pDA17:: fim, Tp
R
 Tet

 R  This study 

hecB CO  C1576, pGPΩTp::hecB, pDA17::hecB, Tp
R
 Tet

R  This study 

C1576 bceB CR C1576,  pGPΩTp::bceB, Tp
R This study  

ATCC 17616 Environmental isolate from soil (Mahenthiralingam 

et al., 2000) 

ATCC bceB CR ATCC 17616, pGPΩTp::bceB, Tp
R This study 

E. coli strains   

TOP10 F
-
 mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 

ΔlacX74 recA1 araD139 Δ(ara-leu) 7697 galU galK 

rpsL (Str
R
) endA1 nupG λ

- 

Invitrogen 

GT115  F
-
 mcrA ∆(mrr-hsdRMS-mcrBC) φ80lacZ∆M15 

∆lacX74 recA1 rspL (StrA) endA1 ∆dcm 

uidA(∆MluI)::pir-116 ∆sbcC-sbcD 

InvivoGen 

Plasmids   

pGPΩTp OriR6K, ΩTp
R 

cassette, mob
+ (Flannagan et al., 

2007) 

pRK2013 OricolE1, RK2 derivative, Kan
R
, mob

+
tra

+ (Figurski & 

Helinski, 1979) 

pDA17 OripBBR1,Tet
R
, mob

+
, Pdhfr (Flannagan et al., 

2008) 

pGPΩTp::hecB pGPΩTp; 444 bp internal fragment from C1576 hecB  This study 

pGPΩTp::fim pGPΩTp; 426 bp internal fragment from C1576 gene 

encoding fimbrial usher protein 
This study 

pDA17::hecB pDA17; 1.8 kb fragment encoding the C1576 HecB-

like protein  
This study 

pDA17::fim pDA17; 2.7 kb fragment encoding the C1576 fimbrial 

usher protein 
This study 

 

The fim and hecB nomenclature relates to the genes encoding the fimbrial usher protein and 

the HecB-like protein (respectively) of B. multivorans C1576.  

Tp
R
, trimethoprim resistance; Tet

R
, tetracycline resistance; Kan

R
, kanamycin resistance.  
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Table 2.  Distribution of the genes encoding the putative HecB-like and fimbrial usher 

proteins amongst clinical and environmental B. multivorans isolates, as determined by dot-

blot analysis. Clinical isolates are sub-divided into ST-27 and non-ST-27. 

 

                 Clinical 

(ST-27) 

Clinical 

(non-ST-27) 

Environ. 

hecB-like 26/26 5/57 0/6 

fim 26/26 47/57 3/6 
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Fig. 1. The role of exopolysaccharides (EPS) in promoting the adherence of B. multivorans to 

mucin is strain-dependent.  

B. multivorans strains ATCC 17616 and C1576 (wildtype and bceB mutant of each) were 

grown overnight in either mannitol-containing media (YEM) or mannose-containing media, 

prior to assessing adherence to mucin-coated wells. The ATCC 17616 strain adhered 

significantly better to mucin than the C1576 strain (note the differing scales on the y-axes). 

However, irrespective of this difference, growth in mannitol promoted the adherence of both 

strains (relative to growth in mannose). Disruption of the bceB gene in ATCC 17616 

abolished the enhanced adherence observed following growth in mannitol, indicating it to be 

EPS-dependent (a). In contrast, inactivation of bceB in C1576 did not affect the enhanced 

adherence, indicating it to be EPS-independent (b).  Data correspond to mean of three 

independent experiments, each in triplicate. Error bars indicate SEM. *** P < 0.0005.
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Fig. 2. Schematic representation of the B. multivorans C1576 loci encoding the putative 

fimbrial adhesins (a) and the putative FHA family adhesins (b). Refer to text for details. FHA 

OMP, Filamentous haemagglutinin outer membrane protein; PPIase, PpiC-type peptidyl-

prolyl cis-trans isomerase. Dashed outline denotes genes targeted by insertional inactivation. 
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Fig. 3. The putative fimbrial and HecB-like adhesins of B. multivorans C1576 contribute to 

mucin adherence and biofilm formation.  

(a) Both adhesin mutants (fim CR and hecB CR) are significantly impaired in adherence to 

mucin relative to wildtype C1576. Complementation of the fim and hecB mutants 

partially-restored adherence (fim CO and hecB CO respectively).  

(b) Both adhesin mutants show reduced biofilm formation relative to WT, with 

complementation fully restoring biofilm formation.  

Graphs show representative data from at least three independent experiments. Mucin 

adherence results are expressed as percentage adhesion relative to input from the mean of six 

wells per strain. Asterisks alone indicate statistical significance relative to wildtype C1576, 

whilst asterisks with bracket bar directly beneath compare the adhesin mutant (CR) to the 

corresponding complemented strain (CO). * P < 0.05, ** P < 0.005, *** P < 0.0005. Error 

bars represent SEM.  
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Fig 4. RNA-seq analysis reveals elevated expression of both putative adhesin-encoding loci 

following growth in mannitol. 

The relative expression of the genes of the putative adhesin-encoding loci of B. multivorans 

C1576 was assessed by RNA-seq. The graph shows the fold change in gene expression 

observed following growth in the mannitol-containing YEM media, relative to the expression 

level observed in equivalent mannose-containing media. For each gene, data are depicted in 

two ways: (1) The horizontal bar indicates the fold change that was calculated from the 

combined analysis of the two biological replicates per condition; (2) the variance in the fold 

change for each gene is shown by the individual data points (filled circles) that each represent 

analysis of the biological replicates individually (i.e. a single pairwise mannitol-vs-mannose 

comparison). The fold change of the fimC gene could not be calculated for two of the four 

pairwise comparisons as one of the mannose-grown samples had an RPKM value of 0. 

Asterisks denote FDR-adjusted P-values (* P < 0.05, *** P < 0.0005), and relate to the 
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combined analysis of the biological replicates. All genes of the putative fimbriae-encoding 

locus were significantly upregulated following growth in YEM, with 2.5- to 13-fold increases 

in expression relative to that observed in mannose-grown cultures. Upregulation of the locus 

encoding the putative FHA-family adhesins was also observed, albeit to a lesser extent (1.5- 

to 2-fold). Of those, only the genes encoding the putative 68 kDa FHA-like protein (FHA 

OMP 2) and HecB-like protein were deemed to be significantly upregulated.  


