
Downloaded from: http://researchonline.lshtm.ac.uk/10002/

DOI:

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/
Cell therapy glossary

Adult stem cells
Undifferentiated cells found in most adult tissues. Adult stem cells can renew themselves and differentiate to yield all the specialised cell types of the tissue from which they originated. Also referred too as ‘somatic stem cells’.

Cell-based therapies
Treatment in which stem cells are induced to differentiate into the specific cell type required to repair damaged or depleted adult cell populations or tissues.

Cellular therapy
A new way to treat disease and injury. It aims to repair damaged and diseased body-parts with healthy new cells provided by stem cell transplants.

Cones
A type of specialised light-sensitive cells (photoreceptors) in the retina that provide sharp central vision and colour vision. See also Rods.

Differentiation
The process whereby an unspecialised early embryonic cell acquires the features of a specialised cell, such as a heart, liver, or muscle cell.

Embryonic stem cells
Primitive (undifferentiated) cells from the embryo that have the potential to become all cell types found in the body (totipotent). Embryonic stem cells (ESCs) are derived from four to five day-old embryos.

Gene therapy
Therapy aimed at counteracting the gene defect by substituting normal gene material at the site of the problem.

Mesenchymal stem cells
Stem cells found primarily in the bone marrow that can transform into bone, cartilage, fat, and connective tissue. These cells are also referred to as bone marrow stromal cells.

Multipotent stem cells
Stem cells that can give rise to several other cell types, but those types are limited in number. An example of multipotent cells is haematopoietic cells – blood stem cells that can develop into several types of blood cells.

Photoreceptors
Cells that are sensitive to light.

Plasticity
The ability of stem cells from one adult tissue to generate the differentiated cell type of another.

Progenitor cells
Cells that can produce only one cell. They can differentiate into a limited number of cell types, but cannot make more stem cells (or renew themselves).

Proliferation
Expansion of a population of cells by the continuous division of single cells.

Regenerative medicine
A treatment in which stem cells are induced to differentiate into the specific cell type required to repair damaged or depleted adult cell populations or tissues.

Retina
The light-sensitive layer of tissue that lines the back of the eyeball; sends visual messages through the optic nerve to the brain.

Retinal pigment epithelium
The pigment cell layer that nourishes the retinal cells; located just outside the retina and attached to the choroid.

Rods
A type of specialised light-sensitive cells (photoreceptors) in the retina that provide side vision and the ability to see objects in dim light (night vision). Also see Cones.

Stem cells
Unspecialised cells that serve as the source, or ‘stem’, for specialised cells like heart, brain, or blood cells. They have two important characteristics that distinguish them from other cells in the body. Firstly, they can replenish their numbers for long periods through cell division. Secondly, after receiving certain chemical signals, they can differentiate, or transform into specialised cells with specific functions, such as a heart cell or nerve cell. Found in days-old embryos and a few adult organs.

Subfoveal
Beneath the fovea, the central pit in the macula that produces the sharpest vision.

Undifferentiated cells
Cells that have not changed to become a specialised type of cell.
at the back of the eye in the year 2020?

Ophthalmology Congress

These imaging systems will also improve diagnosis and therefore subsequent management. Therapies will include increased use of angiostatic agents, and more focal, less destructive laser treatments. The current belief that surgical techniques do not work will change as advances in techniques develop (e.g. use of plasminogen to liquefy the vitreous to reduce the traction).

Dr. Alejandra A. Valenzuela of the Royal Children’s Hospital, University of Queensland, Australia, considers that by 2020, better education and increased surveillance by the health community will be fundamental to earlier diagnosis and successful outcomes. Multimodal therapeutic advances will save not only the life of the patient, but also preserve the eye and, in some cases, preserve the vision. The addition of gene therapy to the particular Rb1 mutation affecting some children may provide a further therapy to the particular Rb1 mutation.

Dr. Borja Corcostegui, President of EURETINA, foresees potential treatments for retinal dystrophies in the future to include cell replacement strategies (i.e. transplantation of stem cells, progenitor cells, primary retinal cells or retinal progenitor cells, primary retinal cells or retinal progenitor cells). Research and development into regenerative therapies will also increase in importance. An important challenge will also be to identify the best delivery systems for these medications (e.g. oral, subconjunctival, even topical).

Retinal dystrophies, e.g. retinitis pigmentosa

Dr Ian Constable, Professor of Ophthalmology, University of Western Australia and Director of Lions Eye Institute, Perth, believes that by the year 2020, the range of specific gene defects will have been documented for the various clinical phenotypes. Gene function (e.g. enzymatic, cell signaling) for most dystrophies will also be understood, and animal models in place. Gene therapies will predominantly be available for large families or populations, however there will be some scope for developing customised treatments. In general, the strategy will be:

- Autosomal recessive – replace the defunct gene
- Autosomal dominant – insert a separate gene.

Dr Richard Gisbert, Professor of Ophthalmology, University of Hamburg and co-founder of the European Society of Retinal Specialists (EURETINA), foresees potential treatment options for retinal dystrophies in the future to include cell replacement strategies (i.e. transplantation of stem cells, progenitor cells, primary retinal cells or retinal tissue), gene therapy, and, for advanced cases, electronic retinal prostheses.